
User Guide

MD29

Microprocessor card and software for
Mentor II, Vector, CDE

and HPCDE Drives

Part Number: 0400-0027
Issue Number: 4

 Safety Information
Persons supervising and performing the electrical installation or
maintenance of a Drive and/or an external Option Unit must be suitably
qualified and competent in these duties. They should be given the
opportunity to study and if necessary to discuss this User Guide before
work is started.

The voltages present in the Drive and external Option Units are capable of
inflicting a severe electric shock and may be lethal. The Stop function of
the Drive does not remove dangerous voltages from the terminals of the
Drive and external Option Unit. Mains supplies should be removed before
any servicing work is performed.

The installation instructions should be adhered to. Any questions or doubt
should be referred to the supplier of the equipment. It is the responsibility
of the owner or user to ensure that the installation of the Drive and
external Option Unit, and the way in which they are operated and
maintained complies with the requirements of the Health and Safety at
Work Act in the United Kingdom and applicable legislation and regulations
and codes of practice in the UK or elsewhere.

The Drive software may incorporate an optional Auto-start facility. In
order to prevent the risk of injury to personnel working on or near the
motor or its driven equipment and to prevent potential damage to
equipment, users and operators, all necessary precautions must be taken if
operating the Drive in this mode.

The Stop and Start inputs of the Drive should not be relied upon to ensure
safety of personnel. If a safety hazard could exist from unexpected
starting of the Drive, an interlock should be installed to prevent the motor
being inadvertently started.

 General information
The manufacturer accepts no liability for any consequences resulting from
inappropriate, negligent or incorrect installation or adjustment of the
optional operating parameters of the equipment or from mismatching the
variable speed drive (Drive) with the motor.
The contents of this User Guide are believed to be correct at the time of
printing. In the interests of a commitment to a policy of continuous
development and improvement, the manufacturer reserves the right to
change the specification of the product or its performance, or the
contents of the User Guide, without notice.
All rights reserved. No parts of this User Guide may be reproduced or
transmitted in any form or by any means, electrical or mechanical including
photocopying, recording or by any information-storage or retrieval system,
without permission in writing from the publisher.

Copyright © November 1997 Control Techniques Drives Ltd
Author: CT SSPD
Originators AH, PB
Issue Code: 29nu4
Issue Date: November 1997
S/W Version: V2.6.0 system files and later.

Contents

1 Introduction 1-1
1.1 Overview 1-1

1.2 Memory 1-2

1.3 PC requirements 1-3

1.4 Technical data for the MD29 1-3

1.5 User knowledge 1-3

2 Installation 2-1
2.1 Installation procedure 2-1

2.2 Configuring the system 2-7

3 Getting Started 3-1
3.1 Introduction 3-1

3.2 Example DPL program 3-1

3.3 Creating a DPL file using the DPL Toolkit 3-5

4 DPL Programming 4-1
4.1 Program headers 4-1

4.2 Comments 4-3

4.3 Variables 4-3

4.4 Parameters 4-5

4.5 Operators 4-5

4.6 Tasks and real-time programming 4-7

4.7 Instructions and functions 4-13

4.8 Optimizing programs 4-15

4.9 Parameter pointers 4-17

4.10 Defining aliases (constants) 4-18

5 DPL Toolkit 5-1
5.1 Overview of the DPL Toolkit 5-1

5.2 File management 5-2

5.3 Editing a program 5-5

5.4 Applying styles 5-7

5.5 Compiling and running a program 5-8

5.6 Downloading a program 5-10

5.7 Running a program 5-11

5.8 Program monitoring and debugging facilities 5-11

6 Serial Communications 6-1
6.1 Introduction 6-1

6.2 Hardware connections 6-2

6.3 ANSI communications 6-4

6.4 Serial communications modes 6-13

6.5 ANSI instructions 6-16

6.6 Example ANSI instructions 6-16

7 Reference 7-1
7.1 Tasks 7-1

7.2 Instructions and functions 7-4

8 Features 8-1
8.1 Overview 8-1

8.2 PLC parameters 8-1

8.3 Introduction 8-2

8.4 Encoder lines 8-3

8.5 Position 8-3

8.6 Enabling the position controller 8-5

8.7 Default and Reset Values 8-6

8.8 Parameter descriptions 8-7

8.9 Logic diagrams 8-19

8.10 Using S-Ramps with Digital Lock 8-24

8.11 Cam function 8-25

8.12 Reference switching 8-28

8.13 Timer/Counter unit 8-30

8.14 Digital I/O ports 8-34

8.15 Non-volatile memory storage 8-35

8.16 Using the RS232 port for Drive to Drive
communications 8-35

9 Diagnostics 9-1
9.1 Run-time errors 9-1

9.2 Run-time trip codes 9-2

9.3 Compiler error messages 9-3

9.4 Advanced error-handling 9-5

10 Parameters 10-1
10.1 MD29 set-up parameters 10-1

10.2 Virtual parameters 10-4

10.3 RS485 port modes 10-10

10.4 General-purpose parameters 10-11

MD29
Issue code: 29nu4 Introduction 1-1

1 Introduction

On a Variable Speed Drive (such as Mentor II, Vector or CDE), timing
functions necessary for the correct operation of power devices are
performed by its own microprocessor operating in real-time. This imposes
limitations on the microprocessor when carrying out other duties, resulting
in a reduction of flexibility of the Drive.

To maximize this flexibility, a second processor can be used for running
application-specific software. This second microprocessor is the MD29
which allows the Drive to be easily adapted to applications by programming
software in the MD29.

1.1 Overview
The MD29 is a compact microcomputer using surface-mount components on
a single printed circuit board. The board is designed for easy installation.

Together with the DPL Toolkit, the MD29 allows the programmer to write
software or use pre-written software in order to enhance the flexibility of a
Variable Speed Drive.

The MD29 is compatible with the following Drives:
• Mentor II, Vector, CDE, HPCDE

The MD29AN is a special version of the MD29. It has the full functionality of
the MD29 plus a CTNet interface for Mentor II Drives only. This interface
replaces the dedicated RS485 port for the Control Techniques I/O Box.

Note

The term MD29 in this manual also refers to the MD29AN,
unless specified otherwise.
The terms CDE750 and CDE7500 are used in this manual.
CDE750 refers to the bookcase CDE 0.75kW to 11kW range
(1HP to 15HP); CDE7500 refers to the CDE 11kW to 90kW
range (7.5HP to 150HP), including the HPCDE.

MD29
Issue code: 29nu41-2 Introduction

DPL Toolkit (Windows™ interface)

The DPL Toolkit is contained on two diskettes. It is a program which runs in
Microsoft® Windows™ Version 3.1x and Windows™ 95. Programs for the
MD29 are written on a host PC using the DPL Toolkit.

Serial communications link

Host PC
(Desk-top or industrial)

The MD29 uses a high-level programming language called DPLDPL
(Drive Programming Language) which is in many respects similar to the
BASIC language. DPL is a compiled program which gives it the ability to run
at high speed.

The DPL Toolkit is used to write, compile and download a DPL program to an
MD29. The Toolkit also has a comprehensive set of de-bugging facilities to
aid the development and testing of the DPL program.

Connection between the MD29 and host PC is via an RS232 serial
communications link. This link need only be used during program
development, testing and commissioning. It can be disconnected after the
software has been successfully loaded.

1.2 Memory
The compiled MD29 program and the user-created source program are
stored in non-volatile EEPROM memory on the MD29 card. This type of
memory allows the programs to be loaded using the serial port.

Latest versions of programs can be easily updated without removing any
integrated circuits or without using any specialized programming
equipment.

The filing system of the MD29 allows only one program to be stored in the
MD29 at any one time.

The compiled program can be stored along with the DPL source code. This
allows the site engineer to read the program stored in the MD29, even if the
program is not on the host PC. (This option can be disabled if it is not
required.)

MD29
Issue code: 29nu4 Introduction 1-3

1.3 PC requirements
The minimumminimum requirement for the DPL Toolkit is as follows:

IBM AT compatible 386SX PC, Windows™ 3.1, 4Mb RAM, DOS5
A 486 PC with 8MB RAM is recommended

1.4 Technical data for the MD29
Intel 960 32-bit RISC processor
96kb of user program storage
8kb user RAM

16MHz clock
RS232 port for programming (IBM AT compatible)
RS485 optically isolated port for permanent serial communications
Dedicated, optically-isolated RS485 port for a Control Techniques
I/O Box (not available on MD29AN)

1.5 User knowledge
This User Guide assumes that the user has at least superficial knowledge of
Microsoft® Windows™. Refer to the Windows User’s Guide for specific
information on performing operations in Windows™.

MD29
Issue code: 29nu41-4 Introduction

MD29
Issue code: 29nu4 Installation 2-1

2 Installation

Warning

The voltages present in the Drive are capable of inflicting a
severe electric shock and may be lethal. The Stop function
of the Drive does not remove dangerous voltages from the
Drive or the driven machine.
AC supplies to the Drive must be disconnected at least
15 minutes before any cover is removed or servicing work is
performed.

2.1 Installation procedure
Installation procedures are given for the following Drives:

Mentor II, CDE7500/ HPCDE, Vector

Mentor II Drive

Mentor II

MD29

Location of the MD29 in the Mentor II DriveLocation of the MD29 in the Mentor II Drive

MD29
Issue code: 29nu42-2 Installation

Refer to the Mentor II User Guide for the mechanical details.

Use the following procedure to fit the MD29 to the MDA2B circuit board of
the Drive:

1 Isolate the AC supply from the Drive.

2 Remove the front cover from the Drive.

3 Fit the four small securing pillars to the corners of the MD29.

4 Find the 40-pin header connector on the MDA2B circuit board of the
Drive.

Note

The following instruction requires you to fit the MD29 to
the Drive. Correct location of the header connector is
essential.

5 Fit the 40-pin connector of the MD29 on to the connector on the MDA2B
circuit board, ensuring the pins are aligned, and that the pillars on the
MDA2B circuit board are correctly aligned with the locating holes in the
MD29.

6 Push the MD29 carefully into position.

7 Check again that the 40-pin connector is correctly plugged in.

8 Fit the four securing pillars on each corner of the MD29 to the Drive
circuit board.

9 Make any necessary serial cable connections to the MD29.

10 Replace the Drive cover.

MD29
Issue code: 29nu4 Installation 2-3

CDE7500 and HPCDE Drives

Refer to the CDE User Guide for the mechanical details.

Use the following procedure to fit the MD29 to the IN–82 control board in the
Drive, or to the IN-90 board in the HPCDE Drive:

1 Isolate the AC supply from the Drive.

2 Remove the front cover from the Drive.

3 Fit the four long pillars to the corner holes of the MD29.

4 Find the 40-pin header connector on the IN–82 control board in the
Drive.

MD29

IN-82

SMPS

Terminal Block

Location of the MD29 on the IN-82 card in the CDE7500Location of the MD29 on the IN-82 card in the CDE7500 Drive Drive

Note

The following instruction requires you to fit the MD29 to
the Drive. Correct location of the header connector is
essential.

MD29
Issue code: 29nu42-4 Installation

5 Fit the 40-pin connector of the MD29 on to the connector on the IN–82
control board, ensuring the pins are aligned, and that the pillars on the
IN–82 control board are correctly aligned with the locating holes in the
MD29.

6 Push the MD29 carefully into position.

7 Check again that the 40-pin connector is correctly plugged in.

8 Locate the four securing pillars on the corners of the MD29 to the IN–82
control board.

Note

The Drive cover cannot be re-fitted directly to the case.
The cover must be raised to allow room for the MD29 card.
Use the following procedure to fit the cover.

9 Fit the four hole-stud pillars (supplied with the MD29) to the corners of
the Drive.

10 Fit the pod extension connector (supplied with the MD29) to the
D-type connector of the control pod.

11 Make any necessary serial cable connections to the MD29.

12 Fit the cover on to the pillars.

MD29
Issue code: 29nu4 Installation 2-5

Vector Drive

IN-31

Terminal Block

MD29

Location of the MD29 on the IN-31 control board in the Vector DriveLocation of the MD29 on the IN-31 control board in the Vector Drive

Refer to the Vector User Guide for mechanical details.

Use the following procedure to fit the MD29 to the IN-31 control board in the
Drive:

1 Isolate the AC supply from the Drive.

2 Remove the front cover from the Drive.

3 Fit the four long pillars to the corner holes of the MD29.

4 Find the 40-pin header connector on the IN–31 control board in the
Drive.

Note

The following instruction requires you to fit the MD29 to
the Drive. Correct location of the header connector is
essential.

MD29
Issue code: 29nu42-6 Installation

5 Locate the 40-pin connector of the MD29 on to the connector on the
IN–31 control board, ensuring the pins are aligned, and that the pillars
on the IN–31 control board are correctly aligned with the locating holes
in the MD29.

6 Push the MD29 carefully into position.

7 Check again that the 40-pin connector is correctly plugged in.

8 Fit the four securing pillars on the corners of the MD29 to the IN–31
control board.

Note

The Drive cover cannot be re-fitted directly to the case.
The cover must be raised to allow room for the MD29 card.
Use the following procedure to fit the cover.

9 Fit the four hole-stud pillars (supplied with the MD29) to the corners of
the Drive.

10 Fit the pod extension connector (supplied with the MD29) to the D-
type connector of the control pod.

11 Make any necessary serial cable connections to the MD29.

12 Fit the cover on to the pillars.

Bookcase CDE

It is recommended that fitting of the MD29 to bookcase Drives is carried out
by an authorized distributor since internal access to the Drive is required.

MD29
Issue code: 29nu4 Installation 2-7

2.2 Configuring the system

Host PC connections

RS232 Port The RS232 serial port is a dedicated link to the host PC. The port is a 9-way
female D-type connector. Ready-made cables for RS232 serial
communications are generally available.

The table below gives the minimum required connections between the MD29
and a 9-way and 25-way pin COM port connector.

MD29
pin no.

9-pin connector
pin no.

25-pin connector
pin no.

2 2 3

3 3 2

5 5 7

The RS232 port should be used only for commissioning because isolation or
protection of the port is not included.

Use the following instructions for connecting a host PC:

1 Ensure no static charge has built up when the plug is inserted.

2 Using a maximum cable length of not more than 3 metres (10 feet),
connect an RS232 cable to the RS232 serial port on the MD29 and to the
communications serial port of the host PC.

Installing the DPL Toolkit in the host PC

Use either of the following procedures:

Windows 3.1

The DPL Toolkit requires a minimum of 4Mb of computer memory. This may be RAM or
virtual memory. Virtual memory may be set in the 386386 Enhanced Enhanced section of Windows
Control Panel.

1 Start Microsoft Windows

2 Insert disk 1 of the DPL Toolkit into the A: drive of the host PC.

3 In Windows Program Manager, select FileFile on the menu bar. Select RunRun.

4 Type A:\SETUP.

5 Click on

MD29
Issue code: 29nu42-8 Installation

Windows 95

1 Insert disk 1 of the DPL Toolkit into the A:A: drive of the host PC.

2 In the menu, select RRun...un....

3 Type A:\SETUP.

4 Click on

Downloading the system file

The MD29 has no pre-loaded system software. The first task is to program
the system software using the DPL Toolkit. Use the following procedure:

1 Connect the serial communications cable to the MD29.

2 Apply AC power to the Drive.

3 In Windows 3.xx Program Manager, or in the Windows 95 Start menu,
click on:

 The DPLDPL Toolkit Toolkit window appears. At the top of the window are a

menu bar and toolbar.

4 If the serial port of the host PC is not COM1, open the ProjectsProjects menu
and select ConfigureConfigure. In the drop-down menu that appears, select
ComportComport. This opens a further drop-down menu which allows
selection of the required communications port.

5 Click on (Open Task ManagerOpen Task Manager). After a few moments, the DPLDPL
Task ManagerTask Manager dialog box appears.

MD29
Issue code: 29nu4 Installation 2-9

 If the dialog box does not appear, and all the buttons in the lower
toolbar of the window appear shaded (inactive), communications
could not be established with the MD29. Check the connecting cable is
correct, and the correct COM port is used.

6 Click on . The File Viewer File Viewer dialog box appears.

 In the panels on the left side of the dialog box the path and names of
the .SYS files can be selected.

Note

The system files are located in directory MD29GUI\BIN\SYS.

7 Select the correct path for the required system files. Double-click on
the .SYS file specified in the following table:

Drive File

Mentor II M2.SYS

Mentor II (MD29AN) M2NET.SYS

Vector VECT.SYS

CDE (bookcase) CDES.SYS

CDE and HPCDE CDEL.SYS

MD29
Issue code: 29nu42-10 Installation

Note

The system files for MD29 issue 1 are located in directory
MD29GUI\BIN\SYS\MD29ISS1.

 The ProgrammerProgrammer dialog box appears.

8 Click on (green light showing). The system file is now loaded
into the MD29.

MD29
Issue code: 29nu4 Getting Started 3-1

3 Getting Started

3.1 Introduction
This chapter explains the key elements of DPL programming, and the
methods used to create, compile and run an example program using the DPL
Toolkit.

An example of a short DPL program is given below, followed by explanations
of the program instructions.

3.2 Example DPL program
The DPL program described here is called SawtoothSawtooth, because it applies a
repetitive cycle consisting of a linear increase in speed demand followed by
an instantaneous reduction to zero, as shown in the following diagram.

Repetitve cycle produced by the Repetitve cycle produced by the SawtoothSawtooth program program

MD29
Issue code: 29nu43-2 Getting Started

Start

#1.18 = 0

Is #1.18 < 1000? #1.18=#1.18+1Yes

No

Flow diagram of program Flow diagram of program SawtoothSawtooth

Program instructions
$TITLE Sawtooth
$VERSION 1.1.1
$DRIVE Mentor
$AUTHOR MyName
$COMPANY MyCo
//Note: This is a comment.
BACKGROUND{
 Top:
 #1.18=0
 DO WHILE #1.18<1000
 #1.18=#1.18+1
 LOOP

 GOTO Top:
}

MD29
Issue code: 29nu4 Getting Started 3-3

Explanation of the example program

$TITLE Sawtooth
The first line of a program must be $TITLE program name. The name
can have a maximum of 64 characters.

$VERSION 1.1.1
The second line is $VERSION number. The number can have a maximum
of eight characters. The recommended format is $VERSION 1.0.0.
Updates are easily shown by increasing the last number, eg. 1.0.11.0.1.
Major modifications are shown by 2.0.02.0.0, 3.00 3.00, etc.

$DRIVE Mentor
The third line is $DRIVE drive name. This tells the compiler which Drive
it is installed in. (Since the DPL Toolkit can be used with different
types of Drive, the name of the Drive must be stated.) The list of
suffixes are as follows:
• MENTOR

• CDE750 (bookcase CDE)

• CDE7500 (large CDE and HPCDE)

• VECTOR

$AUTHOR MyName
$COMPANY MyCo

The fourth and fifth lines are used to define the author of the program
and the company name.

Note

Unless these lines are included, the program will not be
compiled.

//Note: This is a comment.
The program ignores comment lines which can be placed anywhere in a
program. Comments are always preceded by either a double forward
slash [////] or a semi colon[;].
Comments are useful for inserting descriptions, or for giving
explanations for the benefit of the user or programmer.

BACKGROUND{
BACKGROUND is a type of Task. (All executable code must be
contained within a Task.) There are many different types of Task,
which, in effect, define the priority of the code and allow blocks of
code to be run on different time-bases.
The BACKGROUND task is a free-running task which can be compared to
the way a PLC runs a program, for example. Full details of the Tasks are
given in Real-time programming in Chapter 4 DPL Programming.

MD29
Issue code: 29nu43-4 Getting Started

Top:
Top:Top: is a label which marks an absolute position in the program. A label
must always be followed by a colon [::].
A label defines the destination of a GOTO statement. It can be given
any name (eg. mylabelmylabel).

#1.18=0
A hash (##) expression accesses Drive parameters. In this case the
parameter is 1.18 (menu 1, parameter 18). This is a preset speed
reference parameter in the Mentor Drive, and it is set at zero.

DO WHILE #1.18<1000
DO WHILE is a loop statement. In this example, it gives the program an
instruction to repeat the following block of code while the value of
parameter 1.18 is less than 1000.

#1.18=#1.18+1
This line adds the value 11 to parameter 1.18. Every time this command is
executed, 11 is added to the parameter value.

LOOP
LOOP is the end expression for the Instruction DO WHILE. LOOP tells
the program to go back to the line DO WHILE and check that the DO
WHILE instruction remains true. When the value of #1.18 = 10001.18 = 1000, DO
WHILE #1.18 < 1000 #1.18 < 1000 becomes false. The instructions between DO
WHILE and LOOP stop being repeated and the program goes to the
next line after the LOOP command.

GOTO Top:
GOTO is a flow-control instruction. In this case, it tells the program to
go to the label Top:Top:. This causes the program to run continuously.

Note

The label name must be specified using a colon[:].

} Closing brace
Instructions within braces belong to the defined Task. Closing-braces
work in conjunction with opening-braces. In this example, the
opening- and closing-braces work in conjunction with the Task
BACKGROUND ..

MD29
Issue code: 29nu4 Getting Started 3-5

3.3 Creating a DPL file using
the DPL Toolkit
This section shows how to write, compile and download the example
DPL program for the Mentor II Drive.

Opening the DPL Toolkit

In Windows 3.xx Program Manager, or Windows 95 Start menu, click on:

The DPLDPL Toolkit Toolkit window appears. At the top of the window are a menu bar
and toolbar.

Creating a file

1 Click on or open the File File menu and select NewNew.

2 Enter the following program exactly as it appears, using the tab key to
indent lines.
$TITLE Sawtooth
$VERSION 1.1.1
$DRIVE mentor
$AUTHOR MyName
$COMPANY MyCo
//Note: This is a comment.
BACKGROUND{
 Top:
 #1.18=0
 DO WHILE #1.18<1000
 #1.18=#1.18+1
 LOOP

 GOTO Top:
}

MD29
Issue code: 29nu43-6 Getting Started

3 Open the FileFile menu and select Save As...Save As.... The Save File AsSave File As dialog box
appears.

4 In the Folders: Folders: list, select the ProjectsProjects directory. In the FileFile name: name:
text box, type SAWTOOTH.DPL.

5 Click on . The file is now saved.

 The program is ready for compiling into machine code.

Important Note

DPL programs must be saved as .DPL files. If this is not
done, the program cannot be compiled into machine code.
Only the saved version of the program is compiled.

Compiling the program

The DPL Toolkit contains a compiler which converts DPL programs from text
format to binary machine code which the MD29 can understand. The
compiler converts the .DPL file into a binary file with a .BIN extension.

