

Inclinometer **MEMS / capacitive**

IS40, 2-dimensional

Analogue

The inclinometer IS40 permits 2-dimensional inclinations to be

Versions are available for the measuring ranges ±10°, ±45° or ±60°. The compact robust construction makes this sensor the ideal device for measuring angles in harsh environments.

High protection

Reverse polarity

Innovative

- · Rugged construction.
- · High resolution and accuracy.
- Current or voltage interface.
- · High shock resistance.
- · Zero point adjustment.

Compact / Many applications

- Small design minimal space requirement.
- For use in vehicle technology, solar installations, commercial vehicles, cranes and hoists.

Order code **Inclinometer IS40**

 Measuring direction 2 = 2-dimensional x/y

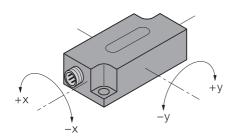
b Measuring range

 $1 = \pm 10^{\circ}$

 $2 = \pm 45^{\circ}$ $3 = \pm 60^{\circ}$ Interface 1 = 4 ... 20 mA 1)

 $3 = 0.1 \dots 4.9 \text{ V DC}^{-1)}$

4 = ratiometric 2 % ... 98 % 2)


O Power supply 1 = 5 V DC 2 = 10 ... 30 V DC

e Type of connection 1 = M12 connector

Connection technology		Order no.
Connector, self-assembly (straight)	M12 female connector with coupling	8.0000.5116.0000
Cordset, pre-assembled	M12 female connector with coupling, 2 m [6.56'] PVC cable	05.00.6081.2211.002M

Further accessories can be found in the accessories section or in the accessories area of our website at: www.kuebler.com/accessories Additional connectors can be found in the connection technology section or in the connection technology area of our website at: www.kuebler.com/connection_technology

Direction of inclination

- 1) Availablenly only in combination with power supply 10 ... 30 V DC
- 2) In relation to the power supply 5 V DC (Availablenly only in combination with power supply 5 V DC)

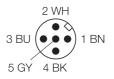
Inclinometers

Inclinometer		
MEMS / capacitive	IS40, 2-dimensional	Analogue

Technical data

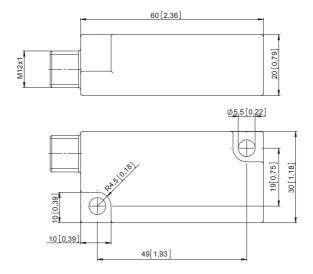
Mechanical characteristics	
Connection	M12 connector
Weight	50 g [1.76 oz]
Protection acc. to EN 60529	IP68 / IP69k
Working temperature range	-30°C +70°C [-22°F +158°F]
Material	plastic PBT-GF20-V0
Shock resistance	300 m/s ² , 11 ms
Vibration resistance	100 m/s², 10 2000 Hz
Dimensions	60 x 30 x 20 mm [2.36 x 1.18 x 0.79"]

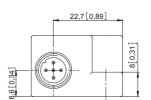
Interface characteristics		
Voltage output		
at +V 10 30 V DC	0.1 4.9 V	
	short-circuit protected to +V	
at +V 5 V DC	2 98 %	
	ratiometric (in relation to +V)	
Load resistance		
voltage output	≥ 40 kΩ	
Output impedance		
voltage output	99 105 Ω	
Current output	4 20 mA	
Load resistance current output	≤ 200 Ω	


