

Preface

Preface
Introduction

The H5U series small-sized high performance PLC carries compact structure and 16 inputs/14 outputs.

Easy series small- and medium-sized PLCs are available in eight models, covering the demands of
automation equipment requiring small footprint, multi-axis motion control, accurate temperature
control, and easy networking.

This guide describes basic and complex instructions and examples.

Target Audience

This manual is intended for the following audiences:

● Electrical engineers
● Software engineers
● System engineers

Cautions for New Users

Read this manual carefully if you use the PLC for the first time. If you have any problem concerning the
functions or performance of the product, contact our technical support.

Related Manuals
Category Document Name Data No.

User Guide H5U Series Programmable Logic Controllers User Guide 19011517

User Guide Easy Series Programmable Logic Controllers User Guide PS00006444

Programming and
application guide

H5U& Easy Series Programmable Logic Controllers
Programming and Application Guide

19012249

Change History

Date Version Description

May 2023 A12

Added description of the following LiteST explicit conversion
instructions: INT_TO_BYTE, DINT_TO_BYTE, BOOL_TO_BYTE, REAL_
TO_BYTE, BYTE_TO_<TYPE>, and TO_BYTE.

Added description of the following instructions: MC_GearInPos,
SerialSend, SerialRcv, MB_Master, and MB_Client.

Corrected some instruction errors.

November 2022 A11

Added LiteST expression for some instructions.

Added description of the following instructions: ENC_
SetLineRotationMode, ENC_SetUnit, and MC_SetOverride.

Corrected some instruction errors.

September 2022 A10

Added description of EIP communication instructions.

Added description of the following instructions: SORTC, DSORTC,
SORTR, DSORTR, RAMP, and DRAMP.

Added description of Easy series PLC instructions.

Corrected some instruction errors.

-1-

Preface

Date Version Description

May 2022 A09 Made minor changes.

August 2021 A08

Added description of the following instructions: DECO, DDECO, ENCO,
and DENCO.

Added description of the following instructions: ETC_RestartMaster,
MC_FollowVelocity, MC_SetAxisConfigPara, and MC_
DigitalCamSwitch.

Updated the list of instructions.

Updated the list of fault codes.

May 2021 A07 Kept the material versions consistent.

March 2021 A03

Corrected errors in the previous version.

Added cam instructions and details.

Added serial encoder axis instructions and details.

Updated the list of error codes.

August 2020 A02 Corrected errors in the previous version.

June 2020 A01

Added axis group instructions and details.

Updated the list of error codes.

Corrected errors in the previous version.

December 2019 A00 First release.

Document Acquisition

This guide is not delivered with the product. You can obtain the PDF version by the following method:

● Visit Inovance's website (http://www.inovance.com) to download the PDF file.