Use the following procedure.

1 Click on at the right of the Toolbar. The Compile...Compile... dialog box
appears.

MD29
Issue code: 29nu4 Getting Started 3-7

2 If the DPL source file is required to be downloaded to the MD29, ensure
the Embed DPL Source CodeEmbed DPL Source Code check box is checked. This facility
allows the DPL program to be read back to the PC at a later date (if the
computer copy becomes lost, for example).

 If the DPL source file is not to be downloaded, ensure the check box is
unchecked. When the Compile...Compile... dialog box next appears, the check
box retains the last setting.

 (The other options in this dialog box are described in Compiling and
running programs in Chapter 5 DPL Toolkit.)

3 Click on

4 The CompilationCompilation box appears for a few seconds. It is not necessary to
observe the contents of the CompilationCompilation box.

5 The program is now compiled, ready for downloading to the MD29.

 If instead a Build errorsBuild errors window appears with errors displayed, correct
the program for typing mistakes and repeat the compilation. (Error
messages are described in Chapter 9, Diagnostics.)

MD29
Issue code: 29nu43-8 Getting Started

Connecting to the MD29

It is now necessary to establish communications from the host PC to the
MD29 in order to download the compiled file.

Use the following procedure:

Click on . The Task Manager opens with the Task Manager toolbar
appearing below the standard toolbar.

Note

If all the buttons on the lower toolbar appear shaded, it is
an indication that communications could not be
established with the MD29. Check that AC power is applied
to the Drive, and that the serial communications cable is
correctly inserted.

Downloading the program

1 In the Task Manager toolbar, click on . The ProgrammerProgrammer dialog
box appears.

MD29
Issue code: 29nu4 Getting Started 3-9

2 In the ProgrammerProgrammer dialog box, click on (green light showing).
The files SAWTOOTH..BIN and SAWTOOTH..DPL are now downloaded to
the MD29. Down-loading takes a few seconds to complete.

Note

The MD29 can hold only one compiled program (ie. .BIN file)
in memory at one time. A program that is downloaded to
the MD29 will over-write an existing program.

Running the program

Warning

The Sawtooth program rapidly alters the speed reference
parameter of the Drive. For safety, ensure the Drive is
disabled before running the program.

 In the Task Manager toolbar, click on

 The Speed referenceSpeed reference parameter #1.18 #1.18 in the Drive will change value.
Note that the ramping-up behavior cannot be observed since the
program alters the parameter value at a faster rate than the display is
updated.

MD29
Issue code: 29nu43-10 Getting Started

MD29
Issue code: 29nu4 DPL Programming 4-1

4 DPL Programming

This chapter explains the following parts of a DPL program:
• Program headers
• Comments
• Variables
• Parameters
• Tasks
• User-defined sub-routines
• Instructions

The explanation is followed by a section on optimizing DPL programs.

4.1 Program headers
A DPL program must begin with five program headers in the correct order,
as follows:

• Program title
• Program version
• Drive name
• Author name
• Company name

Each program header must be contained on a single instruction line in
the program.

Program title

Syntax $TITLE Program title

The $TITLE ProgramProgram titletitle is for use by the programmer.
eg. $TITLE Sawtooth generator Sawtooth generator

Maximum length: 64 characters

Program version

Syntax $VERSION Version Number

The $VERSION VersionVersion NumberNumber is for use by the programmer. It is
recommended that the format of the version number should be as follows:

$VERSION 1.0.1 1.0.1

Minor updates can be shown by increasing the last digit, eg. 1.0.21.0.2. Major
modifications can be shown by increasing the first digit, eg. 2.0.02.0.0.

Maximum length: 8 characters

MD29
Issue code: 29nu44-2 DPL Programming

Drive name

Syntax $DRIVE Drive name

The type of Drive and its size must be specified in $DRIVE DriveDrive namename since
the DPL Toolkit can be used with different types of Drive.

This program header ensures that the program is correctly compiled for the
option module and Drive. The following is a complete list of DriveDrive namesnames.

$DRIVE MENTOR

$DRIVE CDE750

$DRIVE CDE7500

$DRIVE VECTOR

Note

If a different Drive is specified, the program may not be
compiled, or run-time error 53 will occur when the
program is downloaded to the MD29.

Author name

Syntax $AUTHOR Author name

The $AUTHOR Author name is for use by the programmer.

Maximum length: 64 characters

Company name

Syntax $COMPANY Company name

The $COMPANY Company name is for use by the programmer.

Maximum length: 64 characters

Example program headers

$TITLE Sawtooth
$VERSION 1.0.1

$DRIVE MENTOR

$AUTHOR A.H.

$COMPANY Control Techniques

MD29
Issue code: 29nu4 DPL Programming 4-3

4.2 Comments
Comments are purely for information and explanation purposes. They act in
the same way as REM commands by not acting on the program.

Comments begin with a double forward slash [//] or a semi-colon [;]. They
can be placed on their own line, or at the end of instruction lines. A
Comment ends at the end of the line.

Example //This line contains a comment, which ends with the line.
//If the comment flows onto the next line, double forward
//slashes must be used to start the next line.

4.3 Variables

Basic variables

There are two basic types of variable, as follows:
• Integer variable (INT)
• Floating-point variable (FLOAT)

Integer
variables

Integer variables are denoted by placing a % % symbol after the name of the
variable, and are internally represented by a two’s complement
32-bit number. This gives a decimal range of ±2147483647.

Floating-
point
variables

Floating-point variables have no symbol. These variables are
IEEE double-precision (64-bit) numbers which give a range of approximately
±1.7976 x 10±308.

Accessing the variables

All variables are global within a program (ie. they can be accessed and
altered by any task). (There are no local variables.)

Bit-addressing of variables

All integer variables and arrays (see below) may be bit-addressed. This
means that each individual binary bit in the variable may be separately read
or written to. Bit-addressing is achieved by appending .n.n to the end of the
variable name, where nn is the bit number to be accessed.

Example flags%.3 = 1 ;set bit 3 to 1
IF flags%.5 = 1 THEN ... ;check bit 5

MD29
Issue code: 29nu44-4 DPL Programming

Naming conventions

The first character of a variable must be a letter. Subsequent characters
may include letters, numbers and the underscore (_) character. These may
be in any order.

Variable names are case sensitive (eg. the variable name speed%speed% is not the
same as SPEED%SPEED%).

Preferred use of variables

It is recommended that integer variables are used where possible.
Operations on integer variables perform much faster than for
floating-point variables.

Arrays

Arrays are collections of variables of the same type (integer or floating
point) under the same name. Note that only single-dimension arrays
are allowed.

Each element (individual component) of an array is, in effect, a separate
variable. An element is accessed by a program by specifying the array name,
then placing the element number in square brackets [][] after the array name

The two basic forms of arrays are as follows:

Dynamic
arrays

Dynamic arrays can be set up and changed by DPL programs. A dynamic
array must contain, integer variables or floating-point variables, but not
both types of variable.

A dynamic array must first be specified using the DIM instruction (usually in
the INITIAL task), and the number of elements specified in square brackets
after the variable name. Dynamic arrays are placed in the 8kB of volatile
memory in the MD29 which limits the maximum size of the array.

Example DIM myarray%[20] ;Integer array having 20 elements
DIM array2[30] ;Floating-point array having 30 elements

The elements in an array are numbered as follows:
0 to [Number of elements] – 1

From the example of an integer array given above, the first element of
myarray%[]myarray%[] is as follows:

myarray%[0]

The last element is as follows:
myarray%[19]

MD29
Issue code: 29nu4 DPL Programming 4-5

Constant
arrays

Constant arrays contain fixed pre-defined values that cannot be changed
by the DPL program when the program is being run. The values of the
constant array are defined in the DPL program by using a special section
called CONST. (This section is typed in exactly the same way as a task.)
Only integer values can be defined in a constant array.

The advantage of using a constant array is that the array is placed in the
96kB of memory space in the MD29 which allows the size of the array to be
limited only by the amount of available program space in the MD29, and not
by the size of the 8kB RAM. The program space is used to store the
compiled DPL program, constant array data, and (optionally) the
DPL file itself.

Example CONST c_array% {
100, 1500, 500, 0, –400, –1000
–400, –100, 0
}

This defines an array called c c_array%[]array%[], which containes nine elements.
Note that the value of each element can be separated by a comma or a
new line.

4.4 Parameters
There are two types of parameter, as follows:

• Drive parameters
• Virtual parameters

(See Chapter 10 Parameters.)

Parameters are denoted by a ## (hash) symbol and are accessed using an xx,yy
format, where xx represents the menu and yy represents the parameter in the
menu.

For example, parameter p7.05p7.05 is accessed by entering #07.05#07.05, and p18.01p18.01 is
accessed by entering #18.01#18.01. Leading zeroes in the parameter can be
omitted, eg. #7.5#7.5 is the same as #07.05#07.05.

Parameters can also be accessed indirectly using an integer variable to
denote the parameter number. See Parameter pointers later in this chapter
for details.

4.5 Operators
Operators perform mathematical or logical operations on values. The
following operators are supported in DPL programming.

Note

Certain operators work only with integer values
or variables.

MD29
Issue code: 29nu44-6 DPL Programming

Operators for floating-point and integer variables

+ Plus
– Minus
/ Divide
* Multiply

Operators for integer variables only

& Logic AND A B Y

0 0 0

0 1 0

1 0 0

1 1 1 ExampleExample 5 & 14 = 4

| Logic OR A B Y

0 0 0

0 1 1

1 0 1

1 1 1 ExampleExample 5 | 14 = 15

Logic XOR A B Y

0 0 0

0 1 1

1 0 1

1 1 0 ExampleExample 5 & 14 = 11

!Value Bit invert This Operator inverts the least-significant bit, and converts all
other bits to zero.

Example 1001000 (binary) is converted to 0000011 (binary)

!(value, bit-field-size)
Bit-field invert

This Operator inverts the specified number of least significant
bits, and converts all other bits to zero. The bitbit-field-field-size-size
specifies the number of least-significant bits that are to be
converted.

Example Result% = !(value%, 3)

100100100 (binary) is converted to 000011011 (binary).

% Remainder This Operator gives the remainder when an integer is divided
by another integer.

Example 5 % 2 = 1
8 % 3 = 2

MD29
Issue code: 29nu4 DPL Programming 4-7

4.6 Tasks and real-time programming
Real-time programming runs with reference to a clock to enable the user to
specify the actual times instructions are executed, not just the order in
which they are executed. When real-time programming, a task Structure
(or philosophy) has to be maintained.
MD29 programs contain sections called tasks, where a task enables a priority
to be given to a sub-routine. Six levels of priority are defined by these tasks
in the following order:

• INITIAL task
• BACKGROUND task
• CLOCK task
• ENCODER task
• EVENT task
• ERROR task

Each task is specified by its name in the program. The contents of each task
must be placed in braces { }{ }.

Example CLOCK{
instructions
}

INITIAL task

The INITIAL task is used typically to initialize program variables and Drive
parameters in the DPL program. The task runs only when the MD29 is reset
or at the moment AC power is applied.
The INITIAL task has total priority over all other tasks when running; the
other tasks are prevented from running. This is significant when the CLOCK,
EVENT or ENCODER tasks are to manipulate data which have initial values.

Example INITIAL{
// This is the only place to reliably initialize ‘timer’
timer% = 0
}

CLOCK{
//This task is set at 5ms
//The value of timer must be initialized before CLOCK is run
timer% = timer% + 1
IF timer% > 200 THEN
 //200, 5ms intervals = 1 second
 PRINT “1 Second expired”
 timer% = 0
ENDIF
}

MD29
Issue code: 29nu44-8 DPL Programming

BACKGROUND task

The BACKGROUND task is used for functions and commands that do not
require time-related or encoder-related monitoring. This task would be
used for the following:

• Data logging
• Checking digital inputs
• Setting output status

The BACKGROUND task runs after the INITIAL task is completed. It is
recommended that the majority of the program is run in the BACKGROUND
Task.

Note

The BACKGROUND task does not automatically loop.

Example BACKGROUND{
 RAMP:
 #1.18 = 0
 DO WHILE #1.18<1000
 #1.18 = #1.18+1
 LOOP
 GOTO RAMP:
}

MD29
Issue code: 29nu4 DPL Programming 4-9

ENCODER Task
timing period

ENCODER
Task

INITIAL
Task

CLOCK
Task

BACKGROUND
Task

CLOCK Task
timing period

BACKGROUND Task giving way to the CLOCK Task

INITIAL
Task

CLOCK
Task

BACKGROUND
Task

CLOCK Task
timing period

BACKGROUND Task giving way to the CLOCK Task,
and the CLOCK Task giving way to the ENCODER Task

Examples of the BACKGROUND task giving way to the CLOCK and ENCODER tasksExamples of the BACKGROUND task giving way to the CLOCK and ENCODER tasks

Key to the diagram

BACKGROUND task giving way to the CLOCK task

1 The BACKGROUND task waits while the CLOCK task runs, and is then
interrupted at the next CLOCK task.

2 The BACKGROUND task continues running until next interrupted by the
CLOCK task.

3 The BACKGROUND task ends.

MD29
Issue code: 29nu44-10 DPL Programming

BACKGROUND task giving way to the ENCODER and CLOCK tasks

4 ENCODER and CLOCK timing periods begin.

5 The CLOCK task runs until it is interrupted by the next ENCODER task.
The CLOCK task is completed when the ENCODER task has finished.

6 The CLOCK task ends, leaving time for the BACKGROUND task to run
until interrupted by the next ENCODER task.

7 When the ENCODER task has finished the next CLOCK period has not
arrived. The BACKGROUND task runs until interrupted by the next
CLOCK task.

User-defined sub-routines

User-defined sub-routines are written by the user and are used in
conjunction with the CALL instruction (see CALL in Chapter 7 Reference).

User-defined sub-routines can be given any name and can be inserted
anywhere in a program. (Note that the task name is casecase-sensitive-sensitive.)

The following sub-routine has the same function as the SawtoothSawtooth program
given in Chapter 3 Getting Started. The name given to the sub-routine is
RAMP::.

BACKGROUND{
 Loop:
 CALL RAMP:
 GOTO Loop:
}
RAMP: {
 #1.18=0
 DO WHILE #1.18<1000
 #1.18=#1.18+1
 LOOP
}

Important Note

Be careful not to allow a user sub-routine to be started by
two different real-time tasks (a situation termed
re-entry).
For example, a sub-routine is able to be started by a
BACKGROUND task as well as a CLOCK task. If the BACKGROUND
task starts the sub-routine, and the CLOCK task interrupts
the BACKGROUND task while the sub-routine is being
executed, the values of the variable being processed could
be altered. This can occur because the CLOCK task will also
run the sub-routine, but will apply its own values.

MD29
Issue code: 29nu4 DPL Programming 4-11

CLOCK task

The CLOCK task is used for time-related monitoring of the Drive, and
commands to the Drive (eg. controlled acceleration or deceleration ramp).

The task has the second lowest priority. Only the BACKGROUND task gives
way to the CLOCK task.

The task is executed on a constant timebase; the actual timebase used
depends on the value of the set-up parameter on the Drive (see also MD29
set-up parameters in Chapter 10 Parameters), which can range from 1ms to
200ms.

Example This example produces a sine-wave.
CLOCK{
 #1.18 = SIN (rad)*1000
 rad =rad+0.01
 IF rad>6.283185 THEN ; 6.283185 = 2 * pi
 rad = 0
 ENDIF
}

ENCODER task

The ENCODER task is primarily used to monitor the activity of an encoder.

The task is synchronized to a control loop in the Drive, so the execution
frequency of the task is determined by the Drive. A set-up parameter can
be used to multiply the time by two.

Drive Switching
frequency

Timebase
parameter set at 0

Timebase
parameter set at 1

kHz ms ms

Mentor II Not applicable 5.12 2.56

CDE 3, 6 or 12 5.52 11.04

CDE 4.5 or 9 7.36 14.72

Vector Any 2.008 4.016

Example ENCODER{
 master_inc% = #90.2
 slave_inc% = #90.4
 EPOS = EPOS + master_inc% – slave_inc%
}

MD29
Issue code: 29nu44-12 DPL Programming

EVENT task

The EVENT task runs when a specific event occurs. The source of the event
is determined by the Timer/Counter Unit.

The EVENT task has the highest priority when the program is running. All
other tasks give way to the EVENT task.

Refer to Timer/Counter Unit in Chapter 8 Features for further information.

ERROR task

The ERROR task is executed only when a run-time error has occurred in the
DPL program. If the DPL Toolkit is connected to the MD29 at the time of
the error, the error number will be displayed on the screen.

Run-time errors can be caused by a variety of occurrences. For example:
Attempting to write to a read-only parameter
A real-time task over-running

Errors are usually due to programming errors, but can sometimes occur due
to external influences. For example, an error signifying a serial
communications loss could occur if incoming data from an I/O Box is lost
due to the cable being broken. Normally, the MD29 halts all tasks, and
optionally trips the Drive.

If this is undesirable, the ERROR task can be used. The sequence when a
runtime error occurs is then:

1 All tasks are stopped.

2 The Drive is tripped (if the trip is enabled). See the Trip enable
parameters in MD29 setup parameters in Chapter 10 Parameters.

3 The number of the error is placed in parameter #88.01 of the MD29

4 The ERROR task is executed. The instructions in the ERROR task can
determine the cause of the run-time error and take necessary action,
such as stopping the drive system in a controlled manner.

For further information, see Advanced error-handling in
Chapter 9 Diagnostics.

NOTES task

This is a pseudo task that is ignored by the compiler. The writer of the
program uses the NOTES task to help the user of the Drive understand the
program.

Example NOTES{
You can put your documentation here.
}

MD29
Issue code: 29nu4 DPL Programming 4-13

4.7 Instructions and functions
This section describes the different types of instructions which are used in
DPL programming.

Conditional instructions

A conditional instruction performs an operation according to a set condition
(eg. IF).

Condition
True
(Yes)

False
(No)

Procedure 1 Procedure 2

Example of an IF, THEN flow diagramExample of an IF, THEN flow diagram

Loop instructions

A loop instruction repeats a block of instructions until a specified
condition occurs.

Example DO WHILE
LOOP

Condition
True
(Yes)

False
(No)

Procedure 1

Example of a DO WHILE, LOOP flow diagramExample of a DO WHILE, LOOP flow diagram

MD29
Issue code: 29nu44-14 DPL Programming

Flow-control instructions

A Flow-control instruction causes the program to jump to a specified
instruction or to be terminated (eg. GOTO).

Maths functions

A Maths function applies a mathematical operative to an expression to
return a value (eg. SIN).

Signal-processing functions

A Signal-processing function returns a value from a number of samples over
a fixed time-period. Signal-processing functions can be used only in the
CLOCK or ENCODER tasks (eg. FILTER).

Base-conversion functions

A Base-conversion function acts upon a value to convert Binary Coded
Decimal to Binary and vice versa. Base-conversion functions are useful for
data received from an IO Box. Refer to Chapter 6 Serial Communications.

Data-conversion functions

A Data-conversion function converts a floating-point variable to an integer
variable and vice versa.

ANSI instructions

An ANSI instructions allows a DPL program to communicate via the RS485
port with other Drives and MD29 cards using the ANSI protocol. Refer to
Chapter 6 Serial Communications.

MD29
Issue code: 29nu4 DPL Programming 4-15

4.8 Optimizing programs
In order for programs to run effectively, the following are recommended.

Integer variables

Use integer variables where possible, rather than floating-point variables.
The processing of a floating-point variable is 20 times slower than for an
integer variable. (See INT instruction in Chapter 7 Reference.)

Fixed-point arithmetic

To represent decimal places, use fixed-point arithmetic. For example, if a
resolution of .001.001 is required, let 11 be represented by 10001000. This allows
accuracy to be maintained throughout mathematical operations.

The output from an expression must then be corrected by a relevant
dividing factor.

Example a% = 1500 // “a% = 1.5”
b% = 2500 // “b% = 2.5”
c% = a% * b% // c% = 3750000
// Divide by 1000 to adjust c%
c% = c%/1000 // “c% = 3.750”
// To convert to the real value, we must divide by 1000 again
#1.21 = c%/1000 // “c% = 3.75”

Temporary integer variables

Minimize the number of times parameters are accessed. Instead of
accessing a parameter repeatedly, use temporary integer variables if a
parameter value is needed more than once. The access time for a
parameter is 50 times greater than that for a variable.

Example IF #1.18 > 100 THEN
 range% = 1
ELSEIF #1.18 > 200 THEN
 range% = 2
ENDIF
This becomes:
temp% = #1.18
IF temp% > 100 THEN
 range% = 1
ELSEIF temp% > 200 THEN
 range% = 2
ENDIF

MD29
Issue code: 29nu44-16 DPL Programming

Integer division

When using integer division, accuracy may be lost in the result, as shown in
the following expression:

If #1.18 is equal to 5
Then we have the following:
a = 4.5 * (#1.18 /4)
= 4.5 * (5 /4)
= 4.5 * 1
= 4.5

The DPL compiler uses an integer divide, converts the result to a
floating-point value and uses a floating-point multiply.

To preserve accuracy, one of the arguments can be converted to a
floating-point variable, as follows:

a = 4.5 * (#1.18 / FLOAT(4))
= 4.5 * (5 / FLOAT(4))
= 4.5 * 1.25
= 5.625

See FLOAT instruction in Chapter 7 Reference.

PRINT instruction

Do not over-use the PRINT instruction. (See PRINT instruction in Chapter 7
Reference). It is preferable to use the WatchWatch window in the DPL Toolkit to
monitor variables (see Chapter 5 DPL Toolkit).

Use the PRINT instruction only in the BACKGROUND task. If the PRINT
instruction is included in the CLOCK or ENCODER tasks, the PRINT instruction
may have insufficient time to be executed. Text waiting for printing may
not then be printed.

BACKGROUND task

Place as much of the program as possible in the BACKGROUND task rather
than in the CLOCK, ENCODER or other real-time tasks. Since the real-time
tasks are on a fixed timebase, the processing must be completed in this
time. The BACKGROUND task does not have this restriction.

MD29
Issue code: 29nu4 DPL Programming 4-17

#INT instruction

The #INT instruction converts a parameter that requires floating-point
variables to accept integer variables. This greatly increases processing
speed.

