ЕТНЕRNЕТ-САN ШЛЮЗ ЕСG01-220V / ЕСG02-220V ЕСG01-5V / ЕСG02-5V

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Версия 2.6

Москва, 2016

Особые указания по пользованию руководством

Отдельные указания имеют следующее значение:

ОПАСНОСТЬ:

Означает, что непринятие соответствующих мер предосторожности подвергает опасности жизнь и здоровье пользователя.

ПРИМЕЧАНИЕ:

Указывает на то, что неправильное обращение может привести к неправильной работе устройств ECG01/ECG02. Однако опасностей для здоровья пользователя или риска повреждения аппаратуры или иного имущества не имеется.

Кроме того, примечания такого рода могут обращать внимание пользователя на возможность иной настройки параметра, наличие иной функции или возможность применения дополнительных или расширительных устройств.

Документ описывает предназначение устройств ECG01-220V, ECG02-220V, ECG01-5V/ECG02-5V, руководство по подключению и настройке устройства, также обновлению программного обеспечения устройства.

ЗАО «Сервотехника» не возлагает на себя обязанность оповещать пользователей устройств ECGxx-xx о появлении обновлений комплекта документации и программного обеспечения. Все новости вы можете найти на сайте компании <u>www.servotechnica.ru</u>.

Оглавление

1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	. 4
Информация для заказа	. 5
2. РАБОТА	. 6
Назначение устройства	. 6
Описание интерфейса	. 7
Органы управления и индикации	. 8
Подключение Устройства	10
Разъем питания	10
Разъем LAN	11
Разъем CAN	12
Установка параметров Устройства	16
Заводские настройки сетевых параметров Устройства	16
Настройка Устройства через приложение «ЕСС конфигуратор»	16
Настройка Устройства через консольное приложение sps boot switcher	18
Обновление программного обеспечения устройства.	18
Протокол взаимолействия	21
Ограничения протокола обмена	22
Механизм прозрачности	22
Προτοκοπ ΕΤΗ2CAN	24
Взаимодействие с приводами серии СПШ	28

1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Ethernet-CAN шлюз (далее - Устройство) выпускается в двух исполнениях:

- Версия ЕСG01-220V и ЕСG02-220V питаются от сети переменного тока 220В.
- Версия ECG01-5V и ECG02-5V питаются от сети постоянного тока 5В.

Номинальные значения параметров Ethernet-CAN шлюза версии ECG01-220V и ECG02-220V приведены в Табл. 1.

Табл. 1. Технические характеристики ЕССО1-220V и ЕССО2-220V.

Наименование параметра	Значение
Напряжение питания переменного тока, В	~220, +10%/-5%
Потребляемая мощность, Вт, не более	12
Масса, грамм	200/250
Рабочая температура, °С	от -20 до 70
Температура хранения, °С	от -40 до 85
Относительная влажность воздуха, %, не более	98 (при t=25°С)

Номинальные значения параметров Ethernet-CAN шлюза версии ECG01-5V и ECG02-5V приведены в Табл. 2.

Табл. 2. Технические характеристики ЕСG01-5V и ЕСG02-5V.

Наименование параметра	Значение
Напряжение питания переменного тока, В	5,±5%
Потребляемая мощность, Вт, не более	10
Масса, грамм	150/200
Рабочая температура, °С	от -20 до 70
Температура хранения, °С	от -40 до 85
Относительная влажность воздуха, %, не более	98 (при t=25°С)

Поддерживаемые Устройством протоколы указаны в Табл. 3.

Табл. 3. Протоколы Ethernet-CAN шлюза.

Протокол	Скорость обмена, Мбит/сек
Ethernet: IEEE 802.3u ENDEC	10
Ethernet: IEEE 802.3u PCS	100
CAN: ISO 11898	1

Габаритные размеры Устройства указаны на Рис. 1.

Рис. 1. Габаритные размеры Ethernet-CAN шлюза.

Информация для заказа

Рис. 2. Формирование кода заказа.

2. РАБОТА

Назначение устройства

Ethernet-CAN шлюз предназначен для подключения настольных и промышленных компьютеров, а также ноутбуков к промышленной шине CAN посредством интерфейса Ethernet по протоколу TCP/IP.

CAN CAN LAN TCP/IP

На Рис. 3 представлен пример подключения Ethernet-CAN шлюза.

Рис. 3. Общая архитектура сети с использованием Ethernet-CAN шлюза.