-2-

-3-

TTaabbllee ooff CCoonntteennttss
Preface.. 1

1 Overview ... 15

1.1 Instruction Composition. .15
1.1.1 LD Instructions . 15

1.1.2 LiteST Instructions . 16

1.1.3 Lists of Elements and Variables. 17

1.2 Elements .19
1.2.1 Bit Elements. 19

1.2.2 Word Elements . 20

1.2.3 Special Elements . 20

1.2.4 Bit-based Operation on Word Elements . 21

1.3 Variables .22
1.3.1 Custom Variables. 22

1.3.2 Defining Variables . 22

1.3.3 Defining Arrays . 24

1.3.4 Defining Structures . 25

1.3.5 Defining IP Variables . 25

1.3.6 Defining Strings . 26

1.3.7 Defining Specific Unions. 27

1.3.8 Using Variables . 28

1.4 Graphical Block Instructions .28
1.4.1 Instruction Composition. 28

1.4.2 Programming. 29

1.4.3 Labeling Function . 30

1.5 Function Blocks and Functions (FB/FC) .34
1.5.1 Function Blocks (FB) . 34

1.5.2 Functions (FC) . 41

1.5.3 Authorization Function Block. 44

1.5.4 FB Initial Values . 45

1.5.5 Encrypting FB or FC . 49

2 Instruction List . 52

2.1 LD & LiteST Instructions .52

2.2 LiteST Instructions .67

3 Instruction Description (LD & LiteST).. 68

Table of Contents

-4-

3.1 Program Logic Instructions. .68
3.1.1 Contact Instructions. 68

3.1.1.1 Instruction List . 68

3.1.1.2 LD&LDI&LDP&LDF. 68

3.1.1.3 AND&ANDI&ANDP&ANDF. 69

3.1.1.4 OR&ORI&ORP&ORF . 70

3.1.1.5 MEP&MEF . 72

3.1.2 Output Control Instructions . 73

3.1.2.1 Instruction List . 73

3.1.2.2 OUT . 73

3.1.2.3 SET. 74

3.1.2.4 RST . 74

3.1.2.5 ZSET . 75

3.1.2.6 ZRST . 76

3.1.2.7 PLS&PLF . 78

3.1.2.8 ALT. 79

3.1.2.9 R_TRIG . 80

3.1.2.10 F_TRIG . 81

3.1.3 Flow Control Instruction. 82

3.1.3.1 INV . 82

3.2 Process Control Instructions .83
3.2.1 Instruction List . 83

3.2.2 CJ . 83

3.2.3 LBL . 84

3.2.4 CALL. 85

3.2.5 SSRET . 86

3.2.6 EI & DI . 87

3.2.7 WDT . 87

3.2.8 FOR&NEXT. 88

3.3 SFC Instructions .90
3.3.1 Instruction List . 90

3.3.2 STL . 91

3.3.3 RET . 91

3.3.4 OUTSTL/SETSTL/RSTSTL . 92

3.4 Contact Operation Instructions .93
3.4.1 Contact Comparison Instructions . 93

3.4.1.1 Instruction List . 93

3.4.1.2 AND#. 96

Table of Contents

-5-

3.4.1.3 LD#. 98

3.4.1.4 OR# . 99

3.4.1.5 FLDD#. 101

3.4.1.6 FANDD# . 102

3.4.1.7 FORD# . 104

3.4.1.8 LDZ# . 105

3.4.1.9 ANDZ# . 107

3.4.1.10 ORZ#. 108

3.4.2 Contact Logical Operation Instructions. 110

3.4.2.1 Instruction List . 110

3.4.2.2 LD*. 110

3.4.2.3 AND* . 112

3.4.2.4 OR* . 113

3.5 Data Operation Instructions. 114
3.5.1 Arithmetic Operation Instructions . 114

3.5.1.1 Instruction List . 114

3.5.1.2 ADD . 115

3.5.1.3 SUB . 116

3.5.1.4 MUL . 117

3.5.1.5 DIV . 118

3.5.1.6 MOD. 119

3.5.1.7 EADD. 120

3.5.1.8 ESUB. 121

3.5.1.9 EMUL. 122

3.5.1.10 EDIV. 123

3.5.1.11 INC. 124

3.5.1.12 DEC . 125

3.5.2 Data Logical Operation Instructions . 126

3.5.2.1 Instruction List . 126

3.5.2.2 WAND . 126

3.5.2.3 WOR. 127

3.5.2.4 WXOR . 128

3.5.2.5 NEG . 129

3.5.2.6 ENEG. 131

3.5.3 Word Bit Operation Instructions. 132

3.5.3.1 Instruction List . 132

3.5.3.2 BLD . 132

3.5.3.3 BLDI. 133

3.5.3.4 BAND. 134

Table of Contents

-6-

3.5.3.5 BANDI . 135

3.5.3.6 BOR . 136

3.5.3.7 BORI . 136

3.5.3.8 BOUT . 137

3.5.3.9 BSET . 138

3.5.3.10 BRST. 139

3.5.4 Trigonometric Function Instructions . 140

3.5.4.1 Instruction List . 140

3.5.4.2 SIN . 140

3.5.4.3 TAN . 141

3.5.4.4 COS . 142

3.5.4.5 ASIN. 143

3.5.4.6 ACOS. 144

3.5.4.7 ATAN . 145

3.5.4.8 RAD . 146

3.5.4.9 DEG . 147

3.5.4.10 SINH . 148

3.5.4.11 COSH . 149

3.5.4.12 TANH . 149

3.5.5 Table Operation Instructions . 150

3.5.5.1 Instruction List . 150

3.5.5.2 WSUM. 150

3.5.5.3 MEAN . 151

3.5.5.4 LIMIT . 152

3.5.5.5 BZAND . 154

3.5.5.6 ZONE. 155

3.5.5.7 SCL. 157

3.5.5.8 SCL2 . 159

3.5.6 Exponent Operation Instructions . 161

3.5.6.1 Instruction List . 161

3.5.6.2 EXP. 161

3.5.6.3 LOG . 162

3.5.6.4 LOGE . 163

3.5.6.5 ESQR . 164

3.5.6.6 SQR . 165

3.5.6.7 POW. 165

3.6 Data Processing Instructions . 166
3.6.1 Data Conversion Instructions. 166

3.6.1.1 Instruction List . 166

Table of Contents

-7-

3.6.1.2 INT . 167

3.6.1.3 BCD . 168

3.6.1.4 BIN . 169

3.6.1.5 FLT. 170

3.6.1.6 EBCD. 171

3.6.1.7 EBIN . 172

3.6.1.8 DABIN . 172

3.6.1.9 BINDA . 174

3.6.1.10 WBIT . 175

3.6.1.11 UNI . 177

3.6.1.12 DWTOW. 178

3.6.1.13 MCPY . 179

3.6.1.14 MSET. 181

3.6.1.15 DIS . 182

3.6.1.16 BTOW . 183

3.6.1.17 WTOB . 184

3.6.1.18 BITW . 186

3.6.1.19 WTODW. 187

3.6.1.20 ASCI. 188

3.6.1.21 HEX . 190

3.6.1.22 DECO . 191

3.6.1.23 ENCO . 193

3.6.2 Data Transfer And Comparison Instructions . 194

3.6.2.1 Instruction List . 194

3.6.2.2 MOV. 194

3.6.2.3 EMOV . 195

3.6.2.4 BMOV . 196

3.6.2.5 SMOV . 197

3.6.2.6 FMOV. 198

3.6.2.7 CML . 199

3.6.2.8 CMP . 200

3.6.2.9 ECMP. 201

3.6.2.10 ZCP . 202

3.6.2.11 EZCP. 203

3.6.3 Table Operation Instructions . 205

3.6.3.1 Instruction List . 205

3.6.3.2 SORTR . 205

3.6.3.3 SORTC . 207

3.6.3.4 SER . 210

Table of Contents

-8-

3.6.3.5 FDEL . 212

3.6.3.6 FINS. 213

3.6.3.7 POP . 215

3.6.3.8 RAMP. 216

3.6.4 Data Shift Instructions. 218

3.6.4.1 Instruction List . 218

3.6.4.2 ROR . 218

3.6.4.3 ROL . 219

3.6.4.4 RCR . 220

3.6.4.5 RCL . 221

3.6.4.6 SFTR . 222

3.6.4.7 SFTL . 223

3.6.4.8 WSFR. 224

3.6.4.9 WSFL . 225

3.6.4.10 SFWR . 226

3.6.4.11 SFRD. 227

3.6.4.12 SFR . 228

3.6.4.13 SFL. 229

3.6.5 Other Data Processing Instructions. 231

3.6.5.1 Instruction List . 231

3.6.5.2 SWAP . 231

3.6.5.3 BON. 232

3.6.5.4 SUM. 233

3.6.5.5 RAND. 234

3.6.5.6 XCH . 235

3.6.5.7 ABS . 236

3.6.5.8 EABS . 237

3.6.5.9 EFMOV . 238

3.6.5.10 CCD . 240

3.6.5.11 CRC . 241

3.6.5.12 LRC . 243

3.7 Matrix Instructions . 244
3.7.1 Matrix Operation Instructions . 244

3.7.1.1 Instruction List . 244

3.7.1.2 BK+ . 245

3.7.1.3 BK– . 246

3.7.1.4 MAND . 248

3.7.1.5 MOR. 249

3.7.1.6 MXNR . 250

Table of Contents

-9-

3.7.1.7 MXOR . 252

3.7.1.8 MINV . 253

3.7.2 Matrix Comparison Instructions . 254

3.7.2.1 Instruction List . 254

3.7.2.2 BKCMP#. 255

3.8 String Instructions. 257
3.8.1 Instruction List . 257

3.8.2 STR. 257

3.8.3 STRMOV . 261

3.8.4 VAL . 262

3.8.5 ESTR . 267

3.8.6 EVAL. 270

3.8.7 $ADD . 274

3.8.8 LEN. 275

3.8.9 INSTR. 276

3.8.10 RIGHT . 278

3.8.11 LEFT. 279

3.8.12 MIDW. 281

3.8.13 MIDR . 283

3.8.14 $MOV. 285

3.9 Clock Instructions . 286
3.9.1 Instruction List . 286

3.9.2 TCMP . 286

3.9.3 TZCP . 288

3.9.4 TADD . 289

3.9.5 TSUB . 290

3.9.6 HTOS . 291

3.9.7 STOH . 293

3.9.8 TRD. 294

3.9.9 TWR . 295

3.9.10 HOUR . 296

3.10 MC Axis Control Instructions (EtherCAT&Pulse Output) . 298
3.10.1 Basic Instructions . 298

3.10.1.1 Instruction List. 298

3.10.1.2 MC Axis State Machine . 298

3.10.1.3 MC_Power . 300

3.10.1.4 MC_Reset . 302

3.10.1.5 MC_ReadStatus . 304

Table of Contents

-10-

3.10.1.6 MC_ReadAxisError . 307

3.10.1.7 MC_ReadDigitalInput . 309

3.10.1.8 MC_ReadActualPosition . 311

3.10.1.9 MC_ReadActualTorque . 312

3.10.1.10 MC_ReadActualVelocity. 314

3.10.1.11 MC_SetPosition. 315

3.10.1.12 MC_TouchProbe . 318

3.10.1.13 MC_MoveRelative. 325

3.10.1.14 MC_MoveVelocity . 332

3.10.1.15 MC_MoveAbsolute . 336

3.10.1.16 MC_Jog. 343

3.10.1.17 MC_TorqueControl . 350

3.10.1.18 MC_Home . 356

3.10.1.19 MC_Stop. 360

3.10.1.20 MC_Halt . 363

3.10.1.21 MC_MoveFeed . 367

3.10.1.22 MC_MoveBuffer. 375

3.10.1.23 MC_ImmediateStop . 381

3.10.1.24 MC_MoveSuperImposed. 385

3.10.1.25 MC_MoveVelocityCSV. 389

3.10.1.26 MC_SyncMoveVelocity . 391

3.10.1.27 MC_SyncTorqueControl . 393

3.10.1.28 MC_SetAxisConfigPara. 395

3.10.1.29 MC_FollowVelocity . 402

3.10.1.30 Axis Fault Codes . 404

3.10.2 Cam and Gear Instructions . 410