(depending on version) Power consumption (no load) ≤ 20 mA Reverse polarity protection yes Measuring axes 2 (x/y) Measuring range ±10°, ±45°, ±60° Resolution for version ±10° ≤ 0.05° for version ±45° ≤ 0.1° for version ±60° ≤ 0.15° Repeat accuracy ≤ 0.2 % of measuring range ≤ 0.1 % after a warm-up period of 30 min Absolute accuracy for version ±10° 0.3° for version ±45° and ±60° 0.5° Cross sensitivity 3 % Temperature drift for version ±45° and ±60° 0.03°/K Reaction time 0.1 s − time that the output signal requires to reach 90 % full scale, if the angle is changed from -60° to +60° Zero point adjustment for version ±45° and ±60° ±5° for version ±45° and ±60° ±15°		
Ceropoint adjustment Color	Electrical characteristics	
Reverse polarity protectionyesMeasuring axes $2 (x/y)$ Measuring range $\pm 10^{\circ}$, $\pm 45^{\circ}$, $\pm 60^{\circ}$ Resolutionfor version $\pm 10^{\circ}$ for version $\pm 45^{\circ}$ for version $\pm 60^{\circ}$ $\leq 0.05^{\circ}$ $\leq 0.1^{\circ}$ $\leq 0.15^{\circ}$ Repeat accuracy $\leq 0.2 \%$ of measuring range $\leq 0.1 \%$ after a warm-up period of 30 minAbsolute accuracy for version $\pm 10^{\circ}$ for version $\pm 45^{\circ}$ and $\pm 60^{\circ}$ 0.3° 0.5° Cross sensitivity 3% Temperature drift for version $\pm 45^{\circ}$ and $\pm 60^{\circ}$ typ. $0.01^{\circ}/K$ $0.03^{\circ}/K$ Reaction time $0.1 \text{ s} - \text{time that the output signal requires to reach 90 % full scale, if the angle is changed from -60° to +60°Zero point adjustmentfor version \pm 45^{\circ} and \pm 60^{\circ}\pm 5^{\circ}for version \pm 45^{\circ} and \pm 60^{\circ}\pm 5^{\circ}\pm 15^{\circ}CE compliant acc. toEMC guideline 2004/108/EC$	Power supply	
Measuring axes $2 (x/y)$ Measuring range $\pm 10^\circ, \pm 45^\circ, \pm 60^\circ$ Resolutionfor version $\pm 45^\circ$ for version $\pm 60^\circ$ $\leq 0.15^\circ$ $\leq 0.15^\circ$ Repeat accuracy $\leq 0.2 \%$ of measuring range $\leq 0.1 \%$ after a warm-up period of 30 minAbsolute accuracy 0.3° for version $\pm 45^\circ$ and $\pm 60^\circ$ 0.5° Cross sensitivity 3% Temperature drift for version $\pm 45^\circ$ and $\pm 60^\circ$ typ. $0.01^\circ/K$ $0.03^\circ/K$ Reaction time $0.1 \text{ s} - time that the output signal requires to reach 90 \% full scale, if the angle is changed from -60° to +60°Zero point adjustmentfor version \pm 45^\circ and \pm 60^\circfor version \pm 45^\circ and \pm 60^\circ\pm 5^\circfor version \pm 45^\circ and \pm 60^\circ\pm 15^\circCE compliant acc. toEMC guideline 2004/108/EC$	Power consumption (no load)	≤ 20 mA
Measuring range $\pm 10^\circ$, $\pm 45^\circ$, $\pm 60^\circ$ Resolutionfor version $\pm 10^\circ$ for version $\pm 45^\circ$ for version $\pm 60^\circ$ $\leq 0.05^\circ$ $\leq 0.15^\circ$ Repeat accuracy ≤ 0.2 % of measuring range ≤ 0.1 % after a warm-up period of 30 minAbsolute accuracyfor version $\pm 10^\circ$ for version $\pm 45^\circ$ and $\pm 60^\circ$ 0.3° 0.5° Cross sensitivity 3 %Temperature drift for version $\pm 45^\circ$ and $\pm 60^\circ$ typ. 0.01° /K 0.03° /KReaction time 0.1 s − time that the output signal requires to reach 90 % full scale, if the angle is changed from -60° to +60°Zero point adjustment for version $\pm 10^\circ$ for version $\pm 45^\circ$ and $\pm 60^\circ$ for version $\pm 45^\circ$ and $\pm 60^\circ$ for version $\pm 45^\circ$ and $\pm 60^\circ$ $\pm 15^\circ$ CE compliant acc. toEMC guideline 2004/108/EC	Reverse polarity protection	yes
Resolution for version ±10° $\leq 0.05^\circ$ for version ±45° $\leq 0.1^\circ$ for version ±60° $\leq 0.15^\circ$ Repeat accuracy ≤ 0.2 % of measuring range ≤ 0.1 % after a warm-up period of 30 min Absolute accuracy 0.3° for version ±10° 0.5° Cross sensitivity 3 % Temperature drift typ. 0.01°/K for version ±45° and ±60° 0.03°/K Reaction time 0.1 s − time that the output signal requires to reach 90 % full scale, if the angle is changed from -60° to +60° Zero point adjustment ±5° for version ±45° and ±60° ±5° for version ±45° and ±60° ±15° CE compliant acc. to EMC guideline 2004/108/EC	Measuring axes	2 (x/y)
$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	Measuring range	±10°, ±45°, ±60°
$ \leq 0.1 \ \% \ \text{after a warm-up period} $ of 30 min $ = \frac{10^{\circ} \ \text{Absolute accuracy}}{\text{for version} \pm 10^{\circ}} = \frac{0.3^{\circ}}{0.5^{\circ}} $ Cross sensitivity $ = \frac{3 \ \%}{\text{Temperature drift}} $ for version $\pm 10^{\circ}$ typ. $0.01^{\circ}/\text{K}$ $0.03^{\circ}/\text{K}$ $ = \frac{10^{\circ} \ \text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{10^{\circ} \ \text{cm}}{\text{the angle is changed from -60^{\circ} to +60^{\circ}}} $ Zero point adjustment $ = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ} \ \text{and} \pm 60^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{for version} \pm 45^{\circ}} = \frac{50^{\circ} \ \text{cm}}{\text{cm}} = \frac{50^{\circ} \ \text{cm}}{\text$	for version ±45°	≤ 0.1°
$for \ version \pm 10^{\circ} \qquad 0.3^{\circ}$ $for \ version \pm 45^{\circ} \ and \ \pm 60^{\circ} \qquad 0.5^{\circ}$ $ \ \ \ \ \ \ \ \ \ \ \ \ \$	Repeat accuracy	≤ 0.1 % after a warm-up period
	Absolute accuracy	

