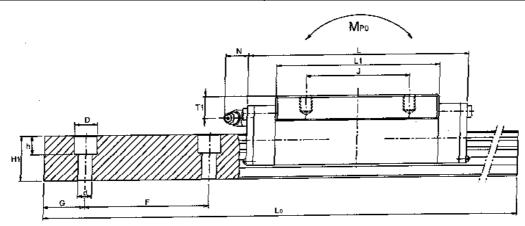
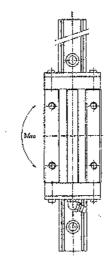
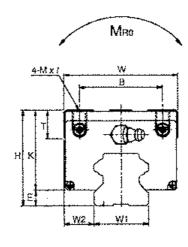
Характеристика изделия.

Размеры: мм


				газмеры. мм			
	Монтажные размеры						
Высота	Е	W ₂	Ширина, W	Длина,			
П			VV	L			


Размеры блока							
Расстояние между монтажными отверстиями		L_1	K	Т	Ниппель		
B×J	M×l				Монтажное отверстие	T ₁	D


	Размеры рельса						
	Ширина \mathbf{W}_1	Высота Н ₁	F	Крепежное отверстие d×D×h	G	Макс. длина рельса L _{0max}	
Ī							

Нагрузочная способность					
Динамическая	Статическая	Статическая Статический момент			
С(кгс)	С ₀ (кгс)	(Н/м)			
		M_{R0}	M_{P0}	$M_{\Upsilon 0}$	

Bec				
Каретка	Рельс			
(кг)	(кг)			

Смазка

При выборе смазки, кроме конструктивных особенностей устройства, в котором применяется данная LM – направляющая, необходимо учитывать следующие факторы:

- типовой размер;
- величину нагрузки, действующую на блок;
- рабочую температуру узла;
- состояние окружающей среды (степень загрязненности, загазованности, наличия паров и других вредных веществ).
- Смазка применяется для того чтобы предотвратить перегрев, снизить трение, и износ контактных частей.

Чтобы эффективно использовать систему линейных направляющих по нагрузке и скорости поверхности качения должны быть предварительно смазаны. Период между нанесением смазки рассчитывается исходя из средней потребности 0,03-0,05 см³ в час на один шарик и в большинстве случаев применения составляет 50-100 км.

В большинстве случаев подойдет смазка Shell Alvania grease G2 (AV2).

Большая нагрузка требует смазки с высокой вязкостью, а системы с высокой скоростью смазки с низкой вязкостью.

Смазка 13csT подходит для нормальной скорости или легкой нагрузки и 68csT для тяжелой нагрузки.

Монтаж LM – направляющих.

Внимание!

Все работы связанные с монтажом LM – направляющих выполняются осторожно и без применения излишних усилий.

Не допускается снятие блоков с рельса у LM – направляющих без специального вкладыша, в случае его исполнения без сепараторов.

Перед установкой LM – направляющих на станок устранить заусенцы, следы удара и пыль с поверхности монтажа.

Примечание

На поверхности LM – направляющей нанесено антикоррозийное масло, поэтому перед её монтажом следует очистить поверхность базирования очистительным маслом. После устранения антикоррозийного масла поверхность базирования будет иметь склонность к коррозии, и поэтому рекомендуется нанести шпиндельное масло с малой вязкостью на поверхность.

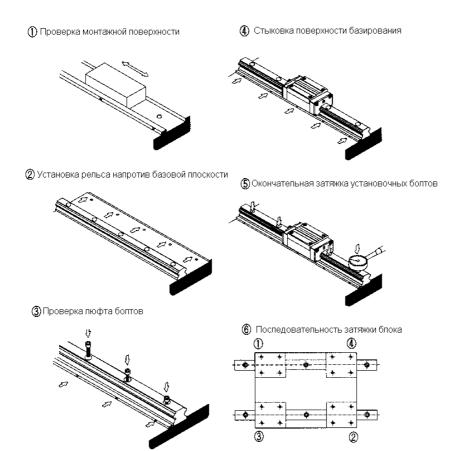
Осторожно положить LM — рельс на станину и предварительно завинчивать установочные болты таким образом, чтобы рельс слегка, но плотно был установлен на поверхность монтажа. (Выполнить установку таким образом, чтобы маркировка в виде прямой линии на LM — рельсе была со стороны, упирающейся в боковую поверхность базирования станины). Примечание

Для фиксации LM – направляющей следует использовать чистые установочные болты. Далее, при вставке болтов в установочные отверстия LM – рельса убедиться в том, что нет смещения отверстий.

По очереди затянуть винты прижима рельса к боковой базе до плотного прилегания. Затянуть установочные болты на требуемый крутящий момент с использованием динамометрического ключа.

Примечание

При затяжке установочных болтов рельса следует начать затяжку болтов от середины рельса в стороны обоих концов.