3.10.2.1 Instruction List. 410

3.10.2.2 MC_CamIn . 411

3.10.2.3 MC_CamOut . 425

3.10.2.4 MC_GetCamTablePhase . 427

3.10.2.5 MC_GetCamTableDistance. 429

3.10.2.6 MC_GearIn . 430

3.10.2.7 MC_GearOut . 434

3.10.2.8 MC_Phasing. 435

3.10.2.9 MC_SaveCamTable . 438

3.10.2.10 MC_GenerateCamTable . 439

3.10.2.11 MC_DigitalCamSwitch . 445

3.10.2.12 MC_GearInPos . 449

3.10.2.13 Fault Codes. 456

Table of Contents

-11-

3.10.3 Axis Group Control Instructions . 462

3.10.3.1 Instruction List. 462

3.10.3.2 MC_MoveLinear. 462

3.10.3.3 MC_MoveCircular . 472

3.10.3.4 MC_MoveEllipse . 478

3.10.3.5 MC_GroupStop . 482

3.10.3.6 MC_GroupPause . 485

3.10.3.7 Fault Codes . 487

3.11 MC Axis Control Instructions (CANopen) . 491
3.11.1 Instruction List . 491

3.11.2 MC_Power_CO . 492

3.11.3 MC_Reset_CO . 493

3.11.4 MC_ReadActualVelocity_CO. 495

3.11.5 MC_ReadActualPosition_CO . 495

3.11.6 MC_Halt_CO . 496

3.11.7 MC_Stop_CO . 498

3.11.8 MC_MoveVelocity_CO . 499

3.11.9 MC_MoveRelative_CO . 501

3.11.10 MC_MoveAbsolute_CO . 504

3.11.11 MC_Home_CO . 506

3.11.12 MC_Jog_CO. 507

3.11.13 MC_WriteParameter_CO . 509

3.11.14 MC_ReadParameter_CO . 512

3.11.15 MC_SetOverride. 513

3.11.16 Error Codes of CANopen Axis Control Instructions . 517

3.12 HC Axis Control Instructions (Pulse Input) . 518
3.12.1 Instruction List . 518

3.12.2 ENC_Counter. 518

3.12.3 ENC_Reset . 526

3.12.4 ENC_Preset . 527

3.12.5 ENC_TouchProbe . 532

3.12.6 ENC_ArrayCompare . 547

3.12.7 ENC_StepCompare. 560

3.12.8 ENC_Compare . 566

3.12.9 ENC_GroupArrayCompare . 567

3.12.10 ENC_ReadStatus . 570

3.12.11 ENC_DigitalOutput. 572

3.12.12 ENC_ResetCompare . 573

3.12.13 ENC_SetUnit . 577

Table of Contents

-12-

3.12.14 ENC_SetLineRotationMode . 579

3.12.15 HC_Preset . 581

3.12.16 HC_Counter. 585

3.12.17 HC_TouchProbe . 588

3.12.18 HC_Compare . 594

3.12.19 HC_ArrayCompare . 596

3.12.20 HC_StepCompare. 599

3.12.21 Error Codes . 603

3.13 Timer Instructions . 608
3.13.1 Timer Instruction Parameters . 608

3.13.2 Instruction List . 609

3.13.3 TPR . 609

3.13.4 TONR. 611

3.13.5 TOFR . 613

3.13.6 TACR . 615

3.14 Pointer instruction . 617
3.14.1 Instruction List . 617

3.14.2 PTGET. 618

3.14.3 PTINC . 619

3.14.4 PTDEC. 620

3.14.5 PTADD . 621

3.14.6 PTSUB . 622

3.14.7 PTSET . 622

3.14.8 PTMOV . 625

3.14.9 PT#. 625

3.15 Communication Instructions . 627
3.15.1 Instruction List . 627

3.15.2 SerialSR . 628

3.15.3 SerialSend . 631

3.15.4 SerialRcv . 633

3.15.5 Error Codes of Serial Port Free Protocol Communication Instructions . 636

3.15.6 MB_Master . 636

3.15.7 MB_Client . 639

3.15.8 Fault Codes of Modbus Communication Instructions . 642

3.15.9 Connection-oriented Socket TCP Communication . 642

3.15.10 TCP_Listen. 643

3.15.11 TCP_Accept . 645

3.15.12 TCP_Connect . 647

Table of Contents

-13-

3.15.13 TCP_Close . 649

3.15.14 TCP_Send. 650

3.15.15 TCP_Receive . 652

3.15.16 TCP Server Communication Instance . 654

3.15.17 TCP Client Communication Instance . 655

3.15.18 Connectionless Socket UDP Communication . 657

3.15.19 UDP_Bind. 657

3.15.20 UDP_Receive. 658

3.15.21 UDP_Send . 660

3.15.22 UDP Communication Instance . 662

3.15.23 Error Codes of Socket Communication Instructions. 663

3.15.24 ETC_ReadParameter_CoE . 666

3.15.25 ETC_WriteParameter_CoE . 668

3.15.26 ETC_RestartMaster. 671

3.15.27 Instruction Codes . 674

3.15.28 EIP_Generic_Service . 676

3.15.29 EIP_Get_Attributes_All . 678

3.15.30 EIP_Get_Attribute_Single . 680

3.15.31 EIP_Set_Attributes_All . 682

3.15.32 EIP_Set_Attribute_Single . 684

3.15.33 EIP_Apply_Attributes . 686

3.15.34 EIP_NOP . 688

3.15.35 EIP_Reset . 690

3.15.36 EIP_Start. 692

3.15.37 EIP_Stop . 694

3.16 Other Instructions. 696
3.16.1 PID . 696

4 Instruction Description (LiteST) .. 715

4.1 Data Operation Instructions. 715
4.1.1 Trigonometric Function Instructions . 715

4.1.1.1 Instruction List . 715

4.1.1.2 SIN . 715

4.1.1.3 COS . 716

4.1.1.4 TAN . 716

4.1.1.5 ASIN. 717

4.1.1.6 ACOS. 718

4.1.1.7 ATAN . 718

4.1.2 Exponent Operation Instructions . 719

Table of Contents

-14-

4.1.2.1 Instruction List . 719

4.1.2.2 LOG . 719

4.1.2.3 LN. 720

4.1.2.4 SQRT. 720

4.1.2.5 EXPT . 721

4.1.3 Explicit Conversion Instructions . 722

4.1.3.1 Instruction List . 722

4.1.3.2 INT_TO_<TYPE>. 722

4.1.3.3 DINT_TO_<TYPE> . 723

4.1.3.4 BOOL_TO_<TYPE> . 724

4.1.3.5 REAL_TO_<TYPE> . 724

4.1.3.6 BYTE_TO_TYPE . 725

4.1.3.7 TO_<TYPE>. 726

4.1.4 Comparison Instructions . 727

4.1.4.1 Instruction List . 727

4.1.4.2 MAX . 727

4.1.4.3 MIN . 728

4.1.5 Shift Instructions . 729

4.1.5.1 Instruction List . 729

4.1.5.2 SHL . 729

4.1.5.3 SHR . 730

4.1.6 Absolute Value Operation Instruction . 731

4.1.6.1 ABS . 731

4.1.7 Bit Operators . 731

4.1.7.1 Instruction List . 731

4.1.7.2 AND . 731

4.1.7.3 OR . 732

4.1.7.4 XOR . 733

4.1.7.5 NOT . 734

4.2 Program Logic Instructions. 735
4.2.1 Binary Operation Instruction . 735

4.2.1.1 SEL. 735

5 Appendix .. 736

5.1 ASCII Code Conversion. 736

5.2 Fault Codes . 739

Table of Contents

Overview

-15-

1 Overview

1.1 Instruction Composition

1.1.1 LD Instructions

An instruction consists of the opcode and operand.

● Opcode: Instruction function description
● Operand: Data used in the instruction

The operand includes the input data, output data, and numeric data.

Input (S)

The input indicates data used in the operation.

The usage of input data is described as follows according to the variables and elements specified in
each instruction.

Table 1–1 Input data

Category Description

Constant
A constant specifies a numerical value used in the operation.

It cannot be changed during program execution since it is configured when the program is
created.

Element and variable
During program execution, data used in the instruction can be changed by modifying data
stored in the specified element.

Output (D)

The output element stores data after operations. Sometimes, data used in the operation needs to be
stored in the target before the operation, depending on the specific instruction.

The following is an example of the addition operation of INT type data:

①: Only the operation result is saved.

The D element must be configured with a variable or element for storing data.

Number of Elements/Transfers/Data/Strings (n)

In instructions involving specifying multiple elements, the number of repetitions, the number of groups
of data to be processed, and the number of strings, the numbers of elements, transfers, data, and
strings used are determined by n.

The following is an example of a block transfer instruction:

Overview

-16-

①: The data to be transferred is specified by the BMOV instruction.

1.1.2 LiteST Instructions

A LiteST instruction consist of an instruction name, parameters, and return values, which are defined
as follows:

● Instruction name: Instruction function description
● Parameters: Data used in the instruction
● Return values: Result obtained after the instruction is executed

Input (S)

The input indicates data used in the operation.

The usage of input data is described as follows according to the variables and elements specified in
each instruction.

Table 1–2 Input data

Category Description
Constant A constant specifies a numerical value used in the

operation. It cannot be changed during program
execution since it is configured when the program is
created.

Element and variable During program execution, data used in the instruction
can be changed by modifying data stored in the
specified element.