Example #2.00 = 2.1
// set #2.00 at 2.1 on CDE750 Drive
//is the same as
#INT2.00 = 21
// Reading is also possible:
value% = #INT2.00

4.9 Parameter pointers
A parameter pointer is an integer variable that represents a Drive parameter.

Example A% = 118 // set A% to point to #1.18
#A% = 10//write 10 to the pr A% points to (#1.18)

Note

If the parameter contains a decimal-point, the decimal
point is ignored. (For example, parameter 2.00 in the
CDE Drive is in units of 0.1. A value of 2.3 must be
written as 23.)

MD29
Issue code: 29nu44-18 DPL Programming

4.10 Defining aliases (constants)
Sometimes it is useful to assign a meaningful name to a parameter or a value.
For example:

Parameter #1.18 could be referred to as SPEED_REFERENCE

Instructions can be written in the form:
SPEED_REFERENCE = MAX_SPEED

Aliases are created using the $DEFINE directive. The syntax is:
$DEFINE$DEFINE name valuename value.

The $DEFINE directive can be used to assign the required value to a name
that is used subsequently in the program; the name becomes an alias for the
value. All occurrences of the name are replaced by the value when the
program is compiled.

Note

Comments are not allowed at the end of a $DEFINE line.

There are two parts to an alias, as follows:

Name
parameter

The name parameter specifies the name to be defined. This
can be any combination of letters, digits and underscore
characters. Spaces are not permissible.

Value
parameter

The value parameter can be used to specify any constant
value or parameter number.

Example This example (for the Mentor II Drive) demonstrates use of the $DEFINE
directive to assign names to parameter numbers (#3.02 and #1.18) and to a
value (500).

$define MAX_SPEED 500

$define SPEED #3.02

$define SPEED_DEMAND #1.18

BACKGROUND{

top:

IF SPEED < MAX_SPEED THEN

 SPEED_DEMAND = SPEED_DEMAND + 1

ENDIF

GOTO top:

}

MD29
Issue code: 29nu4 DPL Toolkit 5-1

5 DPL Toolkit

This chapter describes operation of the DPL Toolkit, compiling of programs,
and the debugging facilities.

5.1 Overview of the DPL Toolkit
The DPL Toolkit enables the user of the MD29 to amend, write and download
programs to the MD29. The Toolkit consists of a set of compilation tools
and a comprehensive editor and debugger.

Main toolbar of the DPL ToolkitMain toolbar of the DPL Toolkit

The compilation tools enable the user to perform the following:
• Develop and edit real-time programs for the MD29.
• Cut and copy program text to the Windows clipboard.
• Paste program text from the Windows clipboard.
• Load an existing program from the MD29.
• Compile the program into machine code.

The debug facility has the following tools:
• Read the values of the Drive parameters on the screen and edit the

values while the DPL program is running.
• Read the values of the Variable parameters on the screen and edit

the values while the DPL program is running.
• Single-step mode for program checking.
• Breakpoints.

Note

Only one program can be stored in the MD29 at any
one time.

MD29
Issue code: 29nu45-2 DPL Toolkit

5.2 File management
File management in the DPL Toolkit follows similar principles to that in other
Windows applications. In addition to the standard procedures, there are
procedures specific to the DPL Toolkit. These are given below.

File menu

The FileFile menu is as follows:

Creating a
new file In the FileFile menu, select NewNew, or click on . A blank page is created for

you to start work on.

Opening an
existing file

There are two methods of opening a file,as follows:

Load into a new Window

 In the FileFile menu, select Open...Open..., or click on

Load into the existing window replacing the current contents

 In the FileFile menu, select Load...Load..., or click on

Re-loading
the last-
saved file

In the FileFile menu, select ReloadReload.

Saving a file
In the FileFile menu, select Save As...Save As..., or click on

DPL files must be saved with a .DPL filename extension before they can be
compiled.

MD29
Issue code: 29nu4 DPL Toolkit 5-3

Add a
filename to a
menu

The Add toAdd to option allows files to be added to a menu for easy access.
When the Add toAdd to option is selected, the following list appears.

This list refers to two of the main menu items FavouriteFavourite and CueCue Cards Cards in
the Toolkit. When one of these menus is selected, files which are added to
the menu are listed in a drop-down menu. The file can then be immediately
selected.

The options are as follows:

Add to favourite
This adds the open file to the FavouriteFavourite menu.

Add to Cue Cards
This adds the open file to the CueCue cardscards under the HelpHelp menu.

File Viewer

MD29
Issue code: 29nu45-4 DPL Toolkit

File ViewerFile Viewer allows the user to perform the following:
• View a file without opening it
• Copy text from an unopened file and paste it in the open file
• Pre-select individual lines for copying in one operation

Opening
File Vi ewer

Do either of the following:

Click on (File ViewerFile Viewer).

In the File menu, select View Current File or View Last File.

When View CurrentView Current FileFile is selected, File Viewer appears with the
currently open file loaded.

When View View lastlast filefile is selected, File Viewer appears with the last-saved file
loaded. This file is not necessarily the file that is displayed on the screen.

Copying and
pasting text

1 Select the file and highlight the text that you want to copy.

2 Click on (Copy Copy).

3 Place the cursor in the required position for the selected text.

4 Open the EditEdit menu and select Paste Paste in the drop-down menu.

Copying and
pasting
sub-routines

Use either of the following procedures to select a sub-routine and paste it
into different programs.

Using File ViewerUsing File Viewer

1 Save the sub-routine as a file. See Chapter 4 DPL Programming.

2 Place the cursor in the open program where the text is to be inserted.

3 Open File Viewer. In the box at the bottom left corner of File Viewer is
a list of saved files.

4 Select the name of the file that contains the required sub-routine.

5 Click on (ViewerViewer InsertInsert).

Using the main toolbarUsing the main toolbar

1 Save the sub-routine as a file. See Chapter 4 DPL Programming.

2 Place the cursor in the open program where the text is to be inserted.

3 Open the Edit menu Edit menu and select Insert File Insert File in the drop-down menu.

MD29
Issue code: 29nu4 DPL Toolkit 5-5

5.3 Editing a program

Edit menu

The EditEdit menu is as follows:

The basic editing tools are similar to other Windows applications. The tools
allow you to cut, copy, paste, clear and undo.

Cutting a
line

Select CutCut Line Line to delete highlighted instruction lines.

Finding and
replacing
text

Select Find/ReplaceFind/Replace to find and replace characters and words. The Find
dialog box appears.

Use this option in the same way as the Find/Replace option in Windows word
processors.

MD29
Issue code: 29nu45-6 DPL Toolkit

Appending
instruction
lines

Use the following procedure to copy lines in a specific order from
File Viewer to the program being written:

1 Select in turn the lines shown in File Viewer that are to be copied to
the new program.

2 After each selection, click on (AppendAppend).

3 Place the cursor in the required position for the lines to appear in the
new program.

4 Open the EditEdit menu and select Paste Paste in the drop-down menu.

BookMarks

BookMarks are useful for negotiating long programs. A BookMark is
inserted into a program where the writer needs to refer to a location on a
regular basis. A number of BookMarks may be used in a single program.

Setting a
BookMark

1 Position the cursor in the program where the BookMark is to be
placed.

2 Click on (BookMarkBookMark).

Returning to
a BookMark 1 Click on (NextNext BookMarkBookMark).

2 The cursor goes to the BookMarkBookMark that has been placed. If the
Next BookMark button is clicked on again, the cursor highlights the
next BookMark. BookMarks are highlighted in the order they were
placed.

Clearing
BookMarks

Open the EditEdit menu, and select ClearClear AllAll BookMarksBookMarks.

MD29
Issue code: 29nu4 DPL Toolkit 5-7

5.4 Applying styles
The StyleStyle menu is as follows:

Styles

Styles let you alter the way the DPL Toolkit screen appears. There are 48
background and text colours giving over 2000 combinations of colours that
can be used.

Under FontFont, there is an extensive list of text fonts including TrueType fonts.

Auto-indent

AutoIndentAutoIndent allows you to set a tab for DO WHILE...LOOP and IF...ENDIF
commands. When the EnterEnter key is pressed at the end of the line the indent
is automatically retained for the next line. To delete the indent, press the
BackspaceBackspace key.

Using this method of indents, you can easily pick out discrepancies in the
programming by ensuring that an IF statement ends with an ENDIF
statement and that a DO statement ends with a LOOP statement (see
Chapter 7 Reference).

MD29
Issue code: 29nu45-8 DPL Toolkit

5.5 Compiling and running a program

Task Manager toolbar

The DPL Task Manager contains powerful compilation and debugging tools.
These tools enable the programmer to check the program in great detail.
Some of the debugging tools are automatic and check for programming
errors. Others allow the programmer to check the program line by line to
verify the logic of the program.

Compiling a program

1 Save the written program as a .DPL file.

2 Click on (CompileCompile), or to compile and download the program
automatically, click on:

The Compile...Compile... dialog box appears.

If the MD29 in use is hardware issue 1, check the MD29 Issue 1 Issue 1 radio button.

Normally the options can be left as they are shown. In this case, to continue
the compilation process click on:

MD29
Issue code: 29nu4 DPL Toolkit 5-9

Debugging options

The debugging options enable various debugging aids for the DPL program
to be de-selected. See Program monitoring and debugging below for a
description of these options.

If errors are encountered in compiling the file, the Build ErrorsBuild Errors window
appears showing the program errors. As each error is highlighted in
BuildBuild Errors Errors, the corresponding line in the program is also highlighted.

Using Build
Errors

1 Click on the first line that is shown as an error.

2 Correct the error (the type of error is indicated in the Build ErrorsBuild Errors
window).

3 Click on .

4 Click on in the Save ChangesSave Changes dialog box that appears.

5 Repeat the compile process to update the compiled program.

Note

The debugging tools in the compiler highlights problems in
the program that are attributed to programming errors.
The debugging tools will not highlight problems due to
logic. If a program has been compiled and downloaded to
the MD29 but it appears not to be running, it is likely to be a
logic problem.

MD29
Issue code: 29nu45-10 DPL Toolkit

Errors and warnings

An error indicates that the compiler could not interpret a line or command in
the DPL program. This could occur if a command is mis-spelt, incorrectly
used, etc.

A warning indicates that the compiler understood the commands but the
code may not function in the way you expected. The most common
warning is Possible loss of accuracy in assignment, and can occur when
integer variables or parameters are assigned a floating-point value.

A full list of errors and warnings can be found in Chapter 9 Diagnostics.

5.6 Downloading a program
A program can be downloaded only when it is free from errors.errors. Once the
program file is downloaded to the MD29, the DPL program is ready to be run.

To download the file, click on (Down-loadDown-load) in the
Task Manager toolbar.

Warning

If Auto-Run is selected, the program will automatically run
after downloading and the MD29 is initialized (reading the
set-up parameters).

Compiling and downloading a program

To compile and download a program in a single step, click on

Alternatively, select Quick StartQuick Start from the ProjectProject menu.

If any errors are encountered, the download process will not occur. If the
program contains warnings only, the Build + ProgramBuild + Program dialog box appears.

To ignore the warnings and continue to download, click on the ContinueContinue
button, otherwise click on the StopStop button.

MD29
Issue code: 29nu4 DPL Toolkit 5-11

5.7 Running a program

Click on (RestartRestart). This runs the DPL program from the beginning
(ie. at the INITIAL task). The Task Manager buttons for the tasks present in
the program are made active.

Stopping the program

Click on (PausePause).

Resuming the program

Click again on (PausePause).

5.8 Program monitoring and debugging facilities

Single-stepping

Single-stepping executes only one line of a DPL program at a time. By using
single-stepping, the operation of a program can be monitored instruction-
by-instruction. During single-stepping, all other tasks may run at full speed.

Single-
stepping
through a
task

1 Click on the appropriate Task Manager button, as follows:

 INITIAL task

 BACKGROUND task

 CLOCK task

 ENCODER task

 This halts the selected task. (The EVENT task cannot be
single-stepped.)

2 Repeatedly clicking on the appropriate Task Manager button will
advance the execution point to the next line.

Clear single-
stepping

Use either of the following methods to clear the single-stepping function:
• Hold down the CtrlCtrl key and click on the appropriate Task Manager

button.
• Open the Run Run menu and select the appropriate Run TaskRun Task option.

MD29
Issue code: 29nu45-12 DPL Toolkit

Breakpoints

A breakpoint is a line in a task at which point the task will stop the program
running and enter into single-stepping mode.

Breakpoints are useful for checking when a program reaches a particular
piece of code, or for checking the state of DPL variables at a particular point.

Setting a
breakpoint

1 Place the cursor on the line where the breakpoint is to be set.

2 Click on (Set breakpointSet breakpoint). The breakpoint is now active.
When the program execution reaches the set line, the task is halted
and single-stepping mode is started.

Note

Only one breakpoint may be set in a task at any one time.
Breakpoints and single-stepping are not possible in user
sub-routines.

Finding
breakpoints
in separate
tasks

1 Click on (Next breakpointNext breakpoint). The cursor goes to the next
breakpoint in the DPL program.

Removing
breakpoints

1 Place the cursor on the line where the Breakpoint is to be removed, or
use the Next breakpointNext breakpoint button to find the line that has the
breakpoint.

2 Click on the Set breakpointSet breakpoint button.

Using the Watch window

The Watch Watch window enables the programmer to check the logic of the
program while it is running in the MD29 by reading and writing parameters
and variables.

To display the Watch Watch window, click on in the Task Manager toolbar.

MD29
Issue code: 29nu4 DPL Toolkit 5-13

Example displayExample display inin the the WatchWatch windowwindow

There are two section to the WatchWatch window. The top section shows the
values of the parameters and variables being continuouslycontinuously updated while
the program is running. Values can be shown numerically and graphically.
The bottom section allows snap-shot reading and writing of parameters and
program variables.

Continuously
monitoring a
variable or a
parameter

There are five ways of viewing an item in the top section of the
WatchWatch window, as follows:

Display method Button

Value only

Value with uni-polar bar graph

Value with bi-polar bar graph

Value with bi-polar line graph

Value with individual bits displayed

MD29
Issue code: 29nu45-14 DPL Toolkit

Use the following procedure for monitoring a parameter or variable:

1 Click on the toolbar button for the required display method.

2 Select the required parameter or variable to be watched, using one of
the following methods:
• In the parameter text box on the left, type in the name of the

parameter or variable to be watched.

• Click on and select the required parameter or variable from the
list that appears.

• Double-click on the parameter or variable name in the main DPL
Toolkit editor window.

Changing the full-scale value

The full-scale value for the graphical display defaults to 1000. To alter this,
double click in the value display box. In the Max Value Max Value dialog box that
appears, type the required value for full-scale. Click on the OKOK button.

Changing to and from bipolar values

To change the graphical display for a watched item from one type to
another (eg. uni-polar bar to bi-polar), move the mouse cursor over the
graphical display region and press the right mouse-button. In the pop-up
menu appears, select the required option.

Using the
lower
section of
the Watch
window

The lower section of the WatchWatch window allows the user to take an
instantaneous reading of a variable or parameter, and also write to any
variable or parameter.

Reading a parameter or variable

1 Type the parameter or variable name (eg. #1.21#1.21).

2 Press ENTER. The value is shown at the right of the parameter/variable
name.

Setting a value for a parameter or variable

1 Type the parameter or variable name, followed by an equals sign and
the value to be written (eg. #1.21 = 1000#1.21 = 1000)

2 Press ENTER. If the value was written successfully, OKOK is displayed at
the right.

 A parameter or variable entered in the lower section, can be
automatically added to the top section by pressing the SHIFT and
ENTER keys after typing the name.

MD29
Issue code: 29nu4 DPL Toolkit 5-15

Note

If any changes are made to the program, it has to be
re-saved, compiled and downloaded to the MD29.

Saving the
Watch
window
settings

The settings of the WatchWatch window can be saved onto disk for later use. To
achieve this, select SaveSave in the FileFile menu of the WatchWatch window.

Further details of the WatchWatch window are covered in the on-line help facility.
Press F1 at any time to display the on-line help.

Uploading the DPL source file
from the MD29 to the host PC

The .DPL source file can be uploaded to the host PC when the original
program file is not available or if the program that is running is not
exactly known.

Use the following procedure to retrieve the .DPL file:

1 Click on (UploadUpload) in the DPL Task Manager toolbar. If a
version of the DPL program already exists in the host PC, a dialog box
appears asking if the file is to overwritten.

2 To find out which program is resident in the MD29, and to attempt to
load it, click on:

 (Source codeSource code)

Important Note

It is safer to upload the *.DPL program from the MD29 than
to retrieve the source code from the host PC, unless you
are sure that the program that is in the host is the
required program.

MD29
Issue code: 29nu45-16 DPL Toolkit

System information

System information gives the user information about the program in the
MD29, such as the program name, date of compiling, version number of the
MD29 operating system, etc.

To view this information, click on (System informationSystem information). The
System InformationSystem Information message box appears, eg:

MD29
Issue code: 29nu4 DPL Toolkit 5-17

The Log window

The Log window can be used to show the following:
• System messages (eg. the starting and stopping of a program)
• Watch window values (useful for data logging)
• The output of the DPL PRINT instruction (see PRINT instruction in

Chapter 7, Reference).

These functions are enabled and disabled using the Action menu.

To open the Log window, click on (Log window). The Log
window appears:

MD29
Issue code: 29nu45-18 DPL Toolkit

MD29
Issue code: 29nu4 Serial Communications 6-1

6 Serial Communications

6.1 Introduction
A serial communications link enables one or more MD29 cards to be used in
systems controlled by a host unit such as a PLC or computer. The
communications link uses the RS485 standard.

The MD29 may also act as the host in a system, controlling Drives, UD70
modules, MD29 cards or other devices fitted with a suitable interface.

The host controller can operate up to thirty-two EIA RS485 devices with the
use of line repeaters. Each transmitter and receiver of Control Techniques
devices loads the line by two unit-loads. Therefore in two-wire mode, each
Control Techniques device loads the line by four unit-loads. This means that
no more than a total of seven such devices can be connected in a single
group, allowing up to four unit-loads for the line repeater. Up to 15 devices
can be connected if four-wire mode is used.

When line repeaters are used, up to 81 Control Techniques devices can be
operated. In this case the devices are organized in up to nine groups of nine.
A particular group or groups can be given commands without affecting
other devices or groups of devices.

Group 1

Group 2

Host controller

RS485 mulitdrop link having two groups of four unitsRS485 mulitdrop link having two groups of four units

The communications port of the MD29 is the male D-type connector on the
right side of the board. The MD29 may be used in either 4-wire or 2-wire
mode. The RS485 port is fully opto-isolated. RS422 is also supported.

CautionCaution

An RS232 connection may be made to the RS485 port, but is
not recommended due to its inferior specification (noise
rejection, limited maximum cable length, etc). RS232 is not
the same as two-wire RS485.

Md29
Issue code: 29nu46-2 Serial Communications

6.2 Hardware connections
The following table details the hardware connections for the RS485
communications port.

Pin RS485 4-wire RS485 2-wire

1 0V 0V0V

2 Tx Tx Rx

3 Rx Tx Rx

4 DI0 *DI0 * DI0 *DI0 *

5 DI1 *DI1 * DI1 *DI1 *

6 TxTx Tx/RxTx/Rx

7 RxRx Tx/RxTx/Rx

8 DO *DO * DO *DO *

9 0VD *0VD * 0VD *0VD *

* Terminals 4, 5, 8 and 9 form the digital I/O connections of the MD29.
Since they form no part of the serial communications connections they must
not be connected to any serial communications lines or the serial
communications 0V (pin 1).

Ground connection

It is recommended that the shield of the data communications cable should
be connected by a low-inductance path to a ‘clean’ ground.

Routing the serial communications cable

A data communications cable should not run parallel to any power cables,
especially ones that connect Drives to motors. If parallel runs are
unavoidable, ensure a minimum spacing of 300mm (1 foot) between the
communications cable and the power cable.

Cables crossing one another at right-angles are unlikely to give trouble.

The maximum cable length for a RS485 link is 1200 metres (4,000 feet).

MD29
Issue code: 29nu4 Serial Communications 6-3

Terminating the cable

When a multi-drop RS485 system is used, connect a 120Ω resistor between
the two receive lines of the last unit in the chain (ie. the unit farthest away
from the host). Care must be taken to ensure that other units in the system
do not have the resistor already fitted. Excessive signal loss will occur if
termination resistors are connected to units other than the last one.

Connections for 4-wire modeConnections for 4-wire mode

Connections for 2-wire modeConnections for 2-wire mode

Md29
Issue code: 29nu46-4 Serial Communications

6.3 ANSI communications

Using the standard ANSI slave protocol

The standard built-in protocol which defines the message structure used to
read and write parameters on the MD29 is ANSI x3.28-2.5-A4. This section
explains this protocol.

The user may also create his own protocol by writing it in a DPL program,
using low-level port commands such as GETCHAR and PUTCHAR (refer to
Chapter 7 Reference).

ANSI slave protocol is enabled when the RS485-mode set-up parameter is set
at 1 (4-wire) (which is the default setting), or 5 (2-wire). See Serial
communications modes later in this chapter for details of other
communication modes.

Fundamentals of data transmission

Data is transmitted at a fixed speed or baud rate in the form of a character.
A character may typically comprise seven or eight bits.

In order for a receiver to recognize valid data, a frame is placed around each
character. This frame contains a start bit, a stop bit, and an optional parity
bit. Without this frame, the receiver will be unable to synchronize itself
with the transmitted data.

A frame is shown below:

Low ASCII character byte

1st hex character 2nd hex character

Start bit Seven data bits Parity bit Stop bit

0 LSB MSB 1

This is known as a 10-bit frame, since there are 10 bits transmitted in total.
The format is often described as follows:

1 start bit, 7 data bits, even/odd/no parity, 1 stop bit.1 start bit, 7 data bits, even/odd/no parity, 1 stop bit.
lsb refers to the least significant bit (ie. bit 0)
msb refers to the most significant bit (bit 6)
The Parity bit is used by the receiver to check the integrity of the data
it has received

MD29
Issue code: 29nu4 Serial Communications 6-5

The character set used is called the low ASCII set. The set comprises 128
characters decimally numbered from 0 to 127. The first 32 characters in the
ASCII set (hex. 00 to 1F) are used to represent special codes. These are the
control codes, each of which has a particular meaning (eg. start of text is
called STX and is ASCII code 02.)

On a computer or terminal, the STX character may be transmitted by
pressing CtrlCtrl+BB. When the MD29 is in standard ANSI mode, it recognizes
that a command follows the STX character.

The control code EOT (end of transmission) instructs all MD29 cards and
Drives on the RS485 bus to be ready to receive a new message — it is often
sent at the start of a message so that all the devices are set at Ready to Ready to
receive messagereceive message.