Ethernet-CAN шлюз опционально поставляется с встроенным пультом управления (номенклатурный номер ECG02-xx). Руководство пользователя встроенного пульта управления приведено в документе «*CT1_112 Руководство пользователя ПУ СПС.pdf*».

Описание интерфейса

На Рис. 4 приведены разъемы Устройства ревизии ECGxx-220V, расположенные в двух торцах устройства.

Рис. 4. Разъемы Устройства ревизии ECGxx-220V.

На Рис. 5 приведены разъемы Устройства ревизии ECGxx-5V, расположенные в двух торцах устройства.

Рис. 5. Разъемы Устройства ревизии ECGxx-5V.

Органы управления и индикации

Кнопка «Сброс» – обеспечивает аппаратный сброс Устройства.

Переключатель режимов позволяет установить требуемый режим работы Устройства. Поддерживаемые режимы работы представлены в Табл. 4.

Табл. 4. Режимы работы EGG шлюза.

Номер контакта	1	2	3
Режим работы			
Режим шлюза (Основной режим)	1	1	1
Режим настройки	0	1	1
Сброс в заводские настройки	1	0	1

В режиме шлюза Устройство выполняет основную функцию, в которой выполняется ретрансляция сообщений между сетями CAN и Ethernet.

Режим настроек предназначен для установки сетевых параметров устройства, а также обновления его программного обеспечения.

Режим «Сброс в заводские настройки» позволяет вернуть все настройки в исходное состояние без подключения к компьютеру. Данный режим полезен в случае, если были случайно установлены неправильные настройки сети и невозможно установить соединение с Устройством. После выполнения сброса в заводские настройки шлюза примут значения, указанные в Табл. 5.

Табл. 5. Значение параметров Устройства после сброса в заводские настройки.

Параметр	Значение
IP адрес устройства	192.168.2.25
Маска подсети	255.255.255.0
IP адрес шлюза узла сети	192.168.2.1
МАС адрес	00-13-D4-7C-DB-9F
Скорость по шине САN	1000

Для изменения режима работы установите переключатель режимов в требуемое состояние и нажмите кнопку «Сброс».

ВНИМАНИЕ:

После сброса в заводские настройки установите переключатели режима в исходное состояние.

Состояние индикаторов, а также отображаемые с их помощью режимы работы, описаны в Табл. 6.

Табл. 6.	Отоб	ражение	режимов	работы	устройства.
1 40/11 01	0100	pamenne	perminob	paooibi	y er poner bai

Индикатор	Состояние индикатора	Режим работы
Индикатор CAN	Не горит	Связь по шине CAN отсутствует. Индикатор выключается при появлении первой ошибки связи.
Индикатор CAN	Горит	Связь восстановлена.
Индикатор CAN	Моргает	Выполняется обмен данными.
Индикатор «Актив»	Моргает с частотой 3 Гц	Выполняется инициализация устройства.
Индикатор «Актив»	Горит	Устройство загружено и готово к работе.
Индикатор «Актив»	Моргает с частотой 1 Гц	Режим настройки.

Подключение Устройства

Разъем питания

Тип разъема питания: разрывная клеммная колодка.

Внешний вид разъема и условное обозначение контактов для питания Устройства серии ECGxx-220V приведено на Рис. 6, а. Описание контактов питания приведено в Табл. 7.

L PE N	+5V COM
	0 0 0
1 2 3	1 2 3
a)	ნ)

Рис. 6. Разъем питания Устройства: а) ревизии ECGxx-220V, б) ревизии ECGxx-5V.

		Табл. 7. Описание разъема питания Устройства серии ECGxx-220V.
Номер контакта	Обозначение	Описание
1	L	«Линейный» провод однофазной сети переменного тока 220 Вольт 50 Герц.
2	PE	Общая линия заземления электрической сети. Контакт предназначен для защитного заземления Устройства.
3	Ν	«Нейтральный» провод однофазной сети переменного тока 220 Вольт 50 Герц.

Внешний вид разъема и условное обозначение контактов для питания Устройства серии ECGxx-5V приведено на Рис. 6, б. Описание контактов питания приведено в Табл. 8.

		Табл. 8. Описание разъема питания Устройства серии ECGxx-5V.
Номер контакта	Обозначение	Описание
1	+5V	Положительный полюс источника питания стабилизированного напряжения 5В. Допустимое отклонение данного источника питания должно быть не более 1% от номинального значения.
2	-	Не используется.
3	СОМ	Общий провод (отрицательный полюс) линии питания стабилизированного напряжения 5В.

ОПАСНОСТЬ:

Монтаж кабеля питания и его подключение к ответной части клеммной колодки осуществляется в обесточенном состоянии.