Output (D)

The output element stores data after operations. Sometimes, data used in the operation needs to be
stored in the target before the operation, depending on the specific instruction.

Return Value (R)

The return value is the result obtained after the instruction is executed. Sometimes, data used to
operate on the instruction result needs to be stored in the target after the operation, depending on the
specific instruction.

The following is an example of the comparison operation of INT type data:

R:=MAX(S1, S2)

Overview

-17-

MAX(S1, S2)

①: Only the operation result

②: Input parameter

③: Input parameter

1.1.3 Lists of Elements and Variables

The PLC supports bit elements, word elements, special elements, variables, arrays, structures, and cus-
tom variables.

Bit Elements
Type Range Number of Points Data Type Description

X X0 to X1777 1024 points, octal BOOL Not retained upon power failure

Y Y0 to Y1777 1024 points, octal BOOL Not retained upon power failure

M M0 to M7999 8000 points BOOL
M0 to M999 not retained upon
power failure, M1000 to M7999
retained upon power failure

S S0 to S4095 4096 points BOOL
S0 to S999 not retained upon
power failure, S1000 to S4095
retained upon power failure

B B0 to B32767 32768 points BOOL
B0 to B999 not retained upon
power failure, B1000 to B32767
retained upon power failure

Word Elements
Type Range Number of

Points
Data Type Description

D D0 to D7999 8000 points BOOL/INT/DINT/REAL

D0 to D999 not retained
upon power failure, D1000
to D7999 retained upon
power failure

R R0 to R32767 32768 points BOOL/INT/DINT/REAL

R0 to R999 not retained
upon power failure, R1000
to R32767 retained upon
power failure

W W0 to W32767 32768 points BOOL/INT/DINT/REAL

W0 to W999 not retained
upon power failure, W1000
to W32767 retained upon
power failure

Overview

-18-

Custom Variables
Type Range Capacity Data Type Description

Pointer - 4096 points (32-bit)
BOOL/INT/DINT/REAL
array

Not retained upon power
failure

BOOL

- 2 MB (8-bit)

BOOL/BYTE/INT/DINT/
REAL/IP/STRING variable

BOOL/BYTE/INT/DINT/
REAL/IP/STRING array

BOOL/BYTE/INT/DINT/
REAL/IP/STRING
compound structure

256 KB data retained upon
power failure, other data
not retained upon power
failure

BYTE
INT
DINT
REAL
IP
STRING

Special Elements
Type Function Range Number of Points Description

L Jump label L0 to L1023 1024 points

Used in
combination with
the CJ and LBL
instructions

K Decimal

K-32,768 to K32,767 (16-bit),

K-2,147,483,648 to K2,147,483,647
(32-bit)

- -

H Hexadecimal
H0000 to HFFFF (16-bit),

H00000000 to HFFFFFFFF (32-bit)
- -

E Floating-point number,
real number

–1.0*2e128 to –1.0*2e-126, 0, 1.0*2e-

126 to 1.0*2e128 (32-bit) - -

Character Character, string - -
Used as
instruction
parameters

M8000 and D8000 Special Elements

Special Element Function Description Access Permissions

M8000 ON during running of the user program Read-only

M8001 Negated M8000 state Read-only

M8002 ON in the first operation cycle of the user program Read-only

M8003 Negated M8002 state Read-only
- - -
M8011 Free-run clock with a cycle of 10 ms Read-only

M8012 Free-run clock with a cycle of 100 ms Read-only

M8013 Free-run clock with a cycle of 1s Read-only

M8014 Free-run clock with a cycle of 1 min Read-only
- - -
M8020 Zero flag Read-only

M8021 Borrow flag Read-only

M8022 Carry flag Read-only

M8029 Multi-cycle instruction execution completion flag,
applicable to the RAMP, SORTC, and SORTR
instructions

Read-only

Overview

-19-

Special Element Function Description Access Permissions
- - -
M8040 SFC, SFC disabling flag Read-write
- - -
M8161 OFF: 16-bit mode; ON: 8-bit mode;

Bit processing mode for ASCII/HEX/CCD/LRC/CRC/RS

Read-write

M8163 BINDA instruction output character switchover flag
(retained or switched to 0000h)

Read-write

M8165 SORTR instruction descending sort enabling flag Read-write

M8168 SMOV instruction data format setting: OFF-BCD mode
or ON-HEX mode

Read-write

M8333 Flag indicating all BKCMP instruction matrix
comparison results are 1

Read-only

Other undefined elements after M8000 cannot be used in the programs.

Special Elements Function Description Access Permissions

D8066 Critical errors in user programs and instructions
(triggered, not reset)

Read-only

D8067 Minor errors in user programs and instructions
(triggered, not reset)

Read-only

The access permissions are described as follows:

● Read-only: The PLC output is read-only by the user. Data written by the user will be overwritten.
● Read-write: The PLC input can be read and written by the user.

1.2 Elements

1.2.1 Bit Elements

The PLC supports bit elements. The following table describes the specific type, range, number of
points, and description of bit elements.

Type Range Number of Points Data Type Description
X X0 to X1777 1024 points, octal BOOL Input

Y Y0 to Y1777 1024 points, octal BOOL Output

M M0 to M7999 8000 points BOOL M0 to M999 not retained
upon power failure, M1000
to M7999 retained upon
power failure

S S0 to S4095 4096 points BOOL S0 to S999 not retained
upon power failure, S1000
to S4095 retained upon
power failure

B B0 to B32767 32768 points BOOL B0 to B999 not retained
upon power failure, B1000
to B32767 retained upon
power failure

Overview

-20-

1.2.2 Word Elements

The PLC supports word elements. The following table describes the specific type, range, number of
points, and description of word elements.

Type Range Number of
Points

Data Type Description

D D0 to D7999 8000 points BOOL/INT/DINT/REAL
D0 to D999 not retained upon power
failure, D1000 to D7999 retained upon
power failure

R R0 to R32767 32768 points BOOL/INT/DINT/REAL
R0 to R999 not retained upon power
failure, R1000 to R32767 retained upon
power failure

W W0 to W32767 32768 points BOOL/INT/DINT/REAL
W0 to W999 not retained upon power
failure, W1000 to W32767 retained
upon power failure

Example

1. Word element used as a 16-bit integer
Use the 16-bit assignment instruction to assign the value 100 to the word element D100, which
occupies D100.

2. Word element used as a 32-bit integer
Use the 32-bit assignment instruction to assign the value 100 to the word element D100, which
occupies occupy D100 (low-order) and D101 (high-order).

3. Word element used as a floating-point number
Use the floating-point instruction to assign the value 100 to the word element D100, which occupies
D100 and D101.

1.2.3 Special Elements

The PLC supports special elements. The following table describes the specific type, range, and descrip-
tion of special elements.

Overview

-21-

Type Function Range Number of
Points

Description

SBR Subprogram label SBR0 to SBR1023 1024

Used by the CALL
instruction. Subprograms
can be set as common
subprograms or encrypted
subprograms, which share
the capacity of the system
program area.

L Jump label L0 to L1023 1024 points Used in combination with
the CJ and LBL instructions

I

External interrupt - 4
Interrupt label, X port rising
edge, falling edge, rising
and falling edge

Timer interrupt - 4 Timing duration (ms)

Compare interrupt - 16
Limited by the number of
internal encoder axes
(high-speed counters)

K Decimal
K-32,768 to K32,767 (16-bit), K-
2,147,483,648 to K2,147,483,647
(32-bit)

- -

H Hexadecimal
H0000 to HFFFF (16-bit),
H00000000 to HFFFFFFFF (32-bit)

- -

E
Floating-point
number, real
number

–3.402823e+38 to –1.175495e-38, 0,
+1.175495e-38 to +3.402823e+38 -

Up to 7 decimal significant
digits for a single-precision
floating-point number (the
excess will be
automatically rounded off)

Character Character, string - -
Used as instruction
parameters

A single-precision floating-point number has a maximum of 7 significant decimal digits. If the 9-bit
binary floating-point number 1234567.89 is transferred to the destination location D0, the actual value
of D0 is 1234567.9. The precision is reduced.