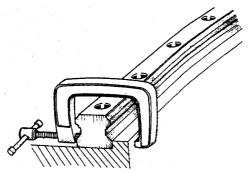

Для крепления рельсов использовать болты, изготовленные по ГОСТ11738 (класс точности A). Установка LM – блоков

Осторожно установить блоки на стол и предварительно затянуть установочные болты.

Закрутить винты прижима блока с опорной стороны к боковой поверхности базирования стола и выполнить позиционирование стола.

Проверить, чтобы базирующая поверхность блока совпадала с базирующей поверхностью стола (боковая базирующая поверхность блока считается та, на которой имеется канавка выполненная по всей длине блока).

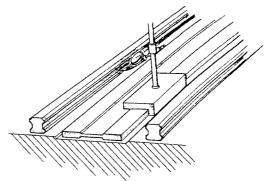
Окончательно затянуть установочные болты с опорной и сопряженной стороны равномерно по диагонали.


Рекомендуемый момент затяжки винта

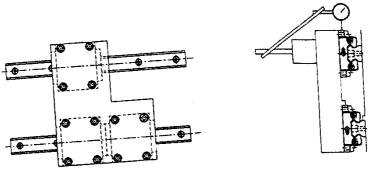
Единица: кгс-см

Номинальный	размер	Крутящий момент	
винта		затяжки	
M2.3		8	
M2.6		12	
M3		20	
M4		42	
M5		90	
M6		140	
M8		310	
M10		690	
M12		1200	
M14		1800	
M16		3000	
M20		5800	
M22		7800	
M24		10000	
M30		20000	

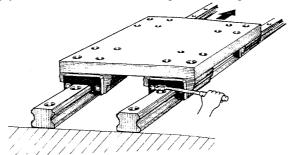
Монтаж LM - рельса с опорной стороны


После предварительной затяжки место положения установочного болта надежно прижать к боковой поверхности базирования с использованием малогабаритных тисков и др. и окончательно затянуть соответствующий установочный болт. Повторить эту затяжку по очереди для каждого установочного болта.

Методы монтажа LM – рельса с сопряженной стороны:


• Метод с использованием поверочной линейки.

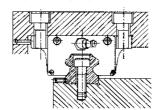
Положить поверочную линейку между двумя направляющими и с помощью калибра с циферблатом добиться (индикатора часового типа) установить её параллельно боковой поверхности базирования LM — рельса с опорной стороны, базируя на поверочную линейку добиться прямолинейности боковой поверхности базирования рельса и окончательно затянуть все болты.

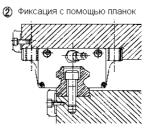

• Метод по перемещению стола

Зафиксировать два LM – блока с опорной стороны на стол и выполнить предварительную затяжку LM – рельса и LM – блока с сопряженной стороны на станину и стол соответственно. Используя калибр с циферблатом установленный на стойку, следует перемещать стол с одного конца направляющей и выявить прямоту LM – рельса с сопряженной стороны и по очереди затянуть установочные болты.

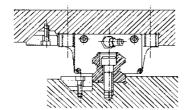
• Метод копирования LM – рельса с опорной стороны

Установить стол на подшипниковые блоки на правильно установленном рельсе с опорной стороны и предварительно установленном рельсе с сопряженной стороны и выполнить окончательную затяжку двух LM — блоков с опорной стороны и одного из двух LM — блоков с сопряженной стороны. Другой LM — блок с сопряженной стороны предварительно затянуть. Далее, перемещая стол, проверить сопротивление скольжению и по очереди выполнить окончательную затяжку установочных болтов LM — рельса с сопряженной стороны.

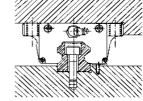



<u>Фиксация LM – направляющих и LM – блоков</u>.

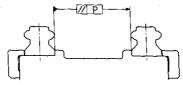
В случае, когда имеется опасность смещения рельса и блока из-за вибрационного или ударного воздействия, рекомендуется применять метод крепления изображенный на рисунках


В случае параллельного использования двух и более направляющих фиксация блока предусматривается только с базовой стороны.

① Фиксация с помощью прижимных винтов



③ Фиксация с помощью клиньев

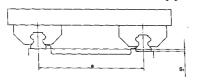


Допустимая точность в параллелизме установки двух рельс (Р).

Размер: мкм

1 aswep. MKW					
	Допустимое				
Типо-	отклонение по параллельности				
размер	Преднатяг блока				
	K_1	K_2	K ₃		
		1.0			
15	25	18			
20	25	20	18		
25	30	22	20		
30	40	30	27		
35	50	35	30		
45	60	40	35		
55	70	50	45		
65	80	60	55		

Допустимая точность двухуровневой установки(S1).


Коэффициент	Преднатяг блока				
	K_1	$K_2(0.05c)$	K ₃ (0.08c)		
Y	0.0004	0.00026	0.00017		

 $S1 = a \times Y$

S₁: допустимая точность двухуровневой установки

а: расстояние между рельсами

Ү: коэффициент

Допустимая точность двухуровневой установки(S2).

 $S2 = b \times 0.00004$

S2: допустимая вертикальная точность

b: расстояние между блоками на одной рельсе