Разъем LAN

Тип разъема RJ-45.

Разъем LAN предназначен для подключения к локальной шине Ethernet.

Зеленый индикатор LAN разъема горит при установке соединения по шине на физическом уровне.

Желтый индикатор LAN моргает в процессе передачи и приема данных.

Разъем LAN устройства может быть подключен непосредственно к аналогичному разъему персонального компьютера либо подключиться к локальной сети с помощью маршрутизатора.

Прямой порядок обжима кабеля для подключения к маршрутизатору приведен на Рис. 7.

Рис. 7. Порядок обжима витой пары для прямого подключения.

С помощью перекрестного кабеля устройство может быть подключено непосредственно к сетевой карте персонального компьютера. Порядок обжима перекрёстного кабеля приведен на Рис. 8.

Рис. 8. Порядок обжима витой пары для перекрестного подключения.

Разъем САМ

Тип разъема DB9-MCAN – (Controller Area Network) последовательная шина коллективного доступа, специально разработана для обеспечения взаимодействия промышленных управляющих контроллеров. Физический уровень интерфейса совместим со стандартом ISO 11898. Приёмопередатчик учитывает особенности работы систем промышленной автоматики и робототехники, В частности, систем управления электроприводом. Приёмопередатчик обеспечивает:

- совместимость со стандартом ISO 11898;
- скорость обмена до 1000 КБит/сек;
- до 120-ти активных узлов физического сегмента сети;
- «горячее» подключение к работающей сети;
- отсутствие помех и переходных процессов при включении или выключении данного устройства для других работающих устройств;
- гарантированную работу в условиях синфазных помех амплитудой до ±25В;
- работоспособность при обрыве общего опорного провода или одной из линий дифференциальной пары;
- термальную защиту и защиту от статического электричества до 16 КВ.

Для передачи сигналов интерфейса используется одна витая пара проводников и опорный общий провод. Рекомендуется использовать экранированную витую пару, причём опорный общий провод и экран должны иметь в кабеле отдельные жилы.

Состав и описание сигналов интерфейса САN приведены в Табл. 9.

Табл. 9. Разъём интерфейса САN

Номер контакта	Наименование сигнала	Описание
1	-	Не используется.
2	CANL	Сигнал шины CAN, низкий уровень в доминантном состоянии. Сигналы CANL и CANH образуют дифференциальную пару сигналов.
3	-	Не используется.
4	-	Не используется.
5	-	Не используется.
6	GND	Общий провод устройства.
7	CANH	Сигнал шины CAN, высокий уровень в доминантном состоянии. Сигналы CANL и CANH образуют дифференциальную пару сигналов.
8	-	Не используется.
9	-	Не используется.

На Рис. 9 приведён пример использования интерфейса CAN для соединения трех устройств.

Рис. 9. Пример соединения трех устройств с интерфейсом САМ

При объединении нескольких устройств используют параллельное их подключение с применением шинной топологии. Соединение устройств посредством дифференциальной пары сигналов требует подключения пассивных терминаторов (резисторов) номиналом 120 Ом/ 0.125Вт ±5%. Терминаторы размещают непосредственно в разъёмах конечных точек шины.

Стандарт интерфейса не определяет конкретные характеристики соединительных проводов и кабелей. Рекомендуется применять медную витую пару категории 3 или категории 5. Такие кабели применяются в телефонии и сетях Ethernet. Отличной помехоустойчивостью обладают экранированные варианты таких кабелей. При этом для сигналов CANL/CANH используют одну скрученную пару проводов, а для соединения общего опорного провода – другую. На Рис. 10 даны варианты подключения сигнальных и опорной линий с их распределением по парам проводов.

Рис. 10. Использование витой пары

Хотя оба варианта подключения будут вполне работоспособны, нижний вариант будет обладать меньшей пропускной способностью в условиях помех, особенно в том случае, когда используется экранированный кабель. В первом варианте подключения внешние помехи наводятся на сигнальные линии синфазное напряжение, поскольку обе сигнальные линии входят в одну витую пару. Такие помехи успешно подавляются дифференциальным приёмником интерфейса САN и мало влияют на качество связи. Во втором случае сигнальные линии используют разные пары проводов, находятся в удалении друг от друга, и наведённое помехами напряжение может иметь значительную дифференциальную составляющую на приёмниках интерфейса. Дифференциальный приёмник не имеет возможности отфильтровать эту составляющую, и помеха может исказить принятую информацию. В результате искажённые кадры будет браковаться, что снизит пропускную способность интерфейса. Кроме того, во втором варианте создаётся дополнительный канал проникновения дифференциальных помех за счёт протекания зашумлённых токов утечек питания через опорные проводники в каждой паре. Экранирование, в этом случае, не даёт никакого результата.