1.2.4 Bit-based Operation on Word Elements

Bit-based operations on word elements can be implemented by using a dot (.). For example, writing
D0.8 during programming indicates an operation on the 8th bit of the D0 word element.

Example:

The bits of the word element are counted from the 0th bit. When the 8th bit of D0 is 0, the output M0 is
OFF; when the 8th bit of D0 is 1, the output M0 is ON.

Overview

-22-

1.3 Variables

1.3.1 Custom Variables

In a PLC programming system, in addition to using direct addresses, such as the X, Y, M, D, R and other
elements, for programming, you can also use variables without specific storage addresses for program-
ming to implement the required control logic, or the complete control process of the application ob-
ject, so as to facilitate code compiling and improve the readability of the code.

Table 1–3 Supported custom variables

Type Capacity Data Type Description

Pointer 4096 points (32-bit) BOOL/INT/DINT/REAL
Pointer Variable

Not retained upon power failure
BOOL

2 MB (8-bit)

BOOL/INT/DINT/REAL/IP/STRING/
BYTE variable

BOOL/INT/DINT/REAL/IP/STRING/
BYTE array

BOOL/INT/DINT/REAL/IP/STRING/
BYTE compound structure

256 KB data retained upon power failure

Other data not retained power failure

INT
DINT
REAL
IP
STRING
BYTE

1.3.2 Defining Variables

The PLC supports custom variables. You can define a global variable and directly use the variable name
during programming. Abide by the following rules when naming a global variable:

● It contains only letters, digits, Chinese characters, and underscores (_) and does not start with a
digit or underscore (_).

● It is not the same as the name of an element, constant, standard data type, instruction,
subprogram, or interrupt subprogram.

● It cannot be keywords such as ARRAY, TRUE, FALSE, ON, OFF, and NULL.

Variable Data Types

Structures and arrays are supported. The following table lists the supported data types.

Table 1–4 Variable data types

Data Type Description
BOOL Boolean
INT Single-word integer

DINT Double word integer

REAL Real number
STRING String type

IP IP
BYTE Byte

Overview

-23-

Defining Global Variables

"Global Variable" in the project management window is used for variable management, allowing you
to add, delete, and edit variables.

1. Add a variable table and variables. Right-click "Global Variable" and choose "New Global Variable
Table" to create a global variable table.

2. Double-click the variable table to go to the variable editing interface.

● Edit a variable: Double-click the text box to edit or click the drop-down box to select.
● Add a variable: Right-click and choose "Insert Row(&I)".
● Delete a variable: Right-click the row to be deleted and choose "Delete Row(&L)".

Parameter Name Description

Variable Name Custom variable name. You can directly use the
variable name for programming.

Type The data types include BOOL, INT, DINT, REAL, IP,
STRING, and BYTE variables, BOOL, INT, DINT, REAL,
IP, STRING, and BYTE arrays, and BOOL, INT, DINT,
REAL, IP, STRING, and BYTE structures.

If the data type is an array, you can set the type and
length of the array variable in the displayed dialog
box. If the data type is a pre-defined structure, you can
define a structure variable.

Initial Value You can assign an initial value to a variable. For arrays
and structures, the initial value of each element can be
specified individually.

Overview

-24-

Parameter Name Description

Power Down Hold "Power Down Hold" can be set to "Non Retained" or
"Retained". The specified initial value is valid only
when this parameter is set to "Non Retained".

Network Public This parameter can be set to "Private", "Public", or
"In/Out". For structure, specific union, structure array,
and specific union array variables, this parameter
must be set to "Private".

When this parameter is set to "Public", a label
configuration file named "LabelConfig.xml" will be
generated in the "InteractiveFile" folder under the
project directory after project compiling. Importing
this configuration file into third-party software enables
label communication.

1.3.3 Defining Arrays

During user programming, if the data type is set to "ARRAY", an array can be defined.

1. Select the type and length of the array variable in the displayed dialog box and click "OK" to define
an array.

2. Click "+" next to the array variable to edit the initial values and comments of member variables.

When an array is used in an instruction, if the array subscript is not specified, the access starts from the
first element of the array. If the array subscript is specified, the access starts from the element
specified by the subscript.

The following are two examples.

Overview

-25-

● Assign Array_0[0]–Array_0[9] to D0–D9.

● Assign Array_0[2]–Array_0[3] to D0–D1.

1.3.4 Defining Structures

To define a structure variable, you need to define the data structure of the structure in advance.
Right-click "Structure" under "Global Variable", choose "New Data Structure", and enter a structure
name. The structure is defined. When defining a variable in the variable table, you can select this
structure as the data type of the variable to define the variable as a structure variable.

After the structure and member variables are created, you can select "Stru" in the "Data Type" column
to define a structure variable.

Click the "Initial Value" column of the structure variable to set the initial values of structure variable
members.

1.3.5 Defining IP Variables

You can define IP variables in the variable table or program. An IP variable occupies 32 bits, and the
default value is "192.168.1.0".

● Select "IP" from the "Type" drop-down list.

Overview

-26-

● Use an IP variable in the ST program, and assign a value to the IP variable by using single quotation
marks.

1.3.6 Defining Strings

You can define string variables in the variable table or program.

● Select "STRING" from the "Type" drop-down list of the variable table, and set the length of the
string in the displayed dialog box.
The default length is 128 bytes and the maximum length is 256 bytes. The last byte is the terminator
by default.

Overview

-27-

● Use a string variable in the ST program, and assign a value to the string variable by using single
quotation marks.

1.3.7 Defining Specific Unions

A specific union is similar to a structure in that they both are collections of different types of elements.
The difference lies in the fact that each member of a structure has its own independent storage space,
while the members of a specific union share the same memory space (which is why a specific union is
called a union). This will inevitably cause the members to overwrite each other, resulting in data loss.
Therefore, the ideal application scenario for a specific union is when its members are not used
simultaneously, but rather one after another.

You can define specific union variables in the variable table or program. There are three types of
specific union variables: _uBOOL8_UNION_DUT, _uBOOL16_UNION_DUT, and _uBOOL32_UNION_
DUT, corresponding to lengths of 1 byte, 2 bytes, and 4 bytes, respectively.

● Select the required specific union variable type from the "Type" drop-down list of the variable
table.

Take _uBOOL32_UNION_DUT as an example. Create a variable in the variable table, and select
"_uBOOL32_UNION_DUT" from the "Type" drop-down list.

Overview

-28-

● In a program, you can access different members of a specific union variable by using the dot
operator ("."). This allows you to parse variables in different scenarios.

1.3.8 Using Variables

After a variable is defined, you can directly use the variable name for programming without assigning
elements.

● When a common variable is used, directly use the variable name during programming.
● When an array variable is used, use "[Number]" to indicate an array element during programming.

The number starts from 0.
● When a structure variable is used, use "Structure variable name.Member variable" to indicate a

structure member during ST programming.
● When an IP or string variable is used, use a value enclosed in a pair of single quotation marks

('Value') to indicate the value of the variable.

For BYTE, INT, and DINT variables and arrays, you can perform bit operations using the syntax
"variable_name.bit_number" in programming. For details, see “1.2.4 Bit-based Operation on Word
Elements” on page 21.

1.4 Graphical Block Instructions

1.4.1 Instruction Composition

Some instructions support graphical block programming. An graphical block instruction is composed
of the instruction name, flow signal, input side, and output side. The following figure shows the compo-
sition of a graphical block instruction of a motion control axis.

The floating-point numbers such as the target position and target velocity in the instructions are
single-precision floating-point data. Therefore, the values in the instructions must meet the
requirements of the range and precision of single-precision floating-point data when being processed
in the PLC program. That is, a value should fall between –3.4E38 and +3.4E38, with a maximum of 7
significant digits. If a value has more than 7 significant digits, the excess part will be automatically
rounded.

Overview

-29-

Since AutoShop 4.0.0.0 with PCB software 3.0.0.0, the motion control axis control instructions
(EtherCAT/pulse output, pulse input) of graphical blocks support access by axis name. "AxisID" is
changed to "Axis", and access by axis ID is still supported.

1.4.2 Programming

During programming, you only need to enter the name of a graphical block instruction and simply
press the "Enter" key to add the graphical block instruction to the program network. You can also di-
rectly edit the instruction parameters.