Control characters

Commands and requests are sent in message packets. Each message is
started with a special control character, and may contain control characters.
A list of all the control characters that can be used when sending a message,
and receiving is as follows:

Character Meaning ASCII code
(decimal)

Keyed as...

EOT Reset

Instructs the MD29 to prepare for a new message.
Also indicates parameter does not exist.

04 Ctrl D

ENQ Enquiry

Used when interrogating.

05 Ctrl E

STX Start of text

Used to start a command.

02 Ctrl B

ETX End of text

Used at the end of a command.

03 Ctrl C

ACK Acknowledge (message accepted) 04 Ctrl F

NAK Negative acknowledge (message not understood) 21 Ctrl U

BS Backspace (go to previous parameter) 08 Ctrl H

Baud rate

The user can select a baud rate between 2400 and 38400. The default is
4800. See setup parameters.

Md29
Issue code: 29nu46-6 Serial Communications

Addressing

Each unit on a ANSI communications bus must be given a unique identity or
address so that only the target MD29 unit will respond. The address
comprises two parts:

• The Group Address which is the first digit.
• The Unit Address which is the second digit.

Both the group address and unit address have a range of 1 to 9. A group or
unit address of 0 is not allowed (addresses 01, 10, 20, etc. are invalid). The
reason for this is that MD29 cards and some Drives can be grouped together
(up to 9 units per group), and a message can be sent over the ANSI
communications bus to all units of the group. To address a particular
group, the unit address of zero (0) is used. For example, to address all units
of group 6 the full address will be 60.

An additional feature is that a message can be sent to all units of all groups
simultaneously using the address 00. This address can be used to send a
Start command to a group of Drives which are mechanically coupled
together to drive a conveyer line. All the Drives will then start
simultaneously.

Note

It is important to realize that when using group
addressing, the MD29 cards will not acknowledge the
command. (If several cards try to reply at the same time,
they would cause meaningless data to appear on the serial
communications bus.)

For data integrity, the format of the transmitted address requires that each
digit of the two-digit address is repeated: the address of MD29 number 23 is
sent as four characters, eg:

2 2 3 3
The serial address follows immediately after the first control character of
the message (EOT).

MD29
Issue code: 29nu4 Serial Communications 6-7

Parameter identification

All parameters are identified by four digits representing the menu and the
parameter number, but without the decimal point.

Example To send a message to menu 4, parameter 8, write 0408 (the leading zero
must be included)

To send to menu 16, parameter 10, write 16101610.

Vector Drive For the Vector Drive, the parameter set is accessed in a similar x,y manner,
as shown in the following table.

Parameter

Pr0 – 99 00.xx

b0 – 99 01.xx

F0 – 49 02.xx

Data field

Data to be sent or requested occupies the characters immediately after the
parameter number. The minimum length of the data field within a message
structure is two characters.

The data is normally expressed as a decimal numeric value. Hexadecimal
format may also be used by specifying the first character of the data field as
a X.

The first character of the data field (D1) can be only one of the following:
Space (32 dec.)
+
 –
X (for hex.) — hex. is typically used to access I/O Box data.

Md29
Issue code: 29nu46-8 Serial Communications

Block checksum (BCC)

In order to ensure that the messages from or to the MD29 do not become
corrupted during transmission, all write messages and data responses are
terminated by the block checksum character (BCC). See Calculating the
block checksum (BCC) later in this section.

Reading parameters

To read a parameter, the following message is sent:

Control Address Parameter Control

EOT GA GA UA UA M1 M2 P1 P2 ENQ

Where:
GA = Group Address
UA = Unit Address
M1 M2 = Menu number
P1 P2 = Parameter number

Note

No BCC character is sent in this message.

The MD29 will reply with the following structure if the message is
understood:

Control Parameter Data Control BCC

STX M1 M2 P1 P2 D1 ... Dn ETX BCC

Where:
M1 M2 = Menu number
P1 P2 = Parameter number
D1...Dn = Data

First character:
+ or Space for positive values
– for negative values
XX for hex. values

BCC = Block checksum

If a requested parameter does not exist, the MD29 will reply with an EOT
character (ASCII 04).

MD29
Issue code: 29nu4 Serial Communications 6-9

Example To read the speed set-point of a Mentor II Drive that is unit 2 of group 1,
send:

Control Address Parameter Control

STX 1 1 2 2 0 1 2 1 ENQ

The unit replies as follows:

Control Parameter Data Control BCC

STX 0 1 2 1 – 4 7 . 6 ETX 7

Note

When the MD29 replies to a command, the length of the
data field returned is variable, depending upon the type of
Drive, and the parameter being read.

Re-reading data

Once a read message has been received and understood (ie. valid data was
returned), to request the parameter again, request the next parameter, or
the previous parameter, a single control code character may be sent. These
control codes are:

Control
Code

Function Keyed as...

NAK Return the value of the same
parameter

Ctrl U

ACK Read the next parameter Ctrl F

BS Read the previous parameter Ctrl H

This facility can be used to save time when monitoring a parameter over a
period of time.

Md29
Issue code: 29nu46-10 Serial Communications

Writing to parameters

To write data to a parameter (Drive or virtual), the message structure is
comprised as follows:

Control Address Control Parameter Data Control BCC

EOT GA GA UA UA STX M1 M2 P1 P2 D1 ... Dn ETX

Where:
GA = Group address
GU = Unit address
M1 M2 = Menu number
P1 P2 = Parameter number
D1...DN = Data

First character:
+ or Space for positive values
–– for negative values
XX for hex. values

BCC = Block checksum

The data field can be of a variable length with the maximum length being
dependent on the parameter being edited.

The MD29 will respond with a single control character, as follows:

Control Code Meaning

ACK Acknowledge — Message has been understood and implemented.

NAK Message invalid, data is too long or out of range, parameter is invalid, parameter is
read-only, or the BCC is incorrect.

Example Set parameter Pre-set frequency 1Pre-set frequency 1 at +76.4 for a CDE Drive (unit 6,
group 2) send:

Control Address Control Parameter Data Control BCC

EOT 2 2 6 6 STX 0 1 2 5 + 0 7 6 . 4 ETX %

MD29
Issue code: 29nu4 Serial Communications 6-11

Re-writing data

Once a write message which includes the address field has been sent and
accepted with either a <ACK> or <NAK> response, subsequent write
messages to that particular MD29 can use a re-write message structure in
which the address does not need to be re-transmitted. The re-write
structure is as follows:

STX M1 M2 P1 P2 D1 ... Dn ETX BCC

When a different MD29 is addressed, or an invalid character is received, the
re-write facility no longer functions. The first MD29 can be addressed again
only by using the full write message with the address.

Calculating the block checksum (BCC)

The block checksum is calculated by applying an exclusive OR function to all
of the characters of a message after the STX control character.

XOR truth table

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

For example, the serial command to set Pre-set speed 1Pre-set speed 1 at
–34.5Hz on a CDE Drive:

The message will be:

Control Address Control Parameter Data Control BCC

EOT 1 1 2 2 STX 0 1 2 1 – 3 4 . 5 ETX 0

Not included in the calculation Included in the calculation Result

The first character of the BCC calculation is 0 0 (00110000 in binary), the value
of which is taken as a starting or result value. The next character is 1 1
(00110001 in binary), which now has the exclusive OR (XOR) operator act
upon it. With the previous result value, a new result occurs of 00000001 in
binary.

Md29
Issue code: 29nu46-12 Serial Communications

The complete calculation is show in the table below:

Character Binary Value XOR result

0 0011 0000 –

1 0011 0001 0000 0001

2 0011 0010 0011 0011

5 0011 0101 0000 0110

– 0010 1101 0010 1011

3 0011 0011 0001 1000

4 0011 0100 0010 1100

. 0010 1110 0000 0010

5 0011 0101 0011 0111

ETX 0000 0011 0011 0100

The final value is the BCC, provided that its equivalent decimal value exceeds
31 (ASCII characters from 00 to 31 are used as control codes).

When the final XOR result produces a decimal value less than 32, 32 is added.
In this example, 0011 0100 is 52 decimal which is above 31, so this is the final
BCC value. 52 decimal is the character 4. The complete message will be:

EOT 1 1 2 2 STX 0 1 2 5 - 3 4 . 5 ETX 4

Example QuickBasic program to calculate BCC

mess$ = CHR$(4)+”1122”+CHR$(2)+”0125”+”-34.5”+CHR$(3)
bcc% = 0
FOR n% = 7 to LEN(mess$)‘start at the character after ‘chr$(2).
bcc% = bcc% XOR ASC(MID$(mess$, n%, 1))
NEXT
IF bcc% < 32 THEN bcc% = bcc% + 32
mess$ = mess$ + CHR$(bcc%)
PRINT mess$

In DPL, the ANSIREAD and ANSIWRITE functions automatically calculate
the BCC.

MD29
Issue code: 29nu4 Serial Communications 6-13

6.4 Serial communications modes

The MD29 has ten communication modes as follows:
• 4-wire and 2-wire standard ANSI slave
• High-speed parameter transfer
• Programmable master/slave modes
• User modes
• The MD29AN has an additional mode for use with the I/O Box.

The available options are as follows (see Set-up parameters in Chapter 10
Parameters for details of the actual parameters):

Mode 1 Standard 4-wire

RS485 using ANSI slave protocol (default).

Mode 2 Master mode

In this mode, data is taken from the defined parameter, scaled to +/-16000
then continuously transmitted out to a slave drive. The slave unit can be a
UD70 applications module, a Mentor II Drive, a CDE Drive or another MD29..

Mode 3 Slave mode

In this mode, data is received from the serial port and is scaled by the value
of the scaling set-up parameter before being placed in the destination
parameter.

Mode 4 Cascade mode

With this mode, a defined parameter is transmitted to a remote drive unit
(no scaling) and received data is placed into the destination parameter.
The data is not scaled.

The transmitting unit and/or receiving unit can be either another MD29,
UD70, or a Mentor II Drive.

This mode is typically used in wire-drawing type applications – the first
Drive is given a speed reference from an external source (eg. a
potentiometer). Mode 4 communications are used to pass that reference
down to the next Drive on the line which uses an Applications Option to
receive the data and apply draw. That Drive then passes the new reference
down to the next Drive, etc.

Mode 5 2-wire RS485

Using standard ANSI slave protocol. Note that RS232 is not 2-wire RS485.

Md29
Issue code: 29nu46-14 Serial Communications

Mode 6 User mode

This mode turns off all internal protocols and allows the user to use the
RS485 port directly from a DPL program. Typically, this mode will be used
in conjunction with the DPL ANSI master commands (ANSIREAD, ANSIWRITE,
etc.). User-defined protocols can also be implemented in DPL with the low-
level PUTCHAR and GETCHAR commands. The communications data-frame
is organized as follows:

1 start bit, 7 data bits, EVEN parity, 1 stop bit, 10 bits total
Mode 7 User mode

This mode turns off all internal protocols and allows the user to write and
read directly from the ANSI port using the PUTCHAR and GETCHAR functions.
The communications data-frame is organized as follows:

1 start bit, 8 data bits, EVEN parity, 1 stop bit, 11 bits total
Mode 8 User mode

This mode turns off all internal protocols and allows the user to write and
read directly from the ANSI RS485 port using the PUTCHAR and GETCHAR
functions. The communications data-frame is organized as:

1 start bit, 8 data bits, NO parity, 1 stop bit, 10 bits total
Mode 9 User mode

The communications data-frame is organized as:
1 start bit, 9 data bits, NO parity, 1 stop bit, 11 bits total

Mode 10 I/O Box mode (MD29AN only)

This mode allows a single I/O Box to be connected directly to the MD29AN
using the EIA RS485 port. Only one I/O Box may be connected to the
MD29AN when mode 10 is used. If multiple I/O Boxes are required, they
must be set up in standard ANSI mode, mode 6 must be selected, and the
DPL RS485 commands used to transfer data.

Mode 11 User mode

This mode bypasses the internal software buffers and interfaces directly to
the hardware. This reduces the delay in passing data through the UD70
RS485 port. The baud rate is programmable, in the same way as the other
modes. The communications data-frame is organized as follows:

1 start bit, 9 data bits, NO parity, 1 stop bit, 11 bits total

Mode 12 Reserved

Mode 13 Modbus – RTU (slave mode only)

Mode 14 Modbus – ASCII (slave mode only)
The Modbus RTU and ASCII slave modes support the functions Read
Multiple Registers, Preset Single Registers and Preset Multiple Registers.
This mode limits the number of consecutive registers to 20, and the node
address range is limited from 11 to 99.
Contact your local Drive Centre for information about the Modbus Protocol.

Note
There is minimal data integrity checking with modes 2, 3, and 4.

MD29
Issue code: 29nu4 Serial Communications 6-15

Using Modes 2 and 3

MD29 operating in Mode 2 MD29 operating in Mode 3

Source

Scale
±16000

Any parameter Serial link

Destination

Any parameter

Scale
#xx.xx

Functions of Modes 2 and 3Functions of Modes 2 and 3

Using Modes 6, 7, 8 and 9

In Modes 6, 7 or 8, it is possible to use the MD29 as an ANSI master device
controlling other MD29 cards, UD70 modules, Drives or other ANSI compliant
devices. This facility may alleviate the need for a custom computer or PLC
to control a system or process. When an I/O Box is used, there may be no
need for a PLC in a system.

Modes 6 to 9 also allow you to create custom serial protocols which you
may use for communicating with non-ANSI compliant devices such as
intelligent display modules, etc.

The ANSI RS485 port is buffered as follows:
Receive: 60 bytes
Transmit: 25 bytes

Using Mode 11

Using other modes, it can take up to 8ms for data to start being transmitted
or received. In mode 1, the data bypasses the internal software FIFO buffer,
which reduces the delays in the system.

Using Modes 13 and 14

The Modbus protocol is only supported as a slave. Modes 13 and 14 do not
allow the MD29 to act as a Modbus Master. The baud rate is selected using
parameter #17.07.

Md29
Issue code: 29nu46-16 Serial Communications

6.5 ANSI instructions
The following RS485 ANSI instructions are available:

ANSIREAD Issue a Read command to a remote unit
ANSIREPLY Read a reply from a remote unit
ANSIWRITE Issue a Write command to a remote unit
GETCHAR Receive a single character directly
PUTCHAR Transmit a single character directly

Refer to Chapter 7 Reference for information about these commands.

6.6 Example ANSI instructions
The following program fragment gives an example of reading a speed
reference from a Mentor II Drive, and writing it to a CD Drive.

Both Drives are connected to the RS485 bus. The Mentor Drive is at address
1111; the CD Drive is at address 1212.

For this program to operate, the RS485 mode should be set at 6.

BACKGROUND{

top:

// send read command to read parameter #1.17

result% = ANSIREAD(11, “0117”)

IF result% = 0 THEN

PRINT “Message could not be sent”

GOTO top:

ENDIF

CALL get_reply: // get reply from read command

IF reply% <= –65536 THEN // valid reply?

PRINT “Error in reading data from Mentor”

GOTO top:

ENDIF

// scale speed value so that 1000 on the Mentor will equate

// to 50.0Hz on the CD drive

reply% = reply% / 2

// send write command to CD, using 1 decimal place

result% = ANSIWRITE(12,”SP”, reply%, 1)

IF result% = 0 THEN

PRINT “Message could not be sent”

GOTO top:

MD29
Issue code: 29nu4 Serial Communications 6-17

ENDIF

CALL get_reply: // write accepted?

IF reply% <> -65540 THEN // –65540 is ACK

PRINT “Error in sending message to CD”

ENDIF

GOTO top:

}

get_reply: { // sub-routine to wait for a reply

timeout% = 0 // reset timer

DO

// returns –65536 if the reply has not been received yet

reply% = ANSIREPLY

LOOP WHILE reply% = –65536 AND timeout% < 50

// loop exits only when a reply has been received, or

// a time-out has occurred.
// if the clock task is set at 5ms, the timeout will be 250ms

}
CLOCK {
timeout% = timeout% + 1 // increment timeout variable
}

Note

Refer to the help file for further examples of the ANSI
commands.

Md29
Issue code: 29nu46-18 Serial Communications

MD29
Issue code: 29nu4 Reference 7-1

7 Reference

7.1 Tasks
Refer also to Tasks and real-time programming in Chapter 4
DPL Programming.

INITIAL task

The INITIAL task is used typically to initialize program variables and Drive
parameters.

The INITIAL task boots-up the DPL program and runs only when the MD29 is
reset or at the moment AC power is applied to the Drive.

The INITIAL task is special in that all other tasks are guaranteed not to be
running when it is being run. This is significant when other real-time Tasks
are to manipulate data which have initial values.

BACKGROUND task

The BACKGROUND task is used for functions and commands that do not
require time-related or encoder-related monitoring. It would be used for
the following:

• Data logging
• Checking digital inputs
• Setting output status

The BACKGROUND task runs after the INITIAL task is completed. It is
recommended that the majority of the program is run in the BACKGROUND
Task.

Note

The BACKGROUND task does not automatically loop.

Example BACKGROUND{
 RAMP:
 #1.18 = 0
 DO WHILE #1.18 < 1000
 #1.18 = #1.18+1
 LOOP
 GOTO RAMP:
}

MD29
Issue code: 29nu47-2 Reference

CLOCK task

The CLOCK task is used for time-critical monitoring of the Drive and
commands to the Drive (eg. controlled acceleration or deceleration ramp).

The CLOCK task is executed on a fixed timebase, asynchronously to the
Drive. The actual timebase used depends on the set-up parameter (see Set-
up Parameters in Chapter 10 Parameters), which can range from 1ms to
200ms).

Example This example produces a sine wave.
CLOCK{
 #1.18 = SIN (rad)*1000
 rad = rad+0.01
 IF rad>6.283185 THEN
 rad = 0
 ENDIF
}

ENCODER task

A typical use for the ENCODER task is to monitor the activity of an encoder.

The task is synchronized to a control loop in the Drive, so the execution
frequency of the task is determined by the Drive. A set-up parameter can
be used to multiply the time by two.

Drive Switching
Frequency

Timebase = 0 Timebase = 1

kHz ms ms

Mentor II Not applicable 5.12 2.56

CDE 3, 6 or 12 5.52 11.04

CDE 4.5 or 9 7.36 14.72

Vector Any 2.008 4.016

Example ENCODER{
 master% = #90.2
 slave% = #90.4
 EPOS = EPOS + master% – slave%
}

EVENT task

The EVENT task is a special task which runs when a specific event occurs.
The source of the event is determined by the Timer/Counter Unit.

Refer to Timer/Counter Unit in Chapter 8 Features for further information.

MD29
Issue code: 29nu4 Reference 7-3

ERROR task

The ERROR task is executed when a run-time error occurs in a DPL program.

Refer to section Advanced error-handling in Chapter 9 Diagnostics for
further information.

User-defined task

User-defined tasks are sub-routines written by the user and are used in
conjunction with the CALL instruction (see CALL instruction later in this
section).

User-defined tasks can be given any name and can be defined anywhere in
the program.

Example Note that this task is named RAMP::.
BACKGROUND{
 Loop:
 CALL RAMP:
 GOTO Loop:
}
RAMP: {
 #1.18=0
 DO WHILE #1.18<1500
 #1.18=#1.18+1
 LOOP
}

Case
sensitivity

The name for the sub-routine is case sensitive. If the CALL instruction in the
preceding example is written as CALL ramp ramp, the program will not be
compiled since the word rampramp should be in upper-case letters. Note that
the compiler error that is displayed will be as follows:

Undefined reference to _0103ramp.

NOTES task

This is a pseudo task that is ignored by the compiler. The writer of the
program can use the NOTES task for information for the user.

Example NOTES{
You can put your documentation here.
}

CONST section

The CONST section is used to define constant arrays data and is not a Task.
See Variables in Chapter 4 DPL Programming.

MD29
Issue code: 29nu47-4 Reference

7.2 Instructions and functions
The following instructions and functions may contain more than one form of
syntax. Where there is more than one form, the first is for use with integer
variables; the second is for use with floating-point variables. (See Chapter 4
DPL Programming).

ABS

Syntax result% = ABS (expression%)
result = ABS (expression)

This mathematical function returns the absolute value of an expression
without taking into account either the negative or positive sign of the
expression (negative numbers are made positive).

Example ABS(45.5 – 100) ;the output is 54.5

ANSIREAD

Syntax result% = ANSIREAD (drive address%, “mnemonic”)

This is a 4-wire RS485 port function which always returns an integer.

This function transmits a parameter read-request via the ANSI RS485 port to
a remote Drive or unit.

The Drive address is an integer expression, usually between 01 and 99.

The mnemonic is a string which contains the parameter number. The
format and length of this string depends on the remote Drive.

The function returns 11 if the read request was sent successfully, or 00 if the
message could not be sent (eg. transmission already in progress).

Note

The ANSIREAD instruction does not wait for a response from
the remote Drive.

Example result% = ANSIREAD(12,”0122”) \\ read #1.22 from drive 12

See also Example ANSI commands in Chapter 6 Serial Communications.

MD29
Issue code: 29nu4 Reference 7-5

ANSIREPLY

Syntax result% = ANSIREPLY

This is a 4-wire RS485 port function which is used in conjunction with the
ANSIREAD and ANSIWRITE functions. This function is typically used to obtain
the returned data from a Drive immediately after the issuing of ANSIREAD or
ANSIWRITE.

The following information is returned:
–65536 No reply received yet
–65537 Reply received, but with bad checksum
–65538 EOT received (i.e. parameter does not exist)
–65539 NAK received
–65540 ACK received

Any other value is the value of the mnemonic written in ANSIREAD.

See also Example ANSI commands in Chapter 6 Serial Communications.

ANSIWRITE

Syntax result% = ANSIWRITE(drive address%, “mnemonic”,value%, attribute%)

This is a 4-wire RS485 port function which is used to transmit a parameter
write request to a remote Drive via the ANSI RS485 port.

The Drive address is an integer expression, usually between 01 and 99. The
mnemonic is a string which contains the parameter number. The format
and length of this string depends on the Drive. The value must be an
integer expression.

The following are the attribute arguments that are specified:
0 No decimal place
1 One decimal place
2 Two decimal places
3 Three decimal places
128 Hex write to the CT I/O box (six characters prefixed by X)
129 Hex write to CD Drive (four characters prefixed by >>)
130 Hex write to CD Drive (two characters prefixed by >>)

This function returns 11 if the write request was sent successfully, or 00 if the
message could not be sent (eg. transmission already in progress).

Note

This instruction does not wait for a response from the
remote Drive.