Установка параметров Устройства

Для работы Устройства в составе конкретной сети необходимо предварительно настроить его сетевые параметры.

Заводские настройки сетевых параметров Устройства

Заводские сетевые параметры Устройства представлены в Табл. 10.

	Табл. 10. Заводские сетевые параметры Устройства.
Параметр	Значение
IP адрес устройства	192.168.2.25
Маска подсети	255.255.255.0
IP адрес шлюза узла сети	192.168.2.1
МАС адрес	00-13-D4- X2-X1-X0 ¹
Скорость по шине САN	1000

¹ - X2-X1-X0 – младшие 3 байта МАС адреса уникальны для каждого устройства.

Для настройки параметров ECG шлюза можно использовать две программы:

- 1. Графическое приложение ЕСG конфигуратор и
- 2. Терминальную программу sps_boot_switcher.

Настройка Устройства через приложение «ЕСG конфигуратор»

ЕСС конфигуратор – это программа для настройки сетевых параметров и управления режимом работы ЕСС шлюза и серво приводов серии СПС-25-хх-Е1.

Устройства ЕСG шлюз и серво приводов серии СПС-25-хх-Е1 имеют два режима: Приложение и Настройка. В режиме **Приложение** устройство реализует основную функцию обмена данными. В данном режиме параметры недоступны для просмотра и редактирования. В режиме **Настройка** выполняются операции по изменению сетевых настроек устройства, а также обновления программного обеспечения устройства. В режиме настройки вы можете просмотреть и изменить все отображаемые параметры устройства. В данном режиме не реализуется основная функция устройства, а именно обмен данными с подключенными устройствами.

С конфигуратор Список устройств:						
Поиск устройств	Режим работы:	Настройка	Переключить			
192.168.2.25 Настройка 192.168.2.27 Приложение 192.168.2.4 Настройка	MAC адрес:	0:13:d4:12:4f:b1	МАС адрес для установки: С) : 13 : d4	: 12 : 4f : b1	Установить
	IP adpec:	192.168.2.25	IP адрес для установки:	192 . 168	. 2 . 25	Устан <mark>о</mark> вить
	Маска подсети:	255.255.255.0	Маска подсети для установки:	255 . 255	. 255 . 0	Установить
Выбрать	IP адрес шлюза:	199.118.18.212	IP адрес шлюза для установки:	199 . 118	. 18 . 212	Установить
	Скорость шины CAN:	1000	Скорость шины САN для установки:	1000		Установить
инФО: В режиме настройки вы може редактирование и нажмите н Для перехода в операционны	те просмотреть и измени кнопку 'Установить' соот ый режим нажмите кнопк	ить все отображаемые па ветствующего элемента. у Переключить'	раметры устройства. Для этого вы	ыполните	Обнаружено 3 сет 192.168.2.1 192.168.0.177 192.168.56.1 Завершение	ги: 2 работы

Внешний вид приложения ЕСG конфигуратор представлено на Рис. 11.

Рис. 11. Внешний вид программы ЕСС конфигуратор.

После запуска приложения выполните поиск устройств, нажав на кнопку Поиск устройств.

- ponern.

В списке устройств будут отображены все найденные устройства, к которым относятся ЕСG шлюзы и серво приводов серии СПС-25-хх-Е1. Поиск будет автоматически выполнен по всем IP сетям, к которым подключен данный компьютер. При этом список найденных сетевых адресов будет отображен в поле **ИНФО**.

Далее выберете требуемое устройство и подключитесь к нему нажав кнопку **Выбрать**. При этом устройство будет автоматически переключено в режим настройки и у него будет запрошены все сетевые настройки. По завершению операции все настройки устройства будут отображены в соответствующих полях приложения.

Далее выполните установку нужных значений сетевых параметров устройства. Для этого выполните редактирование полей параметров и нажмите кнопку **Установить** соответствующего элемента.

После нажатия кнопки **Установить** выполняется запись соответствующего параметра в устройство и автоматически выполняется программный перезапуск устройства. Это требуется для того, чтобы новые сетевые параметры сразу же были применены.

Если весь процесс настройки завершен, можно выполнить перевод устройства в режим приложения. Для перехода в режим Приложения нажмите кнопку **Переключить** или выполните аппаратную перезагрузку устройства.