● When editing a ladder diagram, enter an instruction name or select an instruction name according
to the instruction prompt and click "OK". The graphical block instruction is added to the ladder
diagram network.

● Enter parameters in the graphical block instruction to complete editing of the graphical block
instruction.
In the instruction, parameters (with "???") next to ① are mandatory, and parameters next to ② are
optional. If a parameter is not used, the default parameter value is used automatically in the
instruction input, and the state cannot be obtained in the instruction output in the program or
during monitoring and debugging.

● All instructions under "Instruction Set" in the "Toolbox" pane are in graphical block mode. During
programming, you can directly double-click an instruction under "Instruction Set" to add the
instruction to the current focus position of the ladder diagram.

Overview

-30-

①: Double-click an instruction to add it to the ladder diagram. ②: The instruction is added
successfully.

1.4.3 Labeling Function

Graphical blocks can be used to quickly increase or decrease label numbers and implement incremen-
tal paste.

Quickly Increasing/Decreasing Label Numbers

When editing the ladder diagram, you can press "Alt"+"UP"/"DOWN" to quickly increase or decrease
the label number of an element or array subscript.

● This function can be used during command editing.

● For complex array variables, you can select the array subscript that needs to be increased or
decreased.

● When a function block is selected, the operation will be performed on all pins.

Overview

-31-

Incremental Paste

When editing the ladder diagram, you can use the incremental paste function to continuously paste
the copied elements for multiple times. At the same time, the element number or array subscript can
be specified during the process.

1. Select an element in the ladder diagram and press "Ctrl"+"C", or right-click the element and choose
"Copy".

2. Right-click the destination position and choose "Increment paste" from the shortcut menu (or press
"Ctrl"+"Shift"+"V").

Overview

-32-

3. Specify the increment value and paste times in the displayed configuration window.

Overview

-33-

● "Incremental pastes number (1–10)": You can set the paste times.
● "After increment": You can enter the expected value after increment, and "Increment number" is

automatically calculated based on this value.
● "Increment number": You can set the increment in the target element each time a paste

operation is performed.
● "Bit operate increment": During bit operation of an element, if this option is selected, the

increment applies to the bit operation of the target element.
● "Batch setting increment": You can set the increments in batches.

4. Click "OK". The paste operation is performed based on the configuration.

Overview

-34-

1.5 Function Blocks and Functions (FB/FC)

1.5.1 Function Blocks (FB)

A function block (FB) abstractly encapsulates the part used repeatedly in a program into a general pro-
gram block that can be called repeatedly within the program. Using encapsulated function blocks in
programming can improve program development efficiency, reduce programming errors, and improve
program quality.
Different instances can be created based on the same function block. These instances can output one
or more values during execution. The system allocates memory for internal variables of each instance,
and these variables describe the running state of the function block. With the same input parameters,
different instances provide different calculation results.

The basic steps of using a function block are as follows: Create a function block -> Program the
function block -> Instantiate the function block -> Run the function block -> Encapsulate the function
block -> Import the function block.

Creating a Function Block

Expand the "Programming" node in the project management window, right-click "Function Block
(FB)", or right-click a folder under "Function Block (FB)", choose "New", enter a name in the displayed
dialog box, and click "OK". A function block is created successfully.

Overview

-35-

Programming the Function Block

Function blocks can be programmed only in the ladder diagram. Double-click the created function
block under "Function Block (FB)" to go to the function block program editing interface. Compared
with ordinary program editing, the function block program editing interface has an additional input/
output and local variable definition window.

①: Input/output and local variable definition window

Overview

-36-

1. "I/O Type": attribute of the function block variable

Variable Type Type Description Description

IN Input variable The parameter is provided by the logic block that calls the variable,
and the input is transferred to the instruction of the logic block.

OUT Output variable The parameter is provided to the logic block that calls the variable,
that is, structure data is output from the logic block.

INOUT Input/Output
variable

An input/output variable can not only be transferred to the called
logic block, but also can be modified inside the called logic block.

VAR Local variable A local variable is only valid in the current logic block and cannot be
accessed externally.

2. "Name": name of the variable
3. "Data Type"

The supported data types include BOOL, INT, DINT, REAL, BYTE, IP, and STRING. You can also define
array variables and structure variables. To use structure variables, you need to create structure
members in the structure of global variables.

4. "Initial Value"
You can set the initial value of a variable when execution starts.

5. "Power Down Hold"
This attribute allows you to choose whether to retain the value of a variable upon power failure.

● "Non Retained": The variable resumes the specified initial value after power-on.
● "Retained": If you select "Re-initialize retentive variables when downloading", the variable

resumes the specified initial value during program downloading; otherwise, it retains the
previous value.

The function block program adopts ladder diagram programming. It can call functions (FC) or function
blocks (FB) and supports up to 8 levels of nested calls.

In addition to variables, the function block program can also use supported elements, such as M8000,
as global variables.

Example: Counting Up with FB Encapsulation

Instantiating and Calling the Function Block

After the FB program is compiled, the function block needs to be instantiated.

● Method 1: Directly enter the FB name in the ladder diagram application, and then enter the
instance name in "???" at the top of the function block instruction to instantiate the function block.

Overview

-37-

● Method 2: Directly enter the FB name+Instance name in the ladder diagram application and click
"OK" to instantiate the function block.

After instantiation is completed, edit the instruction parameters in the FB instruction as required by
the program to call the instantiated function block.

● Method 3: Double-click the FB instruction under "FB" of the "Toolbox" pane to add the FB instruc-
tion to the selected position in the ladder diagram. Then enter the instance name in the graphic
block instruction to complete the instantiation definition.

Overview

-38-

Running the Function Block

After the function block is instantiated, the En of the function block is connected to the ladder
network. When the En network flow is ON, the function block program is executed, and the output of
the function block changes with the input state and internal variable state. When the En network flow
is OFF, the function block program is not executed, and output of the function block is not refreshed.

When the counter function block CUT flow is ON, the function block is executed. The output CV
increases by 1 when the input condition CU changes on the rising edge.

When the counter function block CUT flow is OFF, the function block is not executed. The output CV is
not refreshed when the input condition CU changes on the rising edge.

Encapsulating the Function Block

The function block can be encapsulated into a library after editing and debugging. The function block
encapsulated into a library can be multiplexed in different programs through library management of
AutoShop.

1. Right-click "Function Block (FB)" under "Programming" and choose "Export FB".

Overview

-39-

2. Select the function block to be encapsulated and set the version in the displayed "Export Library"
window. Select "Source Visible" as required. If the source code is visible, after importing the library
in the project, you can debug or modify the function block program. If the source code is invisible,
after the library is imported, the function block program can only be called but not viewed or
modified in the project.

Overview

-40-

3. Specify "Export Path" and click "OK". The FB is exported to the specified location, and a function
block in .fe format is generated.

Encrypted function blocks, function blocks that call encrypted function blocks, and function blocks that call en-
crypted functions cannot be selected for export.

Importing the Function Block

After the function block is exported as a library, it can be called in other programs after being
imported. You can import the function block library in either of the following two ways.

● Method 1: Right-click "Function Block (FB)" under "Programming" in the project management
window and choose "Import FB" to import the library.

Overview

-41-

This method can only be used to import function blocks of which the source code is visible. After
importing, you can double-click to open the function block program and edit and debug it. The
function block library imported using this method is managed in the project. If you want to call the
function block in a new project, you need to re-import the library.

● Method 2: Right-click "Library" in the "Toolbox" pane and choose "Import FB" to import the library.
This method can be used to import function blocks of which the source code is visible or invisible.
The libraries imported this way are managed as custom libraries, and the function blocks in the
libraries can be used directly when a new project is created. You can double-click the function block
library imported in the toolbox to directly add it to the ladder diagram program as an instruction. If
you need to view or modify a function block program of which the source code is visible, you need
to import it in the project management window.

1.5.2 Functions (FC)

A function (FC) is an independently encapsulated program block. The program block can define input/
output parameters and non-static internal variables. That is, when a function is called with the same
input parameters, the output results are the same. An important feature of a function is that its internal
variables are static, and there is no internal state storage. You will obtain the same output with the
same input parameters. This is the main difference between a function and a function block.
FC, as a basic arithmetic unit, is often used in various mathematical operations. For example, sin(x)
and sqrt(x) are typical functions.