Example result% = ANSIWRITE(13,”0211”, 150, 1) \\ set #2.11 to 15.0
on remote drive 13

See also Example ANSI commands in Chapter 6 Serial Communications.

MD29
Issue code: 29nu47-6 Reference

ARCTAN

Syntax result = ARCTAN (expression)

This mathematical function returns the arctangent of the expression
in radians.

Example x = ARCTAN(0.8)

This returns the value 0.674740942 radians.

See also TAN instruction.

AVERAGE

Syntax result% = AVERAGE (input expression%, number of samples%)

This signal-processing function returns the running average of the input for
the desired number of samples. The number of samples must be a constant
integer value. The input expression is also an integer.

This function can be used only in the CLOCK or ENCODER tasks. AVERAGE
requires execution on a regular timebase.

If a step change of 0 to 1000 is applied to parameter #1.18, the output of the
averager will be as follows (assuming a 5ms clock timebase).

Example CLOCK{
input% = #1.17
#1.18 = AVERAGE (input%, 4)
}

See also FILTER instruction.

MD29
Issue code: 29nu4 Reference 7-7

BCD2BIN

Syntax int% = BCD2BIN (integer expression%)

This function converts a binary coded decimal number to a normal binary
integer. It is used to operate on digital inputinput data from from the I/O Box
(eg. thumbwheel switches). (Binary coded decimal is a method of writing a
decimal number in a binary format.)

954 in decimal format is represented as 1001 0101 0100 in BCD.

9 5 4

1 0 0 1 0 1 0 1 0 1 0 0

Example r% = BCD2BIN(#82.46)

BIN2BCD

Syntax int% = BIN2BCD (integer expression%)

This function converts a normal binary integer to a binary coded decimal
number. It is used to operate on digital output data to the I/O Box.

See BCD2BIN instruction for an explanation for converting decimal to binary
coded decimal.

BCD2SEG

Syntax int% = BCD2SEG (integer expression%)

This function converts binary coded decimal to 7-segment LED codes and is
used to operate on digital output data to the I/O Box. The output consists
of drive signals for up to three 7-segment display digits, as follows:

Bit number 7 6 5 4 3 2 1 0

Segment – g f e d c b a

The least significant byte represents the first of the three digits. The
maximum value which can be converted is 999. Leading zeroes are sent.

Example a% = BIN2BCD(123)
seg_data% = BCD2SEG(a%)
#83.46 = seg_data% ;output 5200646 (0x4F5B06 = 321)

MD29
Issue code: 29nu47-8 Reference

CALL

Syntax CALL program-label:

This is a flow control instruction which is used to execute a Standard
Application Program, or a user-defined Task. After the sub-routine has been
completed, the program returns to the line following the instruction [CALL].

Example 1 ENCODER{
CALL diglk_encoder: // Standard application Task
//Digital Lock
...Rest of ENCODER Task
}

Example 2 INITIAL{
CALL SETUP:
}
SETUP:{ //This is the name of the sub-routine
#1.21 = 0
}

Note

It is not possible to single-step through a user-defined
task.
The name of the sub-routine is case-sensitive.

COS

Syntax result = COS(expression)

This mathematical function returns the cosine of an angle expressed in
radians. This function always returns a floating-point variable.

See SIN instruction and TAN instruction.

Example value = COS (3.1416)

CRC16

Syntax CRC% = CRC16 (character%, CRC%)

This function is used to calculate a 16-bit CRC (cycle redundancy check,
commonly used in serial communications protocols).

MD29
Issue code: 29nu4 Reference 7-9

DELAY

Syntax DELAY (Integer expression%)

The DELAY instruction causes the program to pause for a time specified by
the integer expression in increments of 0.1 second. This instruction cannot
be relied on to produce an accurate time delay. In the worst case, the time
delay could be 100ms shorter than that specified (it will never be longer).

DELAY can be used only in INITIAL or BACKGROUND Tasks.

Example #15.12 = 10 //set parameter 15.12 to 10
DELAY(10) //delay program for 1 second.
#15.12 = 0

DIM

Syntax DIM variable% [number_of_elements%]
DIM variable [number_of_elements%]

The DIM instruction is used to specify an array of a set of variables of the
same type (integers or floating-point). The instruction does not produce
any code, but tells the compiler to reserve space for a dynamic array.

An array must be specified before the array is used. It is recommended that
an array is specified in the INITIAL Task, but it can be specified in the task the
array is to be used in.

Example INITIAL{
 DIM myarray%[100] //declares an integer called
 //[myarray] which has 100 elements.
 myarray%[0] = 10 //initialise the first element to //10
 myarray%[1] = 20 //initialise the second element //to 20
 myarray%[99] = 50 //initialise the last element
 index% = 1
}
CLOCK{
 myarray%[index%] = #3.02 //get speed feedback
 //on Mentor ll
 index% = index + 1 //increment index counter
 IF index% = 100 THEN
 index% = 0
 ENDIF
}

See also Arrays under Variables in Chapter 4 DPL Programming.

MD29
Issue code: 29nu47-10 Reference

DO WHILE

Syntax 1 DO WHILE Conditional expression
 Instruction
LOOP

Syntax 2 DO
 Instruction
LOOP WHILE Conditional expression

Syntax 3 DO WHILE Conditional expression LOOP

This is a loop or iterative instruction which causes a block of instructions to
be repeated until a specific expression becomes false.

Syntax 1Syntax 1 allows the conditional expression be evaluated first. If the
outcome is true, the instructions are executed. The program will continue
in the loop until the conditional expression becomes false.

Syntax 2Syntax 2 allows the instructions be executed first, the conditional
expression is evaluated. This ensures that the instructions in the loop are
executed at least once.

Syntax 3Syntax 3 is identical to Syntax 1, except there are no executing instructions
in the loop.

Example 1 DO WHILE #1.18 < 1000
 #1.18 = #1.18 + 1
LOOP

Example 2 DO
 a = a + 0.001
LOOP WHILE a < 6

Example 3 DO WHILE #3.02 > 10 LOOP

(If the value of #3.02 is greater than 10, the program will continue to loop.)

EXIT

Syntax EXIT

This is a flow-control instruction which provides a quick method of
terminating the current task.

Example CLOCK{
IF #18.22 = 1 THEN EXIT
...
}

(If the value of #18.22 is 1, exit from the rest of the CLOCK task.)

MD29
Issue code: 29nu4 Reference 7-11

EXP

Syntax result = EXP (expression)

This mathematical function returns the exponential function (eexpression).

Example X = EXP(4.5)

This returns the value 90.0171313.

See also LN instruction.

FILTER

Syntax result% = FILTER (input_expression%, time_constant %)
result = FILTER (input expression, time_constant%)

This is a signal processing function which returns the output of a first-order
filter function with input expression as the input.

The time-constant of the filter depends on the value specified, and how
often the FILTER instruction is executed.

Example CLOCK{
 #1.21 = FILTER (#7.01, 4)
}

For a clock timebase of 5ms, the effective filter time-constant would be 4 x
5ms = 20ms.
If a step change of 0 to 1000 is applied to parameter #1.21, the output of the
filter will be as shown in the following diagram.

Typically, the output reaches the final value after five time-constants.
This function must always be used in the CLOCK or ENCODER tasks.

MD29
Issue code: 29nu47-12 Reference

FLOAT

Syntax result = FLOAT (integer expression%)

This function converts an integer variable into a floating-point variable.

Example error% = 123
result = error% / 1000

This produces an output of [result = 0] since 123 / 1000 = 0 in integer
arithmetic. To produce the correct answer, one of the operands need to be
converted to floating-point.

error% = 123
result = FLOAT (error%) / 1000

This produces the correct answer: result = 0.123result = 0.123

See also INT instruction.

GETCHAR

Syntax result% = GETCHAR

This is a RS485 port function which reads in a character from the RS485
communications port.

The returned value is ––11 if no characters have been received in the buffer,
otherwise the value is the ASCII code for the character read in.

See also PUTCHAR instruction.

GETKEY

Syntax result% = GETKEY

This is a RS232 port function which reads in a character from the RS232
PC communications port. This function can be used only when Toolkit
communications are disabled (see Disable Toolkit communications in
Chapter 10, Parameters).

This function can only be used if Dumb-terminal Mode is enabled (see Enable
dumb-terminal mode in Chapter 10 Parameters).

The returned value is the ASCII code of the character read in. If there is no
character, the value is ––11.

The data format of the RS232 port is fixed as follows:
19200 baud, 8 data bits, No parity, 1 start bit, 1 stop bit.

See also PUTKEY instruction.

MD29
Issue code: 29nu4 Reference 7-13

GOTO

Syntax GOTO label

This is an unconditional branch instruction which causes program execution
to jump to, and continue from, the line specified by [label]. When declaring
a label and when indicating which label to go to, a trailing [:] must be written
with the label. The trailing [:] identifies the name as a label. This is different
to other programming languages.

If the BACKGROUND task is to be continuously executed, a GOTO instruction
must be included.

Example BACKGROUND{
top: //this is the name of the label
IF #15.22 = 1 THEN
 #1.04 = 100
ELSE
 #1.04 = 0
ENDIF
GOTO top: //goto the line with the label [top:]
}

MD29
Issue code: 29nu47-14 Reference

IF

Syntax 1 IF conditional expression THEN
 Instruction
ENDIF

Syntax 2 IF conditional expression THEN
 Instruction if condition is true
ELSE
 Instruction if condition is false
ENDIF

Syntax 3 IF conditional expression 1 THEN
 Instructions if true, goto ENDIF
ELSEIF conditional expression 2 THEN
 Instructions if true, goto ENDIF
ELSEIF conditional expression 3 THEN...
 Instructions if true, goto ENDIF
ELSE
 Instruction
ENDIF

Syntax 4 IF conditional expression THEN Instruction

The conditional instructions IF, THEN, ELSE, ELSEIF and ENDIF perform an
operation until the specified condition is met.

Example 1 IF #1.21 = 25 THEN
 PRINT “25Hz”
ENDIF

Example 2 IF a >= b AND (c%>– 1 OR z%>1) THEN
 a = b
ELSE
 z = z+3
ENDIF

Example 3 IF A% = 1 THEN
 #1.11 = 0
ELSEIF a% = 2 OR a% = 3 THEN
 #1.11 = 1
ELSEIF a% > 4 THEN
 #18.21 = 1
ELSE
 #18.21 = 0
ENDIF

MD29
Issue code: 29nu4 Reference 7-15

Example 3 uses the operator OR in the conditional expression. The following
operators can be used to combine conditional expressions:

AND Logical AND

OR Logical OR

NOT Logical NOT

The following conditional operators may be used in the conditional
expression:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to

Note

The IF instruction for Syntax 1 to Syntax 3 must always end
with ENDIF at the end of the set of conditional instructions.

INT

Syntax 1 result % = INT (float expression)

This function converts a floating-point variable to an integer variable (see
FLOAT instruction) and rounds-up the result to the next whole number.

Example a = 14.234
res% = INT(a) / 2 //converts ‘a’ into an integer and divides

//by 2
Result = 7

NOTE: if the integer value of the float expression exceeds 31 bits
(214783647), the UD70 will trip on “Error 50 - Maths Error”.

LIMIT

Syntax 1 result% = LIMIT (expression%, limit_value_expression%)
result = LIMIT (expression, limit_value_expression)

This mathematical function limits the value returned to the Drive
parameters. This prevents out-of-range values being written to the
parameters. This function applies to both the negative and positive values
of the expression.

MD29
Issue code: 29nu47-16 Reference

Input

Output

Limit

Limit

Example #1.18 = LIMIT (inc%, 1000)
;if inc% > 1000 then limit to 1000
;if inc% < –1000 then limit to –1000

This limits the output to ±1000.

See also MIN instruction and MAX instruction.

LN

Syntax result = LN (expression)

This mathematical function returns the natural logarithm of an expression.

Example y = LN(1.5)

This returns the value 0.405465108

See also EXP instruction.

MAX

Syntax result% = MAX (expression_A%, expression_B%)
result = MAX (expression_A, expression_B)

This mathematical function returns the greater of two expressions.

Example a% = 12
b% = MAX (a%, 100)

The value returned in b% b% is 100 because a%a% is less than 100. If a%a% is 105, the
value returned in b%b% would be the value of a%a% (105).

MD29
Issue code: 29nu4 Reference 7-17

MIN

Syntax result% = MIN (expression_A%, expression_B%)
result = MIN (expression_A, expression_B)

This mathematical function returns the smaller of two functions

Example a% = 12
b% = MIN(a%, 100)

The value returned in b%b% is 12 because a%a% is less than 100. If a%a% is 105, the
value returned in b%b% would be 100.

PRINT

Syntax PRINT Expression list separated with a “,”.

The PRINT instruction outputs strings or values to the PC RS232 serial port of
the MD29. All items in the expression listing must be separated by commas.
Strings are enclosed in double quotes (“ ”).

A tab character (ASCII 09) is automatically printed between each character
separated by a comma. Negative values are prefixed by a –– sign; positive
values have no prefix.

Operation in
various
tasks

The way this instruction operates depends on the task, as follows:

In BACKGROUND Task, the PRINT instruction halts program execution until all
characters are transmitted. It is recommended to use the PRINT instruction
in the BACKGROUND task only.

In the CLOCK and ENCODER Tasks, program execution continues without
waiting. At 19200 baud rate, it takes 0.5ms to transmit one character. The
PRINT instruction would then quickly over-run the CLOCK or ENCODER Task.
If another PRINT instruction is executed before the previous PRINT
instruction is finished the remaining characters are not printed.

The string can contain non–printable characters by using an escape
sequence. This begins with a back-slash [\] character followed by the non–
desired character.

The available characters are as follows:

Character Function ASCII Character

\b Backspace 8

\p Line feed 9

\t Tab 10

Table continued...

MD29
Issue code: 29nu47-18 Reference

Character Function ASCII Character

\f Form feed 12

\r Carriage return 13

\v Vertical tab. 11

\\ Single back-slash 92

\NNN (N is an octal number)

Example PRINT “Hello\r\n Goodbye\r\n”

This prints the following words:
Hello
Goodbye

Note

Do not over-use the PRINT instruction. It is better to use the
Watch window in the Toolkit in order to monitor
variables.
The PRINT instruction works in both normal-terminal and
dumb-terminal modes. In normal-terminal mode, the
DPL Toolkit must be used to monitor the print output.
The settings of the RS485 port are fixed at 19200 baud, 8
data bits, 1 stop bit, no parity.

PUTCHAR

Syntax result% = PUTCHAR (character%)

This is a RS485 port function that writes a character to the RS485
communications port.

If the character could not be written (eg. if the RS485 port buffer is full), the
function returns 0 0, otherwise it returns 11.

PUTKEY

Syntax result% = PUTKEY (character%)

This is a RS232 port function that writes a character to the RS232
communications port when operating in dumb-terminal mode only. If the
function fails, it returns 00, otherwise it returns 11.

Example r% = PUTKEY(65) // output 'A' to RS232 port

See also PRINT instruction.

MD29
Issue code: 29nu4 Reference 7-19

REINIT

Syntax REINIT

Set up parameters are read by the MD29 only at the moment AC power is
applied to the Drive or the MD29 is reset. If changes are made to the set-up
parameters by a DPL program, the REINIT instruction can be used to force
the MD29 to re-read them so that changes can take effect.

This instruction will not cause a reset. The program execution continues
from the next instruction as normal.

Example #14.04 = 25 //Changes the CLOCK task timebase to 25ms
reinit //reinitializes the MD29 set-up to make change take effect

NOTE: REINIT does not read the POSITION LOOP ENABLE parameter. To
enable or disable the position loop “on the fly”, use parameter _Q20%.31.
(See Chapter 8) To re-read the POSITION LOOP ENABLE parameter, the
UD70 must be reset by writing 1070 to #88.01. This will cause the program
to re-start, and pick up the change.

SIN

Syntax result = SIN (expression)

This mathematical function returns the sine of an angle expressed in radians.

See COS instruction and TAN instruction.

Example value = SIN(3.1416)

SGN

Syntax result% = SGN (expression%)
result = SGN (expression)

This mathematical function returns a value indicating the negative or
positive sign of the input expression. When the input value is positive or
zero, the function returns the value of 11. When the input value is negative, it
returns the value of ––11.

Example PRINT SGN (45), SGN (-16), SGN(0)

This prints values: 1, –1, 1

SQR

Syntax result = SQR (expression)

This mathematical function returns the square-root of an expression.

Example PRINT SQR (25), SQR (16)

This prints values: 5 and 4

MD29
Issue code: 29nu47-20 Reference

TAN

Syntax result = TAN (expression)

This mathematical function returns the tangent of an angle expressed in
radians.

See COS instruction and SIN instruction.

Example result = TAN (3.1416)

TIME

Syntax result% = TIME

The TIME instruction returns the number of elapsed milliseconds since AC
power was applied or the MD29 was last reset.

Example t% = TIME

WDOG

Syntax WDOG

The WDOG instruction is used to update the DPL program watchdog.

The watchdog facility is enabled by setting the appropriate set-up
parameter at 1, and issuing a WDOG instruction. When enabled, the WDOG
instruction must be executed within every 200ms. If a WDOG instruction is
not executed within 200ms, the Drive trips on Prc2 tripPrc2 trip.

The WDOG instruction can be used only in the INITIAL and BACKGROUND
Tasks. The MD29 operating system automatically updates the individual
watchdogs of the real-time tasks.

See the on-line Help for an example.

Notes

If any of these tasks are single-stepped a watchdog trip
will occur.
When a watchdog trip occurs, the Drive trips on Prc2.
Because the watchdog trip is a function of the Drive, the
DPL program continues to run.
This function is not available on the Vector Drive.

MD29
Issue code: 29nu4 Features 8-1

8 Features

For Mentor only
This chapter covers the following features of the MD29:

• Single-axis position controller
• Timer/counter unit
• Digital I/O ports
• Non-volatile memory storage

8.1 Overview
Built into the operating system is a basic single-axis position controller. This
can be used with a DPL program to control a Drive in closed-loop modes for
applications such as cranes, indexing, etc.

8.2 PLC parameters
The position controller uses a special range of variables known as PLC
parameters. These parameters are identified by a leading underscore (_)
and the letter P, Q, R and S followed by a number, as follows:

Register Range and type Virtual menu used
for access

_Px% x = 0 to 99 (32-bit integer with polarity sign) #70.xx

_Qx% x = 0 to 99 (32-bit integer with polarity sign) #71.xx

_Rx% x = 0 to 99 (32-bit integer with polarity sign) #72.xx

_Sx% x = 0 to 99 (32-bit integer with polarity sign) #73.xx

Note that the registers can also be accessed using the virtual menus 70 to
73. This gives the ability to alter the P, Q, R and S registers using RS485 ANSI
serial communications.
The P and Q registers can be saved in the non-volatile memory of the MD29
by setting the appropriate set-up parameter at 1. See Non-volatile
memory storage later in this chapter. The R and S registers cannot be
saved.
The Q registers are reserved for use with the internal position loop if
enabled. The P, R and S registers have no reservations on use, and can be
used as general registers. If the CT Net option is fitted, the R and S
registers may be used as transmit and receive registers for cyclic data
transfer. If the position loop is disabled (#17.12 = 0), the Q registers may
also be utilised as general registers.

Examples _P1% = 15 // set _P1% to 15
_Q20%.5 = 1 // set bit 5 of _Q20% to 1

MD29
Issue code: 29nu48-2 Features

8.3 Introduction
An advanced position controller and profile generator is built into the
operating system of the MD29. The function blocks are designed to provide
position control and profile generation from one of the following:

• position reference.
• speed reference.
• incremental cam table.
• digital lock (provided an auxiliary encoder is used).

The main features of the position control software are:
• slave position control using linear or S-ramps for the velocity profile.
• slave speed control using linear or S-ramps for the velocity profile.
• smooth switching between position and speed control.
• rigid or non-rigid digital lock with a slave ratio range of 8, accurate

to 8 decimal places.
• incremental cam table providing automatic control of the slave

position, relative to the master position.
• smooth switching from cam or digital lock control to position or

speed control
• position loop feedback source selectable between feedback (main)

and auxiliary (reference) encoder inputs.
• three term PID control loop (D term configurable as feed-forward or

derivative term) with the output written automatically to the fast
access speed reference (#91.03).

When using the position control loop, it is important that the drive is also
configured correctly. The drive should use #1.18 as the source of the speed
reference (#1.14 = 1, #1.15 = 0) and bipolar reference should be enabled (#1.10
= 1). The speed ramps should be disabled (#2.02 = 0) as the profile
generation blocks will provide ramp generation.

Selection between the different blocks is controlled using individual bits
within registers _Q20% and _Q32%. These bits can be individually
addressed or accessed as a whole word.

e.g.

_Q20% = 2 ; set bit 1 of _Q20% to 1, all other bits to 0

_Q20%.1 = 1 ; set bit 1 of _Q20% to 1, all other bits are unaffected

MD29
Issue code: 29nu4 Features 8-3

8.4 Encoder lines
All position, speed and acceleration parameters within the position
controller use the units of Encoder lines. The diagram below shows how to
determine the number of encoder lines for a particular encoder.

A

1 encoder pulse

Encoder lines

A

B

B

8.5 Position
Position values are absolute positions referenced from the power-up
position. The position is measured in encoder lines where the number of
lines per revolution = 4 * encoder pulses per revolution.

Velocity

The maximum velocity or speed will be specified for the overall system, and
can be converted to the equivalent motor speed, N, in rpm.

To convert between the specified speed (N) and encoder lines per sec, use
the following equations:

lines per ond
N encoder ppr

sec
* *

==
4

60

N
lines per ond

encoder ppr
==

sec *

*

60

4

Mentor II encoder speed feedback

If the Mentor II is using an encoder to provide the speed feedback from the
motor, the automatic speed reference can be enabled.

MD29
Issue code: 29nu48-4 Features

Mentor II tacho speed feedback

If the Mentor II is using a tacho to provide the speed feedback, the speed
reference conversion must be done in the DPL program. The Mentor II uses
its own speed loop units, where 1000 units = maximum motor speed, while
the position controller uses encoder lines per second to define the shaft
speed of the feedback encoder.

To ensure that the demanded speed can be reached, the Mentor II must be
scaled such that 1000 speed units produces at least the maximum required
encoder shaft speed. The conversion between encoder lines per second
(_Q0%) and Mentor II speed loop units must be executed in the ENCODER
task. The equation that should be used is:

#91.3 = INT(LIMIT(_Q0% * 16000 / FLOAT(max_speed%)))

The variable max_speed% is the number of encoder lines per second being
fed to the PID controller when the Mentor II is running at maximum speed or
1000 speed units. _Q24% or _Q25% will give a reading of the pulses per
second when the encoder is turning, depending on which encoder inputs
(feedback or reference) are being used.