Temperature drift $for\ version \pm 10^{\circ} \qquad typ.\ 0.01^{\circ}/K$ $for\ version \pm 45^{\circ}\ and\ \pm 60^{\circ} \qquad 0.03^{\circ}/K$ Reaction time $0.1\ s - time\ that\ the\ output\ signal\ requires\ to\ reach\ 90\ %\ full\ scale\ , if\ the\ angle\ is\ changed\ from\ -60^{\circ}\ to\ +60^{\circ}$ Zero point adjustment $for\ version\ \pm 10^{\circ}\ \pm 5^{\circ}$ $for\ version\ \pm 45^{\circ}\ and\ \pm 60^{\circ}\ \pm 15^{\circ}$ CE compliant acc. to EMC guideline 2004/108/EC	for version ±45° and ±60°	0.5°
$for \ version \pm 10^{\circ} \qquad typ. \ 0.01^{\circ}/K \\ for \ version \pm 45^{\circ} \ and \pm 60^{\circ} \qquad 0.03^{\circ}/K \\ \hline \textbf{Reaction time} \qquad \qquad 0.1 \ s - time \ that \ the \ output \ signal requires to \ reach 90 \% \ full \ scale, if the \ angle is \ changed \ from -60^{\circ} \ to +60^{\circ} \\ \hline \textbf{Zero point adjustment} \qquad \qquad \pm 5^{\circ} \\ for \ version \pm 45^{\circ} \ and \pm 60^{\circ} \qquad \pm 15^{\circ} \\ \hline \textbf{CE compliant } \ acc. \ to \qquad EMC \ guideline \ 2004/108/EC$	Cross sensitivity	3 %
	Temperature drift	
requires to reach 90 % full scale, if the angle is changed from -60° to +60° Zero point adjustment for version $\pm 10^\circ$ $\pm 5^\circ$ for version $\pm 45^\circ$ and $\pm 60^\circ$ $\pm 15^\circ$ CE compliant acc. to EMC guideline 2004/108/EC		71
$\begin{array}{ccc} & & & & \pm 5^{\circ} \\ & & & & \pm 10^{\circ} & \pm 15^{\circ} \\ & & & & \pm 15^{\circ} \\ \hline \textbf{CE compliant} \ \text{acc. to} & & & & & & & \\ \hline & & & & & & & & \\ \hline \textbf{EMC guideline 2004/108/EC} & & & & & \\ \hline \end{array}$	Reaction time	
for version $\pm 45^\circ$ and $\pm 60^\circ$ $\pm 15^\circ$ CE compliant acc. to EMC guideline 2004/108/EC	Zero point adjustment	
•	101 10101011 = 10	
	CE compliant acc. to	•

Connections


ext. teach: if this input is connected to 0 V, then the output of the inclinometer is reset to 0°.


Terminal assignment

Dimensions

Dimensions in mm [inch]