The basic steps of using a function are as follows: Create a function -> Program the function -> Call the
function -> Run the function -> Encapsulate the function.

Overview

-42-

Creating a Function

Expand the "Programming" node in the project management window, right-click "Function (FC)", or
right-click a folder under "Function (FC)", choose "New", enter a name in the displayed dialog box, and
click "OK". A function is created successfully.

Programming the Function

Functions can be programmed only in the ladder diagram. Double-click the created function under
"Function (FC)" to go to the function program editing interface. The editing interface of the function
program is similar to that of the function block. Compared with ordinary program editing, the function
program editing interface has an additional input/output and local variable definition window.

In the input/output and local variable definition window, you can define the input (IN), output (OUT),
input/output (INOUT), and local variable (VAR) of a function block. The supported data types include
BOOL, INT, DINT, REAL, BYTE, IP, and STRING. You can also define array variables and structure
variables. To use structure variables, you need to create structure members in the structure of global
variables.

● Compared with variables of function blocks, variables of functions do not support configuration of
initial values, and all local variables are non-retentive.

● The function program adopts ladder diagram programming. It can call functions. A function can be
called by other functions, function blocks, and programs.

● In addition to variables, the function program can also use M8000 as an always ON variable.
● In a function program, instructions related to states or executed for multiple cycles, such as LDP

and MC_Power, cannot be used.

Overview

-43-

Example: Encapsulating the Addition Function

Calling the Function

The function program can be called directly or used in an application after it is compiled.

● Method 1: Directly enter the function name in the ladder diagram application, press "Enter", and
then edit the input/output parameters in the graphic block instruction.

①: Enter the function name.

②: Click "OK".

③/④: Add input/output variables.

● Method 2: After a function program is created, the corresponding instruction is generated under
"FC" in the "Toolbox" pane. Double-click the FC instruction under "FC" to add the FC instruction to
the selected position in the ladder diagram.

①: Double-click the FC instruction to add it.
②: Add input parameters.

③: Add output parameters.

Running the Function

After the function is called, the En of the function is connected to the ladder network. When the En
network flow is ON, the function program is executed, and the output of the function is refreshed

Overview

-44-

according to the input state operation. When the En network flow is OFF, the function program is not
executed, and output of the function is not refreshed.

①: The function is executed when the En network flow is ON.

Encapsulating the Function

The encapsulation procedure of functions is similar to that of function blocks. For details, see the
description of "Encapsulating the Function Block".

1.5.3 Authorization Function Block

By using the Prog_Auth function, the core algorithm function block is controlled and compiled into a li-
brary file. Only authorized PLCs that pass the verification can use this library file, thus protecting the in-
tellectual property of the equipment manufacturer.

Setting Authorization Code

1. Run "H5U_AuthManger.exe" in the software installation directory.

Overview

-45-

2. Enter the IP address of the PLC, enter the 8-digit authorization code, and click "Set Authorization
Code".

3. Click "Generate Verification Code". A string of characters is generated in the "Instruction
Authorization Verification Code" text box.

4. You can also verify or clear the authorization code (only after you enter the authorization code) in
the software.

Adding a Program Block

1. Open the function block to be authorized, and add the PARAS function block.

2. Enter the instruction authorization verification code generated by the software in "AuthCode".
3. The function block is authorized. If the authorization code of the PLC is inconsistent with that in the

function block, the program in the function block cannot run.

Example

Since the verification code obtained by using Prog_Auth is inconsistent with the preset verification
code in the PLC, the return value is "OFF", and the ADD instruction of the program is not executed.

1.5.4 FB Initial Values

The initial values of FB settings can be modified based on the FB type or FB instance.

● Modifying the initial values based on the FB type is equivalent to modifying the initial values of the
type.

● Modifying the initial values based on an FB instance is equivalent to modifying the initial values of
the instance.

● If the initial values of an instance are modified, the member variables of the FB instance display the
values after modification, and the background color of the cells is yellow.

● If the initial values of an instance are not modified, the member variables of the FB instance display
the default values, and the background color of the cells is white.

Overview

-46-

The initial values of the FB type are the default values of the instance. When the initial values of an
instance are modified back to the default values, the background color of the cells changes from
yellow to white.

Modifying Initial Values When the FB Is Not Nested

Modify the initial value of the FB type from 0 to 10. Use the default value as the initial value of the FB
instance, that is, the initial value 10 of the FB type.

Modify the initial value of the FB instance from 10 to 100. The initial value of the FB instance is 100. At
this time, if you attempt to modify the initial value of the FB type to 11, you will find that the initial
value of the FB instance remains unchanged (still 100).

In the ladder diagram, double-click "FB" to display the FB instance. At this time, the initial value of the
FB instance is displayed in the FB view instead of the initial value of the FB type. If the initial value of
the variable is modified to be inconsistent with the FB, the background color will be yellow. Modifying
the initial value on this interface is the same as modifying the initial value of the instance in the
function block instance table.

Overview

-47-

Modifying Initial Values When the FB Is Nested

Add a variable fb1 in the FB type, and set the data type to "FB_1". Modify the initial value of FB_1 from
1000 to 1001. The member variable fb1 of the FB type automatically takes the default value 1001 as the
initial value, and the member variable fb1 of the FB instance also automatically takes the default value
1001 as the initial value.

FB is the middle layer between the instance and FB_1. Modify the initial value of FB_1 to 1500 on the
FB type interface. Then the initial value of the FB type changes to 1500, and the background color
changes to yellow. At this time, the initial value of FB_1 of the FB instance is also 1500, but the
background color is white, indicating that the default value is used.

● Enter the instance interface from the main program. The initial value of the FB instance is
displayed. Double-click "FB_1" to enter the FB_1 instance interface, and modify the initial value to
2000. Open the FB_1 type, and the initial value is still 1001. Open the FB instance FB_1, and the
initial value is 2000.

Overview

-48-

At this time, the tab name is "FB_1(var_1.fb1)".

● Double-click "FB" in the "Project Manager" navigation tree. You can see that the initial value of FB_
1 on the FB type interface is 1500. Double-click "FB_1" in the ladder diagram of the FB type
interface to enter the FB_1 instance interface. You can see that the initial value of the FB_1 instance
is 1500. Modify it to 2500. Then return to the FB type interface to check the initial value of FB_1. You
will find that it also changes to 2500.

At this time, the tab name is "FB_1(fb1)".

Overview

-49-

Tab at the Bottom of the FB View

The tab displayed at the bottom of the FB view contains the following information from left to right:
node name, instance name, and unsaved flag. The node name is the name of the project tree node,
and the instance name refers to the instance name in parentheses. The following figures show the
details.

As shown in the preceding figure, "FB" is the node name, "var_1.fb1" is the instance name, and "*"
indicates unsaved.

Since the tab needs to be parsed, characters including the period (.), asterisk (*), and parentheses (())
are not allowed when FBs and structures are renamed.

1.5.5 Encrypting FB or FC

This section takes encryption of function blocks as an example. The process is similar for encrypting
functions. After encryption, the method of calling the function blocks or functions remains unchanged.

1. Choose "Programming" > "Function Block (FB)" in the project management window, right-click "FB",
and choose "Encryption/Decryption".

Overview

-50-

2. Enter and confirm the password in the displayed "Encrypt" dialog box.

The following figure shows a function block after encryption.

Overview

-51-

Performing the preceding steps on an encrypted function block will decrypt it and restore it to its
original unencrypted state.

To access an encrypted function block, you can double-click the encrypted node, or right-click the
encrypted node and choose "Password verification" from the shortcut menu, and enter the correct
password in the displayed dialog box.

Instruction List

-52-

2 Instruction List

2.1 LD & LiteST Instructions

All the instructions supported by the PLC are summarized and classified by function as follows.