The equation converts _Q0% to a fraction of the maximum speed, and
multiplies by 16000 to convert to high resolution speed loop units. This is
done as a floating point calculation to preserve accuracy. The result is
limited to 16000, converted back to an integer value, and written to the
high resolution speed reference.

Acceleration

For any axis on a particular machine, the maximum rate of acceleration or
deceleration will be specified. The minimum time (tmin) to go from zero to N
rpm can be calculated, and converted to equivalent changes in motor rpm.

To convert between the specified values (tmin and N) and encoder lines per
sec2, use the following equations:

lines per ond
N encoder ppr

t
sec

* *

*
min

2 4

60
==

t
N encoder ppr

lines per ond
min

* *

sec *
==

4

602

When S-ramps are used, calculate the ramp rates as for a normal linear ramp.
The S-ramp for that setting will take the same period of time, but will
produce a higher peak acceleration. (See _Q13%).

NOTE: the units for Mentor II ramps have no effect on these calculations, as
the internal ramps should be disabled. All profile ramps are generated and
controlled by the position controller itself.

MD29
Issue code: 29nu4 Features 8-5

8.6 Enabling the position controller
The position controller must be enabled by setting #14.12 = 1. The position
controller is synchronised to the ENCODER task timebase, which is set using
#14.14.

The REINIT command does not read #14.12. To enable and disable the
position controller while the drive is running, use _Q20%.31.

#14.14 ENCODER task timebase (ms)

0 5

1 2.5

Example calculations

The position loop is to be used to run the motor at a maximum of 2700rpm,
with 300rpm headroom allowed for position recovery. The feedback device
from the motor is a 1024 pulse per revolution encoder. The minimum linear
acceleration time for the machine axis is 0.6 seconds go from zero to 2700
rpm.

Maximum speed _Q14%

lines per ondsec
* *

== ==
2700 1024 4

60
184320

Digital lock speed _Q15%

lines per ondsec
* *

== ==
3000 1024 4

60
204800

Acceleration rate _ Q12%

lines per ondsec
* *

. *

2 2700 1024 4

0 6 60
307200== ==

The settings for the position loop speed and acceleration parameters would
be:

_Q14% = 184320
_Q15% = 204800 maximum digital lock speed.
_Q12% = 256000 acceleration rate.
_Q13% = _Q12% set acceleration and deceleration rates to the

same value.

MD29
Issue code: 29nu48-6 Features

8.7 Default and Reset Values
The default values listed are values that will be assigned to certain
parameters if the current value is invalid when the position controller is
reset. “-----“ indicates that there is no default value for that parameter.

The position controller can be reset in 3 ways:
MD29 HARD RESET,
MD29 SOFT RESET,
POSITION LOOP RESET.

A HARD RESETHARD RESET is a complete reset of the MD29 itself. With a Mentor II, this
occurs when:

• #14.16 is set to 1.
• The Mentor is powered-up.
• The RESET button on the MD29 is pressed.
• The RESET button on the Mentor II is pressed, when the drive is

disabled.

The system will restore the Q register values stored in the EEPROM memory,
and all system file initial routines will run. (NOTE: #17.19 will store the
current _Q values and immediately re-read them, resulting in no change.)

A SOFT RESETSOFT RESET does not read the stored Q register values, but causes the
DPL INITIAL task to run. This can only occur on a Mentor II when the MD29 is
reset using the DPL Toolkit. This also causes the position controller to
restart.

A POSITION LOOP RESETPOSITION LOOP RESET is caused by setting the position loop reset bit
(_Q32%.17) to 1. This does not affect the operation of the MD29 DPL tasks,
but does restart the position controller.

In the parameter descriptions, the RESET field indicates what value is
assigned to a parameter by a hard reset (H), a soft reset (S) and a position
loop reset (P).

S/VS/V indicates that the saved value in _Qxx% is assigned. If #17.20 = 1, the
last value before power-down is stored.

N/AN/A indicates that the value is not affected.

CALCAL indicates that the parameter is re-calculated on every cycle of the
position controller, and therefore does not have a default or reset
value.

MD29
Issue code: 29nu4 Features 8-7

8.8 Parameter descriptions

_Q0% Final speed demand

Units Encoder lines per second

Range –231 to 231

Default -----

Reset H = CAL S = CAL P = CAL

_Q0% gives the speed reference output from the PID controller in units of
encoder lines per second.

_Q1% Auxiliary encoder position

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P =

_Q1% shows the position of the auxiliary (or reference) encoder, relative to
the position at power up. The DPL program can change the value in this
parameter at any time.

_Q2% Slave target position reference

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = 0

_Q2% is the target position for the slave, and is used as the input to the
profile generation block. When selected, the control loop will attempt to
make the feedback position (_Q8% or _Q1%) equal to _Q2%. The actual
speed profile is modified by the ramp rates (_Q12% and _Q13%), ramp type
(linear or S-ramp), and maximum speed (_

When running in speed mode (_Q32%.3 = 1), _Q2% is updated with the
calculated stopping position.

MD29
Issue code: 29nu48-8 Features

_Q3% Internal speed reference

Units Encoder lines per second

Range –231 to 231

Default 0

Reset H = 0 S = 0 P = 0

_Q3% is the target speed for the slave, and is used as the input to the
profile generation block. The actual speed profile is modified by the ramp
rates (_Q12% and _Q13%) and ramp type (linear or S-ramp). The speed
profile is integrated to provide a position reference to the position control
loop.

_Q4% Slave axis reference

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = 0

_Q4% is the final profiled position reference for the slave. The source of
this value can be from the slave position profiler, the slave speed profiler,
the digital lock controller or the cam table profiler, depending on the
settings in _Q32%.2, _Q32%.3 and _

_Q5% Proportional gain

Units 0.1%

Range 0 to 231

Default 1000

Reset H = S/V S = N/A P = N/A

_Q5% defines the amount of proportional gain for the PID loop. For an error
of 1, and a gain of 1000, the output of the P term will be 1.

_Q6% Integral gain

Units 0.1% per second

Range 0 to 231

Default 0

Reset H = S/V S = N/A P = N/A

_Q6% defines the amount of integral gain for the PID loop. For a constant
error of 1, and a gain of 1000, the output of the I term will reach 1 after 1
second.

MD29
Issue code: 29nu4 Features 8-9

_Q7% Derivative/feedforward gain

Units 0.1% per second

Range 0 to 231

Default 1000

Reset H = S/V S = N/A P = N/A

_Q7% defines the amount of derivative or feed-forward gain (depending on
_Q20%.0) for the PID loop. For a constant rate of change of error of 1
count per second and a gain of 1000, the output of the D term will be 1.

_Q8% Absolute slave axis position

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = 0

_Q8% shows the position of the slave (or feedback) encoder, relative to the
position at power up. The DPL program can change the value in this
parameter at any time.

_Q9% PID loop reference

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = 0

_Q9% is the position reference to the PID control loop. By setting _Q20%.1
to 1, the profiled slave axis reference (_Q4%) will be written to _Q9%. If
_Q20%.1 is set to 0, the DPL program can write a position reference directly
to _Q9%, but no ramps will be applied to the reference.

_Q10% PID following error

Units Encoder lines

Range –231 to 231

Default CAL

Reset H = CAL S = CAL P = CAL

_Q10% shows the following error between the PID loop reference
(_Q9%)and the feedback position (_Q8% or _Q1%). The value calculated is
in encoder lines.

MD29
Issue code: 29nu48-10 Features

_Q11% Ratio for digital lock

Units Ratio * 108

Range 0 to 800000000

Default 100000000

Reset H = S/V S = N/A P = N/A

_Q11% specifies the ratio applied to the digital lock function, multiplied by
108. This gives a maximum ratio of 8.00000000 (8 decimal places). Values
in _Q11% are clamped to the maximum and minimum range.

_Q12% Maximum rate of acceleration

Units Encoder lines per second2

Range 1 to 231

Default 20480

Reset H = S/V S = N/A P = N/A

_Q12% defines the maximum rate of change of speed (acceleration) used
within the speed and position profile generators. This applies to
acceleration in both the forwards and reverse directions.

If S-ramps (_Q32%.8 = 1) are selected, _Q12% is not used.

_Q13% Maximum rate of deceleration/S-ramp

Units Encoder lines per second2

Range 1 to 231

Default _Q12%

Reset H = S/V S = N/A P = N/A

_Q13% defines the maximum rate of change of speed (deceleration) used
within the speed and position profile generators. This applies to
deceleration in both the forwards and reverse directions.

If _Q13% is set to 0 or a negative value when the UD70 is reset, the value
used for the acceleration ramp (_Q12%) will be written to _Q13%.

If S-ramps (_Q32%.8 = 1) are selected, _Q13% defines the ramp rate. This is
set in the same way as for a linear ramp. The S-ramp will take the same
period of time as the equivalent linear ramp, resulting in a higher (*√2 * linear
acceleration) peak acceleration.

MD29
Issue code: 29nu4 Features 8-11

_Q14% Maximum speed

Units Encoder lines per second

Range 0 to 231

Default 20480

Reset H = S/V S = N/A P = N/A

_Q14% defines the maximum rate of change of position (speed) used within
the speed and position profile generators. The value set in _Q14% should
not be higher than the maximum speed setting for the drive. (See _

_Q15% Maximum digital lock speed

Units Encoder lines per second

Range 0 to 231

Default 20480

Reset H = S/V S = N/A P = N/A

_Q15% defines the maximum speed that the digital lock controller can use
for the recovery of position lost during the acceleration of the slave axis.
_Q15% must be set to a higher value than _Q14% to provide headroom for
recovering lost position, and should generally be set to the same value as
the maximum speed for the drive.

_Q16% Maximum PI output

Units Encoder lines per second

Range 0 to 231

Default 32000

Reset H = S/V S = N/A P = N/A

_Q16% defines the maximum output of the PI loop. If the PI output reaches
the defined limit, the integrator is held at the maximum value. This
prevents the integrator from “winding up” during periods of large or
constant error. _Q16% only limits the combined output of the Pand I
terms; the D term is added to the output AFTER the limit has been applied.

_Q17% Reserved

_Q18% Reserved

MD29
Issue code: 29nu48-12 Features

_Q20% Bit mapped control word

All bits of _Q20% are read-write bits. They act as switches to select
between the various functions available. (See logic diagrams.) The
remaining bits without descriptions are reserved for future use.

_Q20%.0 Selects the mode of operation of the D term.

0 feed-forward term.

1 derivative term.

_Q20%.1 Set to 1 to enable automatic position reference writing to the PID loop
(_Q9% = _Q4%).

_Q20%.2 set to 1 to apply a first order filter to the D term.

_Q20%.3 Reserved.

_Q20%.4 Reserved.

_Q20%.5 Reserved.

_Q20%.6 set to 1 to enable automatic conversion of _Q0% to rpm and write to
the fast access speed reference #91.03. NOTE: the Mentor II must be
running in encoder feedback for this function to work.

_Q20%.7 _Q20%.7 selects the source for the position loop feedback.

0 feedback (main) encoder

1 auxiliary (reference) encoder

_Q20%.31 Provides a means of enabling and disabling the position loop while the
drive is running. #14.12 must be programmed and stored to configure
the position loop, but the REINIT command does not re-read parameter
#14.12.

0 enable position loop

1 disable position loop

NOTE

when _Q20%.31 is set to 1, all position parameters are reset to zero,
except _Q8%, _Q0% and #91.03. This means that the last calculated
speed reference value will remain in #91.03, and the drive will continue
to run at that speed. The DPL program should ensure that _Q0% and
#91.03 are to reset to zero when _Q20%.31 is set.

0 enable position loop

1 disable position loop

_Q21% Reserved

_Q22% Reserved

MD29
Issue code: 29nu4 Features 8-13

_Q24% Auxiliary encoder speed feedback

Units Encoder lines per second

Range –231 to 231

Default CAL

Reset H = CAL S = CAL P = CAL

_Q24% shows the speed of the auxiliary (or reference) encoder. This value
is calculated directly from the encoder lines and is not filtered.

_Q25% Main encoder speed feedback

Units Encoder lines per second

Range –231 to 231

Default CAL

Reset H = CAL S = CAL P = CAL

_Q25% shows the speed of the feedback encoder. This value is calculated
directly from the encoder lines and is not filtered.

_Q26% Slave position offset

Units Encoder lines

Range –231 to 231

Default 0

Reset H = 0 S = 0 P = 0

_Q26% defines the position offset to be added to _Q4%. The offset
position profile can only be used when there are no other position profiles
currently in operation. _Q26% can be applied when the slave is following a
speed profile.

If position control is being used (_Q32%.3 = 0) and S-ramps are selected
(_Q32%.8 = 1), _Q26% cannot be used.

_Q27% Slave speed offset

Units Encoder lines per second

Range –231 to 231

Default 0

Reset H = 0 S = 0 P = 0

_Q27% defines the slave speed offset. The offset can be applied during
other speed and position profiles, and is added to _Q4% to provide the final
loop position reference, _Q9%.

MD29
Issue code: 29nu48-14 Features

_Q31% Bit mapped indication parameter

All bits of _Q31% are read-only bits controlled by the operating
system. The remaining bits without descriptions are reserved for
future use. A value of 0 in any bit shows that each statement is false.
_Q31% is reset to 0 when_Q32%.17 is set to 1.

_Q31%.1 The position loop following error has exceeded the value in _Q37%.

_Q31%.9 The slave is recovering the position lost during acceleration.

_Q31%.10 Position profile in progress. The axis has not yet reached the target
target set-point..

_Q31%.11 Position offset in progress. The axis offset position has not yet been
reached.

_Q31%.12 The axis is fully locked to the master reference from the auxiliary
encoder input.

_Q32% Bit mapped control parameter

All bits of _Q32% are read-write bits. They act as switches to select
between the various functions available. (See logic diagrams.) The
remaining bits without descriptions are reserved for future use.

_Q32%.1 Selects the direction of the digital lock. This allows the axis to be
locked to the master in speed or position, but running in either
direction.

0 same direction.

1 opposite direction.

_Q32%.2 Selects the digital lock output as the position reference. This
parameter is used in conjunction with _Q32%.3 and _Q32%.4.

0 see _Q32%.3.

1 select digital lock position reference.

_Q32%.3 Selects between the target position reference _Q2%, and the
position reference derived from the slave speed reference _Q3%.
This parameter is used in conjunction with _Q32%.2 and _Q32%.4.

0 target position reference _Q2%.

1 slave speed reference, _Q3%.

_Q32%.4 Selects the cam table output as the position reference. The cam
function can only be used if the cam table has been correctly
initialised. This parameter used in conjunction with _Q32%.2 and
_Q32%.3.

0 see _Q32%.2 and _Q32%.3.

1 select the cam table position reference.

MD29
Issue code: 29nu4 Features 8-15

_Q32%.8 Selects S-ramps for the position reference profile. The acceleration
profile will be sinusoidal. When S-ramps are selected, the
acceleration and deceleration rates are defined by _Q13%. If the
digital lock or cam table references are selected, _Q32%.8 will be
reset to disable the S-ramps.

0 linear ramps.

1 S-ramps.

_Q32%.12 Reserved

_Q32%.14 Reserved

_Q32%.17 Provides a static reset of all read-only position parameters. This does
not affect configuration parameters or latched encoder position
values. When all values have been reset, _Q32%.17 is reset. This
parameter should not be set when the drive is running, as it will cause
a hard stop without ramps, and all position information will be lost.

0 no action

1 reset all position parameters.

_Q32%.19 Selects S-ramps for the speed reference _Q3%. The S-ramp will take
the same amount of time for as the linear ramp, but results in a higher
peak acceleration rate. (See _Q13%). _Q12% is not used when S-
ramps are selected. NOTE: S-ramps are not available when
accelerating up to line speed under digital lock control.

0 linear ramps.

1 S-ramps.

_Q32%.20 Selects S-ramps for the speed reference offset, _Q27%. The S-ramp
will take the same amount of time for as the linear ramp, but results in
a higher peak acceleration rate. (See _Q13%). _Q12% is not used
when S-ramps are selected.

0 linear ramps.

1 S-ramps.

MD29
Issue code: 29nu48-16 Features

_Q32%.27 Ramps can be applied to the slave reference to prevent excessive
rates of acceleration and deceleration, particularly when digital lock is
enabled. If ramps are not selected, the auxiliary encoder reference is
simply multiplied by the ratio (_Q11%).

0 rigid digital lock.

1 non-rigid digital lock.

_Q32%.28 Ramps can be applied to the slave reference to prevent excessive
rates of acceleration and deceleration, particularly when digital lock is
enabled. If ramps are not selected, the slave reference is simply a ratio
(_Q11%) of the auxiliary encoder reference.

0 enable ramps.

1 disable ramps.

_Q32%.29 Disables the automatic writing of the return position (_Q40%) to
_Q2% when switching out of digital lock control to position control
(_Q32%.2 from 1 to 0). When disabled, _Q2% is updated once when
digital lock is deselected, allowing a smooth stop with no overshoot.

0 enable automatic home position.

1 disable automatic home position.

_Q32%.30 Provides a limit switch function to prevent the axis travelling beyond
a certain point when using the position reference _Q2%. When
_Q32%.30 is set, and the speed is positive (direction is forwards),
_Q2%, _Q4% and _Q9% are forced to the current feedback position
(_Q8%), causing an instantaneous stop with no ramps.

NOTE

This function will only work when running in position control, and the
feedback source is _Q8%.

0 no action.

1 limit switch active.

_Q32%.31 Provides a limit switch function to prevent the axis travelling beyond
a certain point when using the position reference _Q2%. When
_Q32%.31 is set, and the speed is negative (Direction is backwards),
_Q2%, _Q4% and _Q9% are forced to the current feedback position
(_Q8%), causing an instantaneous stop with no ramps.

NOTE

This function will only work when running in position control, and the
feedback source is _Q8%.

0 no action.

1 limit switch active.

MD29
Issue code: 29nu4 Features 8-17

_Q34% Cam table index

Units Integer

Range 0 to tablesize%

Default -----

Reset H = S/V S = N/A P = 0

_Q34% shows the current cam table index. This indicates which section of
the cam profile is currently in progress.

_Q35% Cam table master starting position

Units Encoder lines

Range -231 to 231

Default -----

Reset H = S/V S = N/A P = 0

_Q35% latches the master position _Q1% at the point when the cam table is
enabled. The value is over-written each time the cam table is re-started.
The value is used continuously when the cam table is enabled as the relative
start position, and should not be over-written by the user.

_Q36% Cam table slave starting position

Units Encoder lines

Range -231 to 231

Default -----

Reset H = S/V S = N/A P = N/A

_Q36% latches the slave position reference _Q4% at the point when the
cam table is enabled. The value is over-written each time the cam table is
re-started. The value is used continuously when the cam table is enabled,
and should not be over-written by the user.

_Q37% Maximum following error

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = N/A

_Q37% defines the maximum value for the position or following error
(_Q10%) error allowed for the PID loop. If the maximum following error is
exceeded, _Q31%.1 is set.

MD29
Issue code: 29nu48-18 Features

_Q40% Return position

Units Encoder lines

Range –231 to 231

Default -----

Reset H = S/V S = N/A P = N/A

When switching out of digital lock and into position control mode
(_Q32%.2 from 1 to 0), _Q40% is written to the main position reference
_Q2%. The axis will return to the position given by _Q40%. The automatic
write can be disabled by setting _Q32%.29 = 1.

MD29
Issue code: 29nu4 Features 8-19

8.9 Logic diagrams

Slave main position reference

_Q
32

%
.3

D
ig
it
a
l
lo
c
k

s
e
le
c
t

P
o
s
it
io
n

re
fe
re
n
c
e

s
o
u
rc
e

S
la
v
e
 p
o
s
it
io
n

re
fe
re
n
c
e

P
ro
fi
le
 i
n

p
ro
g
re
s
s

S
la
v
e
 p
o
s
it
io
n

re
fe
re
n
c
e

_Q
4%

1 0
1 0

_Q
32

%
.2

10

_Q
31

%
.1

0

_Q
32

%
.2

9

_Q
3%

_Q
32

%
.1

9
P

os
iti

on
 r

ef
er

en
ce

fr
om

 d
ig

ita
l l

oc
k

S
la

ve
 s

pe
ed

re
fe

re
nc

e

1 0

_Q
32

%
.4

A
u
x
il
ia
ry

e
n
c
o
d
e
r

_Q
34

%

C
a
m
 i
n
d
e
x _Q

32
%

.1
2

 M
ar

ke
r

pu
ls

e

_Q
32

%
.1

4S
et

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
13

%S
-r

am
ps

A
cc

el
/D

ec
el

_Q
14

%

M
ax

 S
pe

ed
10_Q

32
%

.8

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
13

%S
-r

am
ps

A
cc

el
/D

ec
el

C
a
m
 t
a
b
le

s
e
le
c
t

R
es

et

S
et

R
es

et

1
0

1
0

_Q
2%

_Q
40

%

_Q
32

%
.2

H
o
m
e
 p
o
s
it
io
n

w
ri
te
 d
is
a
b
le

D
ig
it
a
l
lo
c
k

s
e
le
c
t

∆x
0

∆ x
1

∆x
2

∆x
3

∆ x
n

∆y
0

∆ y
1

∆y
2

∆y
3

∆ y
n

M
S

C
am

 T
ab

le

_Q
35

%

_Q
36

%

S
la
v
e
 s
ta
rt

p
o
s
it
io
n

M
a
s
te
r
s
ta
rt

p
o
s
it
io
n

R
e
tu
rn

p
o
s
it
io
n

∫∫

 <
>

MD29
Issue code: 29nu48-20 Features

Slave position offset

F
in
a
l
p
o
s
it
io
n

lo
o
p
 r
e
fe
r
e
n
c
e

S
la
v
e

p
o
s
it
io
n

o
ff
s
e
t

_Q
9%

_Q
26

%

_Q
27

%

S
la

ve
sp

ee
d

of
fs

et

1 0_Q
20

%
.1

_Q
4%

+

+
+

S
la
v
e

p
o
s
it
io
n

r
e
fe
r
e
n
c
e

E
n
a
b
le

p
o
s
it
io
n

r
e
fe
r
e
n
c
e

P
r
o
fi
le
 i
n

p
r
o
g
r
e
s
s

_Q
31

%
.1

1_Q
14

%

M
ax

 S
pe

ed
10_Q

32
%

.8

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
13

%S
-r

am
ps

A
cc

el
/D

ec
el

10

_Q
32

%
.2

0

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
13

%S
-r

am
ps

A
cc

el
/D

ec
el

T
o
 P
ID
 L
o
o
p

D
ia
g
r
a
m

∫∫

 <
>

MD29
Issue code: 29nu4 Features 8-21

Digital lock control

+

+

1 0

_Q
32

%
.2

8

P
r
o
fi
le
 i
n

p
r
o
g
r
e
s
s

_Q
31

%
.9

 <
>

_Q
31

%
.1

2

1 0

1 0

x
-1

x
_Q

11
%

A
ux

ili
ar

y
en

co
de

r
po

si
tio

n

A
ux

ili
ar

y
en

co
de

r
sp

ee
d

1 0

P
os

iti
on

 lo
st

du
rin

g
ac

ce
le

ra
tio

n

_Q
32

%
.2

7

_Q
32

%
.1 D

ig
it
a
l

lo
c
k
 r
a
ti
o

In
v
e
r
t

d
ir
e
c
ti
o
n

S
y
s
te
m

lo
c
k
e
d

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
12

%

_Q
13

%

A
cc

el
.