Для выхода из приложения нажмите кнопку Завершение работы.

Настройка Устройства через консольное приложение sps_boot_switcher

sps_boot_switcher – это терминальная программа, запускаемая в командной строке. Приложение предназначено для настройки .

Для настройки параметров шлюза выполните переход в режим настройки (см. Табл. 4).

Для задания текущего МАС адреса в командной строке вводят:

> sps_boot_switcher.exe -setmac MAC0. MAC1. MAC2. MAC3. MAC4. MAC5

Для задания текущих настроек IP сети вводят команду:

> sps_boot_switcher.exe -setip IP0.IP1.IP2.IP3 M1.M2.M3.M4 G0.G1.G2.G3

Параметры команды позволяют установить IP адрес устройства, маску подсети и IP адрес шлюза сегмента сети.

Для задания установки скорости передачи данных по шине CAN:

> sps_boot_switcher.exe -setcan BR,

Где BR 500 или 1000 кБид/сек.

Новые настройки вступают в силу после перезапуска устройства.

Обновление программного обеспечения устройства

Обновление встроенного программного обеспечения осуществляется с помощью Интернет браузера, который взаимодействует с внутренним WEB-сервером Ethernet-CAN шлюза (Устройства).

WEB-сервер Устройства активизируется при переводе устройства в режим настройка.

Переход в режим настройки и обновления может быть осуществлен двумя способами:

- 1. Посредством переключения Устройства в режим работы «Настройка» (см. п. «
- 2. Для настройки параметров ЕСС шлюза можно использовать две программы:
 - 3. Графическое приложение ЕСG конфигуратор и
 - 4. Терминальную программу sps_boot_switcher.
- 3. Настройка Устройства через приложение «ЕСG конфигуратор»»»).
- 4. Путем перевода в режим настройки с помощью утилиты sps_boot_switcher.exe.
- 5. Путем установки переключателей в режим настройки в соответствие с Табл. 4. После установки режима необходимо нажать кнопку «Сброс».

После перевода Устройства в режим работы «Настройка» перейдите в WEB-брайзер и введите IP адрес Устройства в строке поиска, как показано на Рис. 12.

Рис. 12. Окно обновления ПО Устройства.

Для обновления необходимо выбрать файл формата bin. (Например, ECG_v15.1b.bin). Далее нажать кнопку Download.

Последовательность обновления с помощью переключателей режимаов:

- 1. Переключить устройство в режим настройки и нажать кнопку «Сброс».
- 2. Дождаться появления надписи boot на индикаторе.
- 3. На любом компьютере, подключённом к тому же сегменту сети Ethernet, запустить обозреватель Интернет (например, Internet explorer).

- 4. В строке адреса обозревателя ввести сетевой адрес устройства. Например, https://192.168.2.25.
- 5. В окне запроса выбрать имя файла обновления (*.bin) и нажать ввод.
- 6. После выполнения процедуры обновления установите режим работы устройства в соответствие с Табл. 4. После установки режима необходимо нажать кнопку «Сброс».

Последовательность обновления с помощью утилиты sps_boot_switcher.exe:

- 1. В командной строке компьютера, находящегося в одной подсети с прошиваемым Устройством, ввести команду: > sps_boot_switcher.exe -reload
- 2. Включить Устройство.
- 3. Программа автоматически переведет устройство в режим программирования, запустит обозреватель Интернет и подключится к WEB-серверу устройства.
- 4. В окне запроса выбрать имя файла обновления (*.bin) и нажать ввод.

Протокол взаимодействия

Процесс взаимодействия с устройством приведен на Рис. 13.

Рис. 13. Последовательность работы с устройством

При обмене между устройством и ПК используется механизм прозрачности (Transparency), который обрамляет каждое сообщение маркерами и, соответственно, исключает данные маркеры из тела самого сообщения. Механизм позволяет выделять сообщения в потоке передаваемых данных.

Чтобы определить все доступные устройства в сети, осуществляется их поиск с помощью широковещательного сообщения. Устройство открывает UDP сокет, порт 50024.

Все подключенные Ethernet-CAN шлюзы отвечают на данное сообщение, направляя ответ в порт 50025.

Прикладная программа ПК выполняет подключение к сокету TCP порта номер 50023, открытого на устройстве.

Далее обмен между прикладной программой ПК и устройством осуществляется в соответствие с протоколом Ethernet – CAN ретрансляции.

Ограничения протокола обмена

В связи с ограниченностью внутренних буферов обмена необходимо учитывать максимальный размер прикладных пакетов, отправленных в устройство по UDP или TCP протоколам.