D
ec

el
.

Li
ne

ar
 r

am
ps

_Q
15

%

M
ax

 S
pe

ed

R
ig
id
 o
r

n
o
n
-
r
ig
id

lo
c
k

T
o

S
la

ve
R

ef
er

en
ce

D
ia

gr
am

∫∫

MD29
Issue code: 29nu48-22 Features

Feedback source and PID Loops

+
+

++
_

Q
1

0
%

+ 1
0

_
Q

9
%

-

_
Q

8
%

E

S
e
r
v
o
 e
r
r
o
r

_Q
31

%
.1

_
Q

1
%

_
Q

3
7

%

10
d d
t

_
Q

7
%

10

F
ilt

er

_
Q

5
%

_
Q

6
%

_
Q

1
6

%

_
Q

0
%

_Q
20

%
.0

_Q
20

%
.7

L
o
o
p

r
e
fe
r
e
n
c
e

P
o
s
it
io
n

e
r
r
o
r

F
e
e
d
b
a
c
k

p
o
s
it
io
n

A
u
x
il
ia
r
y

p
o
s
it
io
n

M

a
x
im

u
m

fo
ll
o
w
in
g
 e
r
r
o
r

O

u
tp
u
t

li
m

it

In
te
g
r
a
l

g
a
in

P
r
o
p
o
r
ti
o
n
a
l

g
a
in

D
e
r
iv
a
ti
v
e

g
a
in

_Q
20

%
.2

S
p
e
e
d

d
e
m

a
n
d

E

d d
t

_
Q

2
4

%
A

ux
ili

ar
y

sp
ee

d

d d
t

_
Q

2
5

%
F

ee
db

ac
k

sp
ee

d

#9
1.

03

10

_Q
20

%
.6

≥

x
#3

.1
4

3
1

2
5

NOTE: Marker pulse functions are not supported by the MD29 on Mentor II.

MD29
Issue code: 29nu4 Features 8-23

Digital lock

The digital lock function allows the slave axis position and speed to be
locked rigidly or non-rigidly to the master encoder. A digital lock ratio
(_Q11%) can also be introduced between the reference and feedback,
accurate to 8 decimal places.

Rigid digital lock

Rigid digital lock is a position lock between the master reference and the
slave axis. It is selected by setting _Q32%.27 = 0. When digital lock control
is enabled (_Q32%.2 = 1), the slave axis will accelerate to the maximum
digital lock speed (_Q15%) using linear ramps. (NOTE: if S-ramps are
selected when digital lock is enabled, the slave will ramp up to the master
speed using S-ramps, and recover position using linear ramps.) The axis will
run at the maximum speed until any position error that built up during
acceleration is recovered.

When position has been recovered, the slave speed will then lock to the
master speed, multiplied by the ratio, _Q11%. _Q31%.12 is set once absolute
position lock has been achieved.

NOTE:

The maximum digital lock speed (_Q15%) should always be
set to a value greater than the maximum line speed
multiplied by the ratio (_Q11%). If this condition is not
met, the axis may never achieve absolute position lock.

Speed

Time

_Q15%

_Q31%.12

Slave
speed

MD29
Issue code: 29nu48-24 Features

Non-rigid digital lock

Non-rigid digital lock is effectively a speed lock between the master
reference and slave axis. It is selected by setting _Q32%.27 = 1. When
digital lock is enabled (_Q32%.2 = 1), the slave axis will accelerate up to the
master speed, multiplied by the ratio, _Q11%, using linear ramps. (NOTE: if
S-ramps are selected when digital lock is enabled, the slave will ramp up to
the master speed using S-ramps.) Any position error build up during
acceleration is ignored.

When speed lock is achieved, _Q31%.12 is set, and position lock is used to
keep the slave axis speed locked to the master reference.

Time

_Q31%.12

Slave
speed

8.10 Using S-Ramps with Digital Lock
If S-ramps are selected, the master speed must be kept as constant as
possible while the slave is accelerating to the master speed. Failure to
ensure this may cause problems when completing the S-ramp profile,
especially if the ramp rate is quite slow.

MD29
Issue code: 29nu4 Features 8-25

8.11 Cam function
The cam function provides a means of locking a slave axis to the continuous
movement of a master encoder. The cam profile can be split into sections,
for which the master and slave starting and finishing positions are known.
The cam table is then built up by defining the change in position for each
section, with respect to the section starting position, for both master and
slave encoders. The reference point is the position of the slave at the
instant the cam function is enabled. The software uses linear interpolation
to move the cam through each section as the master position changes.

The following sections detail how to construct a cam table, using the
example cam profile below. The velocity profile required to produce the
position profile is also shown below. (The master speed is assumed to be
constant at 10000 lines/second.)

Slave Velocity
(*1000 lines/sec)

Master
Position
(*1000)

30

20

10

-10

-20

-30

10 20 30 40 50 60 70 80

Slave Position
(*1000 lines)

Master
Position
(*1000)

20

1 2 3 4 5 6

15

10

5

-5

-10

-15

-20

10 20 30 40 50 60 70 80

MD29
Issue code: 29nu48-26 Features

Defining the cam table

Before the cam function can be used, an appropriate table must be
initialised. This is best done at the start of the program in the INITIAL task.

setup% = CAMINIT(master%, slave%, tablesize%, reserved1%,
reserved2%)

where:
setup% = 0 initialisation was not successful.

= 1 initialisation successful.
master% = name of the master array.
slave% = name of the slave array.
tablesize% = number of defined cam points.

NOTE: each array can contain more defined
positions, but both arrays must be at least
this size to initialise correctly.

reserved1% = 0 this argument is reserved for future use,
and must be set to 0.

reserved2% = 0 this argument is reserved for future use,
and must be set to 0.

The master% and slave% arrays can be of different types, and both can be
variable or constant arrays. The maximum number of elements in a single
array is 500. Constant arrays are defined when the program is compiled, and
cannot subsequently be changed unless the program is re-compiled. DPL
programs are stored in the 96K of program memory, so the only limitation is
that the compiled program size does not exceed 96K.

Dynamic arrays use the 8K of RAM, so the total number of array elements is
far smaller. The advantage of a dynamic array is that values can be changed
by the DPL program while the cam function is in use. If array elements are
modified, changes should be complete before _Q34% gets to within 3
elements.

For the example cam profile below, the array names will be “master%” and
slave%. The cam profile can be split into 6 separate sections, so 6 array
elements will be used to re-create the profile.

MD29
Issue code: 29nu4 Features 8-27

Building the cam table

The cam positions at the beginning and end of each section can be
determined from the profile.

Section Master Slave Position Change

Start Finish Start Finish master% slave%

1 0 20000 0 5000 20000 5000

2 20000 25000 5000 20000 5000 15000

3 25000 35000 20000 20000 10000 0

4 35000 50000 20000 -10000 15000 -30000

5 50000 70000 -10000 -10000 20000 0

6 70000 80000 -10000 0 10000 10000

The last two columns produce the values required for each array. The arrays
can be defined as follows:

CONST master%{

20000,5000,10000,15000,20000,10000

}

CONST slave%{

5000, 15000,0,-30000,0,10000

}

If the slave must always return to the same position at the end of each cam
cycle, the sum of all the slave array elements must be 0. An easy way to do
this is to construct the array using a spreadsheet, and copy and paste the
series of numbers into the DPL editor.

When the cam is called in the DPL program, the following command line
would be used.

setup% = CAMINIT(master%, slave%, 6, 0, 0)

MD29
Issue code: 29nu48-28 Features

8.12 Reference switching
The Position Controller provides the facility to switch between the various
methods of control, without any discontinuities to the slave axis profile.

Switching to Position Control

When running in speed control, digital lock or cam table control, the axis
stopping position is continuously re-calculated, and written to _Q2%. The
current ramp settings in _Q12% and _Q13% are used to calculate the axis
stopping position. S-ramps cannot be used when switching into position
control.

NOTE: when a switch from digital lock control to position control occurs, a
return position (_Q40%) will be written once into _Q2%, over-writing the
calculated stopping position. This function can be disabled by setting
_Q32%.29 = 1, so the axis will move to the calculated stopping position.

Switching to Speed Control

When the reference source is switched from position control, digital lock or
cam table control to speed control, the speed reference will ramp up or
down to the set speed reference, _Q3%. The ramps set in _Q12% and
_Q13% are used to ensure a smooth switch. S-ramps can selected
(_Q32%.19 = 1) when switching into speed reference control.

Switching to Digital Lock Control

When digital lock is enabled (_Q32%.2 = 1), the position controller locks the
slave axis position to the master reference from that instant. The slave axis
will accelerate to the master axis speed, multiplied by the ratio set in_Q11%.

If rigid lock is selected (_Q32%.27 = 0), the slave axis will accelerate to the
maximum digital lock speed (_Q15%) until position is recovered. The speed
will then reduce to the master line speed, multiplied by the ratio set in
_Q11%.

Switching to Cam Table Control

When the cam table is enabled (_Q32%.4 = 1), the position reference
follows a pre-defined profile, relative to the master axis. The starting
positions of both master and slave are written to _Q35% and _Q36%
respectively.

When switching from cam table control to position control, the axis
stopping position is continuously re-calculated, and written to _Q2%. The
current ramp settings in _Q12% and _Q13% are used to calculate the axis
stopping position. S-ramps cannot be used when switching into position
control.

For example applications and programs using digital lock, cam tables and
reference switching, refer to the Help file.

MD29
Issue code: 29nu4 Features 8-29

Internal Control of Switches

Certain switch configurations of the profile generator are invalid, and will be
automatically reset by the position controller.

Digital Lock

When using digital lock, S-ramps cannot be used for position control, so
_Q32%.8 is always reset to zero. When starting the digital lock using the
auxiliary marker pulse, _Q32%.2 is set to 1 and _Q32%.14 is reset to 0 when
the marker pulse input is detected.

Cam Table

When using the cam table, S-ramps cannot be used for position control, so
_Q32%.8 is always reset to 0. When starting the cam table using the
auxiliary marker pulse, _Q32%.4 is set to 1 and_Q32%.12 is reset to 0 when
the marker pulse is detected. If the cam table has not been initialised
correctly, _Q32%.4 cannot be set.

MD29
Issue code: 29nu48-30 Features

8.13 Timer/Counter unit

DIGIN 1

D

1

M[0.2]

Control

& &
DIGIN 0

C

EN

Timer

Reload

TI16-bit up/down counter

TE

Event
500kHz

4MHz

u/d

A hardware timer/counter is built into the MD29, and gives the following
features:

• Count rate selectable between 500kHz and 4MHz
• The EVENT Task can be initiated when the timer/counter

over/underflows, or by using digital input 0.
• The value of the timer/counter can be frozen by using digital input 0.
• The timer/counter unit can be clocked by activation of input 0

(digital TTL). The maximum input frequency is 1 Mhz.
• Counter direction is selectable.

The timer/counter unit is controlled using virtual parameters in menu 85, as
follows:

Parameter Function

#85.01 Control Word

#85.02 Status Word

#85.03 Timer/counter value

#85.04 Timer/counter reload value

#85.05 Mode 2 Timer value

MD29
Issue code: 29nu4 Features 8-31

Control Word (#85.01)

Bit Notes

0 TE Timer EVENT enable

0 = Disable EVENT generation
1 = Enable EVENT generation

When TE = 1 and TI = 1 (see below) the EVENT task will run.

1 EN Enable timer

0 = Disable

1 = Enable timer

2 R Reload mode on timer wrap-around

0 = No re-load. Timer simply wraps-around and continues to count

1 = Automatic re-load. The value of the reload reg is loaded into the counter

Note 1: This flag has no effect in mode 2 (Capture mode)
Note 2: Wrap-around is defined as over flow or under flow.

3 C Internal clock pre-scale select

0 = 500KHz clock
1 = 4MHz clock

4 D Direction control

0 = Counter counts up (u/d = 1)
1 = DIGIN1 controls the count direction.

If DIGIN1 = 0 then count up
If DIGIN1 = 1 then count down

MD29
Issue code: 29nu48-32 Features

Bit Notes

5 ~ 7 M Timer mode

Mode 0 (000): Normal modeMode 0 (000): Normal mode

The internal clock source (4MHz or 500KHz) clocks the counter. The TI event flag is
set when the counter wraps-around.

Mode 1 (001): External modeMode 1 (001): External mode

The counter is clocked from an external source DIGIN0 (on the the –ve edge). The TI
flag is set when the counter wraps-around.

Mode 2 (010): Capture modeMode 2 (010): Capture mode

Capture mode. The counter is clocked by the internal clock source (4MHz or
500KHz). A 1 to 0 transition on DIGIN0 causes the current counter value to be
latched into the TIMER register, the counter is then reloaded with the RELOAD
register and the TI flag set. (Use #85.05 to read the timer value in mode 2, not
#85.03.)

Mode 3 (011): Trigger modeMode 3 (011): Trigger mode

The internal clock source (4MHz or 500KHz) clocks the counter. However the TI
event flag is set when a 1 to 0 transition is detected on DIGIN0, NOT when the
counter wraps-around. The reload mode works in the same way as mode 0 or 1.

Mode 4 (100): Gated modeMode 4 (100): Gated mode

The internal clock source (4MHz or 500KHz) clocks the counter; the count input is
gated by the DIGIN0 input (active low). The TI event flag is set when the counter
wraps-around.

MD29
Issue code: 29nu4 Features 8-33

Status Word (#85.02)

Bit Notes

0 TI Timer event flag

0 = No event
1 = Event has occurred.

Two events are defined:
Mode 0, 1 and 4: Counter wrap-around (overflow or underflow)
Mode 2 and 3: 1 to 0 transition on DIGIN0

Note : The TI bit is automatically cleared if the TE flag is set in #85.01,.otherwise it is
cleared when this status word is read.

1 OV Wrap-around flag

0 = No wrap-around
1 = Counter/timer has wrapped around

This flag is valid for ALL timer modes.
Note: The OV bit is automatically cleared when the status register is read.

Timer #85.03 The current timer/counter value can be read and written at any time.
When Mode 2 is selected, do not read this parameter (even in the WatchWatch
window), instead use #85.05 to read the timer/counter value.

The timer is a 16-bit timer with a range between 0 and 65535.

Re-load
value #85.04

When the timer/counter overflows or underflows the OV flag is set. In
Modes 0, 1 and 4, the TI event flag is also set. If the re-load mode is enabled
(R set at 1), the timer/counter is initialized with the contents of the RELOAD
register. (In Mode 2, re-load occurs when DIGIN0 transitions from 1 to 0).

When R (bit of #85.01) is set at 0, the timer/counter simply wraps-around
and continues to count. The value in the re-load register can be read and
written to at any time.

Mode 2
timer value
(#85.03)

Use this parameter to read the latched timer/counter value when Mode 2 is
selected. Do not read #85.03.

For an example of using the timer/counter unit, refer to the Timer Unit
topic in the DPL Toolkit on-line Help.

MD29
Issue code: 29nu48-34 Features

8.14 Digital I/O ports
The MD29 has two digital inputs and one digital output as standard. These
inputs and output are TTL logic (ie. 5V logic), and are made available on the
9-way RS485 port connector, as follows:

Pin Description

1 RS485 isolated 0V

2 RS485 /TX

3 RS485 /RX

4 DIGIN0 (TTL digital input 0)

5 DIGIN1 (TTL digital input 1)

6 RS485 TX

7 RS485 RX

8 TTL digital output

9 Drive 0V

The digital TTL inputs are used in conjunction with the timer/counter unit.
In addition, they are also directly readable by a DPL program.

The digital TTL output can also be controlled directly from a DPL program.
The following virtual parameters give access to the TTL I/O:

Parameter Function

#86.01 Digital input 0 (DIGIN0)

#86.02 Digital input 1 (DIGIN1)

#86.03 Digital output

The inputs read 00 when at logic high (5V or unconnected), and 11 when at
logic low (0V).

The output is at logic high (5V) when 00 is written.

Warning

The digital output is rated at a maximum of 15 milliamps
(sink/source).
Connections to the digital inputs and outputs should be kept
as short as possible (0.5 metre (20 in) maximum
recommended). External buffering is required if longer cable
lengths are used, or interfacing is needed to different logic
levels.

MD29
Issue code: 29nu4 Features 8-35

8.15 Non-volatile memory storage
The MD29 has a feature which allows it to store the P and Q regions of the
PLC register-set into the non-volatile memory of the MD29. The parameter
used to initiate the save is as follows:

Mentor Vector CDE750 CDE7500

#14.16 F-14 #9.29 #15.20

This parameter immediately returns to zero once it has been set. Also, the
MD29 is reset when the parameter is set. This re-starts the user program.

This feature can be used to store information such as the value of the
diameter of a winder, or run-time counters, or any program variables. Also,
when using the in-built position controller, all the setup parameters (prefix
_Q) and position registers can be saved. The MD29 automatically restores all
the registers when AC power is restored.

8.16 Using the RS232 port for
Drive-to-Drive communications
The MD29 card and UD70 module have a mode in which the RS232 port can be
linked to another MD29 or UD70 and two 32-bit variables can be transmitted
between them.

The RS232 port can be used for Drive-to-Drive communications when the
RS485 port is being used by another device (a user-interface (MMI), for
example). The protocol used employs CRC checking to ensure a high
degree of data integrity.

Warning

Due to the inferior specification of RS232, the serial
communications cable connecting the Drives must be as
short as possible (less than 10 metres (30 feet)). RS232–
RS485 converters can be used to extend the cable length if
required.
Note that serial communications multi-drop is not possible.
The RS232 Drive-to-Drive link is designed solely for
connecting to one external MD29 card or UD70 module.

No handshaking is performed on this link (ie. no error will
reported if the connection is broken, for example).

MD29
Issue code: 29nu48-36 Features

Connections

The connections required to be made to the RS232 connectors are as
follows:

Source unit Destination unit

2 3

3 2

5 5

To enable the RS232 mode, set the following parameters at 1:
• Disable Toolkit communications set-up parameter
• Drive-to-Drive communications set-up parameter

See MD29 set-up parameters in Chapter 10 Parameters

Data-exchange parameters

The data to be transmitted must be placed in the special internal parameters
_R98% and _R99%. Data received from the remote unit is placed in
parameters _S98% and _S99%.

Source and destination parameters for transfer of dataSource and destination parameters for transfer of data

MD29
Issue code: 29nu4 Diagnostics 9-1

9 Diagnostics

This chapter covers the following:
• Run-time errors and trip codes
• Compiler errors and warnings
• Advanced error-handling

9.1 Run-time errors
A run-time error is an error which occurs in a specific operation of the MD29.
It could happen as a result of an error in the DPL program (such as trying to
write to a parameter that doesn't exist, or trying to divide a value by zero),
or in an automatic operation such as loss of communications with an I/O Box.

Certain run-time trips can be disabled (such as parameter write over-range).
The parameters to enable the trips are as follows:

Function Mentor Vector CDE750 CDE7500

Global run-time trip enable #14.07 F-6 #9.21 #15.12

I/O Box trip enable #14.08 F-7 #9.22 #15.13

Over-range trip enable #14.10 F-9 #9.24 #15.15

The actions taken when a run-time error occurs are as follows:
• All DPL Tasks stop being executed.
• If the Global run-time trip enableGlobal run-time trip enable parameter is set at 1, and the

error does not involve serial communications, the Drive will be
tripped. The trip causes the Drive to immediately disable its power
outputs. If the error is related to the I/O Box, the Drive trips if the
I/O Box Trip-enable parameter is also set at 1.

• If an ERROR Task is present in the DPL program, it starts being
executed (see Advanced error-handling later in this chapter for
details).

MD29
Issue code: 29nu49-2 Diagnostics

9.2 Run-time trip codes
When the Drive is tripped, the display shows the following:

Mentor II A29

Vector St

CDE trnn

On the CDE Drive, the trip code is shown after trtr.
The cause (and location) of the run-time error can be determined by reading
the following parameter:

Type Mentor Vector CDE750 CDE7500

Trip code #10.35 F-3 #8.35 #10.30

Line number of trip #16.63 Pr60 #9.07 #15.01

Alternatively, in a DPL program the trip-code number can be read in #88.01#88.01.
The possible trip codes are as follows:

Error
number

Description Action

41 Parameter does not exist. Always trip

42 Parameter write failed: parameter is read only. Trips if Global = 1

43 Parameter read failed: parameter is write only. Trips if Global = 1

44 Parameter write failed: parameter value is over-range. Trips if Global = 1 and Overrange = 1

45 Virtual parameter access failed: IOLINK is not running. Trips if Global = 1 and IO Box = 1

46 ~ 48 Internal error. Always trips

49 Wrong system loaded. Always trips

50 Maths error in the program, eg. divide by zero, overflow, etc. Trips if Global = 1

51 DPL array index is out of range. Trips if Global = 1

52 Reserved. Always trips

53 DPL program incompatible Always trips

54 DPL overload – a Task has run out of time. Trips if Global = 1

55 RS485 trip (mode 3, mode 4, etc). Trips if Global = 1 and IO Box = 1*

56 Reserved Always trips

57 Illegal Operating System Call Always trips

58 - 59 Internal error Trips if Global = 1

60 - 69 Reserved (Used on MD29 AN) **

Prc2 See Watchdog trip (WDOG command)

(* Trip 55 occurs only when an I/O Box is connected and operating, and
Mode 3 or 4 serial communications fail.)
(** For further details refer to CTNet manual.)