Максимальный размер пакета с прикладными данными, передаваемого по ТСР соединению, составляет 710 байт.

Максимальный размер пакета с прикладными данными, передаваемого по протоколу UDP, составляет 1450 байт.

ПРИМЕЧАНИЕ:

Описанные ограничения также касаются сообщений, отправленных в широковещательном режиме.

В случае превышения указанных лимитов устройство может работать нестабильно.

Механизм прозрачности

В Табл. 11 представлены служебные символы механизма прозрачности.

Служебный символ	Назначение	
0x01	Маркер начала сообщения	
0x03	Маркер конца сообщения	
0x1A	Маркер исключения системных символов	

Табл. 11. Служебные символы механизма прозрачности

Механизм обрамляет прикладное сообщение маркерами, - так называемое прямое преобразование. При этом механизм исключает появление маркеров в теле самого сообщения. Для этого вводится дополнительный маркер исключения 0x1A. При обнаружении служебного символа в теле сообщения протокол заменяет его на два символа: 0x1A и 0x40+обнаруженные символ. На приемной стороне механизм делает обратные преобразования, исключает маркеры 0x01 и 0x03, а при обнаружении символа 0x1A в теле сообщения исключает его и вычитает из следующего за ним символа 0x40.

Пример преобразования.

Исходное сообщение имеет вид: 0x20 0x31 0x01 0xAB 0x1A 0x05.

Исходное сообщение имеет два системных символа, которые должны быть исключены. Результирующее сообщение, которое передается по сети, выглядит следующим образом:

0x01 0x20 0x31 0x1A 0x41 0xAB 0x1A 0x5A 0x05 0x03

Все преобразования, сделанные механизмом, выделены красным цветом.

```
Лист. 1. Листинг процедуры прямого преобразования механизма прозрачности:
TranspareByte
              Входной байт данных
in byte
out bytes Указатель на массив выходных данных
RETURN:
    Количество значимых байт
int TranspareByte(unsigned char in byte, unsigned char* out bytes)
{
     unsigned int t;
     if((in byte == 0x01) ||(in byte == 0x03) ||(in byte == 0x1A)) {
          out bytes [0] = 0x1A;
          out bytes[1]=in byte+0x40;
          return 2;
     }
     out bytes[0] = in byte;
     return 1;
}
```

```
Лист. 2. Листинг процедуры обратного преобразования механизма прозрачности:
                                                                      * * * * * * * * * * * * *
RetranspareByte
      in byte
                       Входной байт данных
      out bytes
                      Указатель на выходные данные
     RETURN:
          Информацию преобразования
* * * * * * * * * * * * * * *
                                  enum RET CODE {NONE BYTE RECEIVED, ONE BYTE RECEIVED, PACKET RECEIVED};
struct ControlTranspare {
           unsigned char Type;
            unsigned char Ctrl;
};
RET CODE RetranspareByte (unsigned char in byte, unsigned char *out byte)
{
    RET CODE ret = NONE BYTE RECEIVED;
    static struct ControlTranspare ReTranspareStruct;
    switch(ReTranspareStruct.Type)
    {
    case RxBEGIN:
      if(in_byte == 0x01) {
                 ReTranspareStruct.Type = RxDATA;
                 ReTranspareStruct.Ctrl = 0;
       }
      break;
    case RxDATA:
      switch(in byte) {
      case 0x03:
```

}

```
ReTranspareStruct.Type = RxBEGIN;
       ret = PACKET RECEIVED;//Пакет принят
      break;
  case 0x01:
      ReTranspareStruct.Type = RxBEGIN;
       break;
  case 0x1A:
       //Из следующего байта данных нужно будет вычесть 0х40
       ReTranspareStruct.Ctrl = 1;
       break;
  default:
       if(ReTranspareStruct.Ctrl == 1) {
           *out byte = in byte - 0x40;
           ReTranspareStruct.Ctrl = 0;
       }
       Else {
           *out byte = in byte;
           ret = ONE_BYTE_RECEIVED;
       }
  }
 break;
}
return ret;
```

Протокол ETH2CAN

Протокол ETH2CAN предназначен для обмена данными между ПК и ECG. Основная цель протокола выполнить ретрансляцию данных между сетями Ethernet и CAN.

Структура сообщения протокола приведена в Табл. 12.

Табл. 12. Формат протокола ETH2CAN

Поле	Команда	Тело сообщения	Контрольная сумма (КС)
Размер, байт	1	От 0 до 64	1

Контрольная сумма

КС предназначена для подтверждения истинности данных, полученных по протоколу, и служит для исключения случайных сообщений, возникающих в сети.

КС представляет собой исключающее или всех байт сообщения. При этом КС рассчитывается до выполнения алгоритма ретрансляции.

```
Лист. 3. Листинг формирования контрольной суммы:
```

```
crc=0;
for(i=0;i<6; i++) crc ^= buf[i];</pre>
```

Команды протокола ETH2CAN

Описание команд протокола ETH2CAN представлены в Табл. 13.

Условное обозначение	Команда	Описание
HEARTBIT_ETH2CAN_PROTOCOL_CMD	0x09	Сердцебиение ЕСС. Передается шлюзом
		для проверки связи с частотой 1Гц
GETMODE_ETH2CAN_PROTOCOL_CMD	0x10	Запрос режима шлюза
MYMODE_ETH2CAN_PROTOCOL_CMD	0x11	Ответ шлюза с указанием режима
TOUART_ETH2CAN_PROTOCOL_CMD	0x14	Команда ретрансляции в UART (только для
		взаимодействия с пультом встроенного в
		состав привода СПС).
FROMUART_ETH2CAN_PROTOCOL_CMD	0x15	Команда ретрансляции из UART (только
		для взаимодействия с пультом встроенного
		в состав привода СПС)
TOCAN_ETH2CAN_PROTOCOL_CMD	0x16	Команда ретрансляции в САN
FROMCAN_ETH2CAN_PROTOCOL_CMD	0x17	Команда ретрансляции из САN

Табл. 13. Описание команд протокола Ethernet-CAN

Команды разделены на две группы. Первая группа предназначена для взаимодействия непосредственно с устройством, вторая – для ретрансляции сообщений между протоколами Ethernet и CAN (UART).

Команда 0х09 – Сердцебиение

Табл. 14. Параметр команды 0х09

Номер параметра	Описание
0x09	Сердцебиение ЕСС. Передается шлюзом для проверки связи с частотой 1Гц

Команда передается без параметров.

Команда 0х10 – Запрос режима шлюза

Команда передается без параметров.

Данная команда отправляется из компьютера в широковещательном режиме с целью поиска всех ECG в локальной сети.

Команда 0x11 – Режим работы шлюза

Табл. 15. Параметр команды 0x11

Номер параметра	Кол-во байт	Описание
0x11	1	Режим работы устройства. 0 – Неизвестный режим.

1 – Режим СПС. 2 - Режим Ethernet-CAN шлюза.

{UNKNOWN_MODE=0, SPS_MODE=1, ROUTER_MODE=2};

Устройство Ethernet-CAN шлюза основано на универсальном контроллере, который может входить в различные устройства. Данный контроллер, например, входит в состав сервопривода СПС на базе синхронного двигателя. В этом режиме протокол взаимодействия имеет другой формат. Протокол Ethernet-CAN ретрансляции относится только к устройствам, у которых параметр 0x11 имеет значение 2.

Команды 0x14/0x15 – Команды ретрансляции ETH2UART

В качестве данных передается команда технологического протокола, описанного в документе «Описание параметров сервоприводов серии СПШ и СПС».

Пример запроса параметра st4 «Тип привода» у привода серии СПС приведен в Лист. 4.

```
Лист. 4. Пример формирования команды передачи данных из ПК в контроллер привода СПС
```

```
size=0;
buf[size++] = TOUART_ETH2CAN_PROTOCOL_CMD;
buf[size++] = 0x05;//Команда запроса параметра по технолог. Протоколу
buf[size++] = 0x00;
buf[size++] = 0x46;
for(i=0; i<size; i++) buf[size] ^= buf[i]; //Подсчет КС
size++;
if(-1 == motors[0]->Send(buf, size) ) {
    motors.Reset();
}
```

Команды 0x16/0x17 – Команды ретрансляции ЕТН2САМ

В качестве данных передается команда протокола CAN.

Табл. 16. Данные команды протокола CAN
--

Размер, байт	4	1	От 0 до 8
Данные	CAN ID	Длина поля данных	САМ данные

Идентификатор CAN ID может быть 11 битным или 29 битным. Подробнее об

организации CAN сообщения можно ознакомиться в документе «CAN Specification 2.0».