MD29
Issue code: 29nu4 Diagnostics 9-3

9.3 Compiler error messages
This sections lists all the errors that can be generated when compiling a DPL
program.

ERROR: Argument x must be an integer

The argument has been written as a floating-point number instead of as an
integer.

Example ANSIWRITE (11, “SP”, 50, 3.1)

Where:
11 = Argument 1
SP = Argument 2
50 = Argument 3
3.1 = Argument 4

Argument 4 must be an integer.

ERROR: Array must be dimensioned

An array must be defined before referencing it by a DIM statement. This
gives the array its dimension before it is required (see DIM instruction in
Chapter 7 Reference).

ERROR: CALL can call only in-built functions or user tasks

The CALL instruction can be used only to call a Standard Application or a
user-defined Task (ie. the CALL instruction cannot call a label). (See the
CALL instruction in Chapter 7 Reference).

ERROR: DELAY can be used only in the INITIAL and BACKGROUND tasks

By the nature of the ENCODER and CLOCK Tasks, these Tasks cannot support
the DELAY instruction. A DPL program can be halted only when in the INITIAL
or BACKGROUND Tasks (see DELAY instruction in Chapter 7 Reference).

ERROR: DIM must have an integer number of elements

The dimension of an array must be defined by an integer.

ERROR: Empty Tasks are not permitted — remove the Task and recompile

A Task has been defined without any instructions inside the braces. Remove
the Task and the braces.

ERROR: Expression is already a float — remove FLOAT instruction

An expression which is already a floating-point variable, has been given a
FLOAT instruction. Remove the FLOAT instruction.

ERROR: Expression is already an Integer variable — remove INT instruction

An expression which is already an integer variable has been given an INT
instruction. Remove the INT instruction.

MD29
Issue code: 29nu49-4 Diagnostics

ERROR: Expression too complex — break into parts

ERROR: Invalid Drive type. Use one of the following:
MENTOR, VECTOR, CDE750, CDE7500

ERROR: Label duplicated

A label of the same name has been given more than once. Check other
Tasks for duplication.

ERROR: Label is in another task

The GOTO instruction is in a different Task to where the label is defined.
The label needs to be in the same Task as the GOTO instruction.

ERROR: Label not found

A label has not been defined. Define a label.

ERROR: Operators only allowed on integer arguments

ERROR: Maximum bit-field size is 32

The Bit-field invert Operator has been used and the specified bit-field is
greater than 32. Re-specify the size of the bit-field.

ERROR: Syntax error

ERROR: Variable has not been initialized

Before a variable can be used as an argument, it must be given a starting
value. This is typically performed in the INITIAL task. Remember that
variable names are case sensitive.

ERROR: Variable is not an array

Warning messages

WARNING: Title will be truncated to 64 characters

WARNING: Version will be truncated to 8 characters

WARNING: Possible loss of accuracy in assignment

This warning indicates that a floating-point number has been assigned to an
integer parameter. For example:

#1.18 = 3.142

As #1.18 can be set only with integer variables #1.18 now = 3.0

MD29
Issue code: 29nu4 Diagnostics 9-5

9.4 Advanced error-handling
Errors that occur when the program is running are usually due to
programming errors, but can sometimes occur due to external influences.
For example, an error signifying a serial communications loss could occur if
incoming data from an I/O Box is lost due to the cable being broken.
Normally, the MD29 halts all Tasks, and optionally trips the Drive.

If this is undesirable, the ERROR Task can be used. The sequence of events is
as follows:

1 All Tasks are stopped.

2 The Drive is tripped (if the trip is enabled). See the Trip enable
parameters in MD29 setup parameters in Chapter 10 Parameters.

3 The number of the error is placed in parameter #88.01 of the MD29

4 The ERROR task is executed. The instructions in the ERROR Task can
determine the cause of the run-time error and take necessary action,
such as stopping the drive system in a controlled manner.

All standard DPL instructions can be used in the ERROR Task.

The cause of the error can be determined by reading the virtual parameter
#88.01. This gives the appropriate error code defined in Run-time Trip
Codes earlier in this chapter.

When the Global run-time trip enableGlobal run-time trip enable parameter is not set at 1, the Drive is
not automatically tripped. If the Drive is required to be tripped, write the
error code to the appropriate trip code parameter (shown in Trip codes
earlier in this chapter).

To reset the MD29 and restart the DPL program, set parameter #88.01 at
1070.

Remember that no other DPL tasks will be running after a run-time error has
occurred.

See the on-line help for an example of the ERROR task.

MD29
Issue code: 29nu49-6 Diagnostics

MD29
Issue code: 29nu4 Parameters 10-1

10 Parameters

10.1 MD29 set-up parameters
The set-up parameters take effect only after the MD29 has been reset. This
occurs when any of the following actions is performed:

AC supply is applied to the Drive
A REINIT instruction in a DPL program is executed
When Reset TargetReset Target is selected in the RunRun menu in the DPL Toolkit
The value 1070 is written to parameter #88.01

The following table lists all the MD29 set-up parameters.

Function Mentor II CDE750 CDE7500 Vector

ANSI Serial address #14.01 #9.10 #15.05 F-0

This parameter defines the addresses for serial communications.
Range: 11 to 99.

RS485 Mode #14.02 #9.11 #15.06 F-1

This parameter sets the Mode for serial communications. (See below).

RS485 Baud rate
(Mode 1, 5, 6 and 7)

#14.03 #9.12 #15.07 F-2

This parameter sets the Baud rate: 24 = 2400... 192 = 19200 etc.
Maximum is 38400 which is set by a code of 38.

Clock section
timebase (ms)

#14.04 #9.13 #15.08 F-4

Defines the clock period time in milliseconds for executing the CLOCK task of a DPL
program. Range: 1 to 200ms

CTNet Node ID (MD29AN
only)

#14.05 N/A N/A N/A

Specifies the node address for CTNet.

Auto-run mode #14.06 #9.20 #15.11 F-5

When set at 1, this parameter enables a DPL program to be automatically started
when the MD29 is reset or AC power is applied. When set at zero, a command must
be issued from the MD29 Toolkit software before the DPL program will start.

Global run-time trip
enable

#14.07 #9.21 #15.12 F-6

When set at 1, any run-time trips that occur will cause the Drive to trip.
When set at 0, most run-time trips will not cause the Drive to trip.

MD29
Issue code: 29nu410-2 Parameters

Function Mentor II CDE750 CDE7500 Vector

Trip if CT I/O box
link fails

#14.08 #9.22 #15.13 F-7

When set at 1, and global trip is enabled, the Drive will be tripped if there is a
communication link failure between the MD29 and the CT I/O box.

Enable watchdog #14.09 #9.23 #15.14 F-8

When this parameter is set at 1, the DPL program must execute a WDOG command at
least every 200ms, otherwise the Drive will trip. See the WDOG command for more
details.

Trip if a parameter
write over-ranges

#14.10 #9.24 #15.15 F-9

Each Drive parameter has a finite range of values which can be accepted. Any value
which is outside the parameter limits could signify a program failure. When this
parameter is set at 1, and global trips are enabled, the Drive will trip if a parameter is
outside the limits. When it is set at 0, the MD29 places a limit on the value written.

Disable Toolkit
communications

#14.11 #9.25 #15.16 F-10

Setting this parameter at 1 puts the RS232 serial port into plain ASCII mode, or
Drive-to-Drive RS232 comms mode. The DPL Toolkit will not function when this
parameter is set at 1.

Position controller enable #14.12 #9.26 #15.17 F-11

When this parameter is set at 1, the internal position controller is enabled. See
Chapter 8 Features. REINIT command does not read this parameter.

I/O link synchronisation
source

#14.13 #9.27 #15.17 F-12

When set at 0, the transfer of data to an I/O Box is synchronized to a CLOCK task.
When set at 1, the transfer of data is synchronized to the ENCODER task. See below.

Encoder timebase select #14.14 #9.28 #15.18 F-13

This parameter sets the timebase for the ENCODER task.

Mentor II #14.14 (0 = 5.12ms, 1 = 2.5ms)

CDE750, CDE7500 #9.28 (0 = 5.3ms at 3, 6 or 12kHz switching frequency)
(0 = 7.36ms at 4.5 or 9kHz switching frequency)
(1 = 11.04ms at 3, 6 or 12kHz switching frequency)
(1 = 14.72ms at 4.5 or 9kHz switching frequency)

Vector F-13 (0 = 2.008ms, 1 = 4.016ms)

MD29
Issue code: 29nu4 Parameters 10-3

Function Mentor II CDE750 CDE7500 Vector

Flash store request #14.16 #9.29 #15.20 F-14

Set at 1 to save the PLC parameter registers (_Px% and _Qx%) into the non-volatile
memory of the MD29. The parameter value immediately returns to zero.
See Chapter 8 Features.

Drive-to-Drive RS232
communications enable

#14.17 #9.30 #15.21 F-15

When set at 1, and DPL Toolkit communications are disabled (see Disable Toolkit
communications above), Drive-to-Drive RS232 communications are enabled.
See Chapter 6 Serial Communications.

DPL line number
where occurred

#16.63 #9.07 #15.01 Pr60

This parameter indicates the line on which an error has occurred, providing the DPL
program has been compiled with the Debugging Information.

RS485 parameter
pointer #1

#11.09 #9.00 #15.03 Pr61

This parameter defines the destination and source for data to be transmitted to, or
received from when in Serial Communications Mode 2 or 3.

RS485 parameter
pointer #2

#11.10 #9.02 #15.05 Pr63

This parameter defines the destination for data to be received from when in
Serial Communications Mode 4. There will be no decimal point displayed (ie. to set
parameter #1.21 as the destination, enter a value of 121).

RS485 Mode 3 scaling #11.10 #9.01 #15.04 Pr62

This parameter is used to scale data read into the MD29 while in Serial Mode 3.
Refer to RS485 port modes later in this chapter.

Parameter #14.05 in the Mentor II Drive is reserved.

Operating in dumb-terminal mode

When using the MD29 with Toolkit communications disabled (also known as
dumb-terminal mode), the DPL Toolkit is not able to communicate with the
MD29.

MD29
Issue code: 29nu410-4 Parameters

Synchronization of the I/O link

When the CLOCK task is specified as the synchronization source for the I/O
link, the link remains synchronized to a minimum CLOCK task timing period of
5ms. When the CLOCK task timing period is less than 5ms, the I/O link will
run at a fixed 8ms, asynchronously to the CLOCK task.
When the ENCODER task is specified as the synchronization source for the
I/O link, the I/O link will run as follows:

Mentor II At every second ENCODER task 5.12ms

Vector At every third ENCODER task 6ms

CDE At every ENCODER task 5.5/7.8ms

10.2 Virtual parameters
Virtual parameters are special parameter which are not part of the standard
parameter set of the Drive. Virtual parameters exist only in the MD29 and are
used for the following:

• Accessing values not present as standard Drive parameters
(eg. encoder counters)

• Accessing Drive parameters at a faster rate
• Accessing Drive parameters at an increased resolution
• Accessing MD29 parameters such as Timer/counter Unit control

parameters, I/O Box data, etc.

Virtual parameters can be accessed by a DPL program or via the RS485 port.
The virtual menus are explained in the following order:

90, 91, 70–73, 85, 86, 88, 80

Menu 90
General parameters

Parameter Description

#90.01 Main encoder position (RO)

#90.02 Main encoder increments (RO)

#90.03 Auxiliary encoder position (RO)

#90.04 Auxiliary encoder increments (RO)

#90.10 Returns Drive type (RO)
Codes are:

0 Mentor II
1 Vector
2 CDE750
3 CDE7500

#90.11 See Status word (RO)

MD29
Issue code: 29nu4 Parameters 10-5

Status word #90.11

Mentor Drive #90.11 contains a 16 bit number. The upper eight bits of #90.11 correspond
with parameter #11.21 LED status in the Drive. The lower eight bits
correspond with #10.25 Current trip number of the Drive. When the Drive
is operating normally, the value of these bits is zero.

The upper eight bits of the status word are as follows:

MD29 b15 b14 b13 b12 b11 b10 b9 b8

Drive #11.21

The lower eight bits of the status word are as follows:

MD29 b7 b6 b5 b4 b3 b2 b1 b0

Drive #10.25

Refer to the Mentor II User Guide for further details.

Vector Drive The upper eight bits of #90.11 correspond with bit parameters 72 to 75 and
80 to 83 in the Drive. The lower 8 bits correspond with Pr57.

The upper eight bits of the status word are as follows:

b15 b14 b13 b12 b11 b10 b9 b8

b83 b82 b81 b80 b75 b74 b73 b72

The lower eight bits of the status word are as follows:

b7 b6 b5 b4 b3 b2 b1 b0

Pr57

Refer to the Vector User Guide for further details.

Bookcase
CDE

#90.11 returns the inverted value of #8.18 in the Drive.

0 = Drive normal (not tripped)

1 = Drive tripped

CDE/HPCDE #90.11 returns the inverted value of #10.01.

0 = Drive normal (not tripped)

1 = Drive tripped

MD29
Issue code: 29nu410-6 Parameters

Menu 91
Drive-specific virtual parameters

Mentor II Drive parameters

Parameter Description

#91.01 Mentor II digital feedback mode.
0 = disable MD29 feedback
1 = enable MD29 feedback

#91.02 Digital feedback (into #3.02)
Range: ±16000 ±100%

#91.03 High resolution # 1.18
Range: ±16000 ±100%

#91.04 High resolution # 3.18
Range: ±16000 ±100%

#91.05 High resolution # 1.03 (RO)
Range: ±16000 ±100%

#91.06 High resolution #3.02 (RO)
Range: ±16000 ±100%

#91.07 High resolution #4.08
Range: ±16000 ±100%

#91.08 High resolution #4.09
Range: ±16000 ±100%

#91.09 High resolution #7.05 (RO)
Range: ±16000 ±100%

#91.10 High resolution #3.01 (RO)
Range: ±16000 ±100%

CDE Drive parameters

Parameter Description

#91.01 Fast enable. Set at 1 to enable #91.2

#91.02 Fast frequency set-point.

#91.03 Analog Input 1

#91.04 Analog Input 2

#91.05 Analog Input 3

#91.06 Torque feedback

MD29
Issue code: 29nu4 Parameters 10-7

Vector Drive parameters

Parameter Description Related virtual
parameter

#91.01 Set bit 0 at 1 to enable Pr1Pr1

Set bit 1 at 1 to enable Pr8Pr8

Set bit 2 at 1 to enable Pr16Pr16 #91.02

#91.02

#91.03

#91.04

#91.02 Fast-access to Pr1Pr1

#91.03 Fast-access to Pr8 Pr8 (integer)

#91.04 Fast-access to Pr16 Pr16 (integer)

When changing a parameter value in the Vector Drive, there may be a 64ms
delay before the new value takes effect. Similarly, when reading a
parameter, the value read back could be up to 64ms out-of-date.

The three commonly-used parameters Pr1 Pr1, Pr8Pr8, and Pr16Pr16 have a fast-access
mode that gives an update rate of 2ms. To use the fast-access mode,
virtual parameters must be assigned to the parameters. To do this, set at 1
the related bit in virtual parameter #91.01#91.01, as shown below:

Note

The virtual parameters for the Vector Drive are integer
only. Parameters Pr8 and Pr16 are accurate to one decimal
place. Setting parameter #91.03 at 15, sets Pr8 at 1.5.

Menus 70 to 73

These menus refer to the PLC register-set, as follows:

#70.xx _Px%

#71.xx _Qx%

#72.xx _Rx%

#73.xx _Sx%

Where x is a value from 0 to 99.

MD29
Issue code: 29nu410-8 Parameters

Menu 85
Timer/counter parameters

Refer to Timer/counter unit in Chapter 8 Features.

Parameter Function

#85.01 Control Word

#85.02 Status Word

#85.03 Timer/counter value

#85.04 Timer/counter reload value

#85.05 Mode 2 Timer/counter value

Menu 86
Digital I/O parameters

See Digital I/O ports in Chapter 8 Features for connection information.

Parameter Function

#86.01 Digital input 0 (DIGIN0)

#86.02 Digital input 1 (DIGIN1)

#86.03 Digital output

An input will read 1 when not connected, or at a logic high (+5V). Maximum
input frequency is 1Mhz. Setting #86.03 at 0 causes the output to go logic
low (0V).

Warning

The digital output is rated at a maximum of 15 milliamps
(sink/source).
Connections to the digital inputs and outputs should be
kept as short as possible (0.5 metre (20 in) maximum
recommended). External buffering is required if longer
cable lengths are used, or interfacing is needed to
different logic levels.

MD29
Issue code: 29nu4 Parameters 10-9

Menu 88
Status parameters

Parameter Function

#88.01 READ Run-time error code. Only valid in ERROR task.

WRITE Writing a value of 1070 resets the MD29.

See Advanced error-handling in Chapter 9 Diagnostics.

Menu 80
I/O Box parameters

Parameter
number

Menu 80
analog IN

Menu 81
analog OUT

Menu 82
digital IN

Menu 83
digital OUT

Menu 84
control

0 Null Null Null Null Null

1 ADC1 (±4000) DAC1 (±1000) bit 1 bit 1 0 = ADC1
1 = 4–20mA

2 ADC2 (±1000) DAC2 (±1000) bit 2 bit 2

3 ADC3 (±1000) DAC3 (±1000) bit 3 bit 3

4 ADC4 (±1000) bit 4 bit 4

5 ADC5 (±1000) bit 5 bit 5

....

32 bit 32 bit 32

40 bits 1 – 8 bits 1 – 8

41 bits 9 – 16 bits 9 – 16

42 bits 17 – 24 bits 17 – 24

43 bits 25 – 32 bits 25 – 32

44 bits 1 – 16 bits 1 – 16

46 bits 9 – 32 bits 9 – 32

Note

Menus 81 and 83 parameters are write-only parameters.
They cannot be read back via the Serial Communications
link.

MD29
Issue code: 29nu410-10 Parameters

10.3 RS485 port modes
These modes are set using the RS485 Mode parameter. Refer to MD29
set-up parameters at the beginning of this chapter for details of the source,
destination and scaling parameters.

Mode Description

1 Standard 4-wire RS485, ANSI protocol.

2 Master mode.

A binary protocol is used to continually transfer the value of a defined
parameter to another MD29, UD70 or Drive. The data is scaled ±16000.
The baud rate is fixed at 9600.

3 Slave mode. The MD29 receives data, applies a scaling and places the final
value in a specified parameter.

4 Cascade mode. The value of a defined parameter is transmitted, and received
data goes into another defined parameter. No scaling is applied.

5 2-wire RS485, ANSI protocol.

6 User Mode. This Mode turns off all internal protocols and allows the user to
use the RS485 port directly from the DPL program. Typically, this Mode is
used in conjunction with the DPL ANSI master commands (ANSIREAD,
ANSIWRITE, etc.).

User defined protocols can also be implemented in DPL with the low level
PUTCHAR and GETCHAR commands. The communication data-frame is
organised as: 1 start bit, 7 data bits, EVEN parity and 1 stop bit (10-bits total).

7 User Mode. Same as Mode 6, but the communications data-frame is
organized as: 1 start bit, 8 data bits, EVEN parity and 1 stop bit (11-bits total).

8 User Mode. Same as Mode 6, but the communications data-frame is
organized as: 1 start bit, 8 data bits NO parity and one stop bit (10-bits
total)

9 User Mode. Same as Mode 6, but the communications data-frame is
organised as: 1 start bit, 9 data bits NO parity and one stop bit (11-bits total)

10 I/O Box Mode (MD29AN only). This mode allows a single I/O Box to be
connected directly to the MD29AN using the EIA RS485 port.

11 User Mode. Data bypasses the software FIFO buffer, reducing the delay in
data being transmitted or received. The communications data-frame is
organised as: 1 start bit, 9 data bits NO parity and one stop bit (11-bits total)

12 Reserved

13 Modbus RTU

14 Modbus ASCII

MD29
Issue code: 29nu4 Parameters 10-11

10.4 General-purpose parameters
In each Drive there are general-purpose parameters for use with MD29
programs.

Parameters marked as RO can be altered by the MD29, but they cannot be
altered using the keypad of the Drive. R–W indicates that the parameter can
be altered using the keypad.

The term EEPROM in the tables below refers to the parameter storage
memory in the Drive, and is not related to memory in the MD29.

Mentor ll Drive

Parameter
numbers

Description Type Range

#15.01 to #15.05 Variable parameters RO ±1999

#15.06 to #15.10 Variable parameters R–W ±1999

#15.11 to #15.20 Integer parameters R–W 0 to 255

#15.21 to #15.36 Bit parameters R–W 0 or 1

#15.37 to #15 59 Integer parameters not
stored in EEPROM

RO 0 to 255

#16.01 to #16.05 Variable parameters RO ±1999

#16.06 to #16.10 Variable parameters R–W ±1999

#16.11 to #16.20 Integer parameters R–W 0 to 255

#16.21 to #16.36 Bit parameters R–W 0 or 1

#16.37 to #16.63 Integer parameters not
stored in EEPROM

RO 0 to 255

CDE Drive (0.75kW to 11kW)

Parameter
numbers

Description Type Range

#9.03 to #9.06 Variable parameters R–W ±999.9

#9.08 to #9.09 Variable parameters not
stored in EEPROM

R–W ±999.9

#9.14 to #9.19 Integer parameters R–W 0 to 255

#9.31 to #9.39 Bit parameters R–W 0 or 1

MD29
Issue code: 29nu410-12 Parameters

CDE Drive (11kW to 75kW) and HPCDE

Parameter
number

Description Type Range

16.01 R–W parameters
(automatically saved when
AC power is removed from
the Drive)

R–W ±32767

16.02 to 16.05 Variable parameters not
stored in EEPROM

R–W ±32767

16.06 to 16.20 Variable parameters R–W ±32767

16.21 to 16.36 Bit parameters R–W 0 or 1

Parameter
number

Description Type Range

17.01 R–W parameters
(automatically saved when
AC power is removed from
the Drive)

R–W ±32767

17.02 to 17.05 Variable parameters not
stored in EEPROM

R–W ±32767

17.06 to 17.20 Variable parameters R–W ±32767

17.21 to 17.36 Bit parameters R–W 0 or 1

Vector Drive (11kW to 75kW)

Parameter
number

Description Type Range

Pr63 to Pr69 Variable parameters R–W ±6000

b48 to b55 Bit parameters RO 0 or 1

b56 to b62 Bit parameters R–W
(RO using
the MD29)

0 or 1