Пример запроса параметра st4 «Тип привода» у привода серии СПШ приведен в Лист. 5.

```
Лист. 5. Пример формирования команды передачи данных из ПК в контроллер привода СПШ.
```

```
#define CAN TRANSLATE REQ COM
                                           0x0D
buf[0] = TOCAN ETH2CAN PROTOCOL CMD;
if(interface settings.can address > 7) {
      //Формирование идентификатора CAN ID 29 бит
      id =
                  0x80000000 |
                  (CAN TRANSLATE REQ COM<<14) |
                   (0<<7) |
                                                              //Адрес ПК
                   (interface_settings.can address << 0);</pre>
                                                             //Адрес СПШ
}
else {
      //Формирование идентификатора CAN ID 11 бит
Сервотехника
```

```
id = 0x0000000 |
             (CAN TRANSLATE REQ COM<<6) |
             (0<<3) |
                                                                //Адрес ПК
             (interface settings.can address << 0);</pre>
                                                                //Адрес СПШ
}
buf[1] = id;
buf[2] = (id>>8);
buf[3] = (id >> 16);
buf[4] = (id >> 24);
buf[5] = 3; //Кол-во байт данных
buf[6] = 0x05;
buf[7] = 0x00;
buf[8] = 0x46;
buf[9]=0;//CRC
for(j=0;j<8;j++) buf[9] ^= buf[j];</pre>
if(-1 == motors[0]->Send(buf, 10) ) {
      motors.Reset();
}
```

```
Лист. 6. Пример процедуры подключения и передачи данных.
```

```
void send param example(void)
{
      int i, msg_len, len;
      unsigned char canaddr, cr;
      unsigned char trans buf[16], b[32];
      SPSSocket* sps_socket;
      unsigned int id;
      //#define PARM REQ CMD
                                                                0x05
      //Technological level commands
      //#define PARM VAL CMD
                                                                0x06
      //#define PARM SET CMD
                                                                0x07
      //#define CAN TRANSLATE REQ COM
                                                                             //CAN level
                                                                0x0D
commands
      //#define TOCAN ETH2CAN PROTOCOL CMD
                                                                       0x16 //ECG level
commands
      sps socket = new SPSSocket((SPSDataConsumer*)&on callback);
      sps socket->Connect("192.168.2.25", 50023);
      //trans buf[0] = PARM REQ CMD;
                                                                //Technological
protocol command
      //trans buf[1] = 0x00;
                                                                //Get parameter 0x00
      //trans_buf[2] = 0x15;
      //len = 3;
      trans_buf[0] = PARM_SET_CMD;
      trans_buf[1] = 0 \times 02;
                                                                //set parameter 0x0204
      trans_buf[2] = 0 \times 04;
      trans_buf[3] = 0 \times 00;
                                                                //param's value
      trans_buf[4] = 0 \times 04;
      trans buf[5] = 0 \times 00;
      trans_buf[6] = 0 \times 00;
      len = 7;
      canaddr=0x01;
                                                          //Motor's CAN address
      id=canaddr;
      if(canaddr>7) {
            id |= 0x8000000;
                                                                //ext id flag = 1
            id |= (CAN TRANSLATE REQ COM<<14);
                                                         //CAN level protocol command
```

```
}
else {
      id |= (CAN TRANSLATE REQ COM<<6);
}
b[0] = TOCAN ETH2CAN PROTOCOL CMD;
                                                  //ECG router protocol command
b[1] = id;
b[2] = (id >>8);
b[3] = (id >> 16);
b[4] = (id >> 24);
b[5]=len;
for(i = 0; i < len; i++) b[6+i]=trans buf[i];</pre>
msg len = i+6;
cr=0;
                                                                //calculate CRC
for(i = 0 ; i < msg len; i++) {</pre>
      cr ^= b[i];
}
b[msg_len]=cr; msg_len++;
if(NULL != sps socket) sps socket->Send(b, msg len);
Sleep(10);
sps socket->Close();
delete sps socket;
}
```

Взаимодействие с приводами серии СПШ

Программное обеспечение Мотомастер[©], начиная с версии 1.8, а также библиотека связи MotoDLL2, поддерживают ЕСG шлюз на сетевом уровне. Это означает, что все подключенные приводы к ЕСG шлюзам будут находиться в списке доступных для подключения устройств, по аналогии с устройствами, подключенными к компьютеру через интерфейс USB.

Программное обеспечение Мотомастер[©] предназначено для настройки и программирования приводов серии СПШ. Подробности о возможностях программы и порядке работы с ней приведены в документе «Руководство пользователя сервопривода серии СПШ v31.pdf».

ЗАО «Сервотехника» /// Россия /// 125130, г. Москва, ул. Клары Цеткин, дом 33, корпус 35. Тел.: +7 495 797-8866 /// info@servotechnica.ru/// www.servotechnica.ru