Instruction
Category Instruction Function Description Language Support

Contact
instruction

LD Load NO contact LD
LDI Load NC contact LD
AND Serial connection of NO contacts LD
ANI Serial connection of NC contacts LD
OR Parallel connection of NO contacts LD
ORI Parallel connection of NC contacts LD
LDP Obtain pulse rising edge LD

LDF Obtain pulse falling edge LD

ANDP Serial connection of pulse rising edge LD

ANDF Serial connection of pulse falling edge LD

ORP
Parallel connection of pulse rising
edge LD

ORF
Parallel connection of pulse falling
edge LD

MEP
Conversion of operation result to rising
edge pulse LD

MEF
Conversion of operation result to
falling edge pulse LD

Output
control
instruction

OUT Coil drive LD
SET SET action storage coil instruction LD

RST Contact or cache clearing LD

ZSET Batch data setting LD and LiteST
ZRST Batch data reset LD and LiteST

PLS Pulse rising edge detection coil
instruction

LD

PLF Pulse falling edge detection coil
instruction

LD

ALT Alternate output LD
R_TRIG Rising edge detection LD and LiteST
F_TRIG Falling edge detection LD and LiteST

Flow control
instruction

INV Operation result inversion LD

Instruction List

-53-

Instruction
Category Instruction Function Description Language Support

Process
control
instruction

CJ Conditional jump LD
LBL Label LD
CALL Call subprogram LD

SSRET Conditional subprogram return LD

EI Enable interrupt LD and LiteST

DI Disable interrupt LD and LiteST

WDT Watchdog timer reset LD

FOR Start of a loop LD

NEXT End of a loop LD

SFC
instruction

STL Program jump to secondary bus LD

RET Program return to primary bus LD

OUTSTL Output program jump to secondary
bus

LD

SETSTL Setting program jump to secondary
bus

LD

RSTSTL Resetting program jump to secondary
bus

LD

Contact
comparison
instruction

LD= LD contact comparison equal to LD

LD> LD contact comparison greater than LD

LD< LD contact comparison less than LD

LD<> LD contact comparison not equal to LD

LD>=
LD contact comparison greater than or
equal to LD

LD<=
LD contact comparison less than or
equal to LD

AND= AND contact comparison equal to LD

AND> AND contact comparison greater than LD

AND< AND contact comparison less than LD

AND<> AND contact comparison not equal to LD

AND>=
AND contact comparison greater than
or equal to LD

AND<=
AND contact comparison less than or
equal to LD

OR= OR contact comparison equal to LD

OR> OR contact comparison greater than LD

OR< OR contact comparison less than LD

OR<> OR contact comparison not equal to LD

Instruction List

-54-

Instruction
Category Instruction Function Description Language Support

(Continued)

Contact
comparison
instruction

OR>=
OR contact comparison greater than or
equal to LD

OR<=
OR contact comparison less than or
equal to LD

LD& LD logical AND operation LD

LD| LD logical OR operation LD

LD^ LD logical XOR operation LD

AND& AND logical AND operation LD

AND| AND logical OR operation LD

AND^ AND logical XOR operation LD

OR& OR logical AND operation LD

OR| OR logical OR operation LD

OR^ OR logical XOR operation LD

FLDD>
State contact of floating-point
comparison >, conductive when S1 >
S2

LD

FLDD>=
State contact of floating-point
comparison >=, conductive when S1 ≥
S2

LD

FLDD<
State contact of floating-point
comparison <, conductive when S1 <
S2

LD

(Continued)

Contact
comparison
instruction

FLDD<=
State contact of floating-point
comparison <=, conductive when S1 ≤
S2

LD

FLDD=
State contact of floating-point
comparison =, conductive when S1 =
S2

LD

FLDD<>
State contact of floating-point
comparison <>, conductive when S1 ≠
S2

LD

FANDD>
AND state contact of floating-point
comparison >, conductive when S1 >
S2

LD

FANDD>=
AND state contact of floating-point
comparison >=, conductive when S1 ≥
S2

LD

FANDD<
AND state contact of floating-point
comparison <, conductive when S1 <
S2

LD

FANDD<=
AND state contact of floating-point
comparison <=, conductive when S1 ≤
S2

LD

FANDD=
AND state contact of floating-point
comparison =, conductive when S1 =
S2

LD

FANDD<>
AND state contact of floating-point
comparison <>, conductive when S1 ≠
S2

LD

Instruction List

-55-

Instruction
Category Instruction Function Description Language Support

Contact
Comparison
Instructions

FORD>
OR state contact of floating-point
comparison >, conductive when S1 >
S2

LD

FORD>=
OR state contact of floating-point
comparison >=, conductive when S1 ≥
S2

LD

FORD<
OR state contact of floating-point
comparison <, conductive when S1 <
S2

LD

FORD<=
OR state contact of floating-point
comparison <=, conductive when S1 ≤
S2

LD

FORD=
OR state contact of floating-point
comparison =, conductive when S1 =
S2

LD

FORD<>
OR state contact of floating-point
comparison <>, conductive when S1 ≠
S2

LD

LDZ>
State contact of absolute value
comparison >, conductive when |S1 –
S2| > |S3|

LD

LDZ>=
State contact of absolute value
comparison >=, conductive when |S1 –
S2| ≥ |S3|

LD

LDZ<
State contact of absolute value
comparison <, conductive when |S1 –
S2| < |S3|

LD

LDZ<=
State contact of absolute value
comparison <=, conductive when |S1 –
S2| ≤ |S3|

LD

LDZ=
State contact of absolute value
comparison =, conductive when |S1 –
S2| = |S3|

LD

LDZ<>
State contact of absolute value
comparison <>, conductive when |S1 –
S2| ≠ |S3|

LD

ANDZ>
AND state contact of absolute value
comparison >, conductive when |S1 –
S2| > |S3|

LD

Instruction List

-56-

Instruction
Category Instruction Function Description Language Support

(Continued)

Contact
Comparison
Instructions

ANDZ>=
AND state contact of absolute value
comparison >=, conductive when |S1 –
S2| ≥ |S3|

LD

ANDZ<
AND state contact of absolute value
comparison <, conductive when |S1 –
S2| < |S3|

LD

ANDZ<=
AND state contact of absolute value
comparison <=, conductive when |S1 –
S2| ≤ |S3|

LD

ANDZ=
AND state contact of absolute value
comparison =, conductive when |S1 –
S2| = |S3|

LD

ANDZ<>
AND state contact of absolute value
comparison <>, conductive when |S1 –
S2| ≠ |S3|

LD

ORZ>
OR state contact of absolute value
comparison >, conductive when |S1 –
S2| > |S3|

LD

ORZ>=
OR state contact of absolute value
comparison >=, conductive when |S1 –
S2| ≥ |S3|

LD

ORZ<
OR state contact of absolute value
comparison <, conductive when |S1 –
S2| < |S3|

LD

ORZ<=
OR state contact of absolute value
comparison <=, conductive when |S1 –
S2| ≤ |S3|

LD

ORZ=
OR state contact of absolute value
comparison =, conductive when |S1 –
S2| = |S3|

LD

ORZ<>
OR state contact of absolute value
comparison <>, conductive when |S1 –
S2| ≠ |S3|

LD

Arithmetic
Operation
Instructions

ADD Binary data addition LD

SUB Binary data subtraction LD

MUL Binary data multiplication LD

DIV Binary data division LD

MOD Remainder by binary data division LD and LiteST

EADD Binary floating-point addition LD

ESUB Binary floating-point subtraction LD

EMUL Binary floating-point multiplication LD

EDIV Binary floating-point division LD

INC Binary data increment by 1 LD

DEC Binary data decrement by 1 LD

Instruction List

-57-

Instruction
Category Instruction Function Description Language Support

Data logical
operation
instruction

WAND Binary data logical AND LD

WOR Binary data logical OR LD

WXOR Binary data logical XOR LD

NEG Binary data negation LD

ENEG Binary floating-point sign negation LD

Word bit
operation
instruction

BLD Word or dword bit contact instruction LD

BLDI Word or dword bit inversion contact
instruction

LD

BAND Word or dword bit AND contact
instruction

LD

BANDI Word or dword bit AND inversion
contact instruction

LD

BOR Word or dword bit OR contact
instruction

LD

BORI Word or dword bit OR inversion
contact instruction

LD

BOUT Word or dword bit data output
instruction

LD

BSET Word or dword bit data setting
instruction

LD

BRST Word or dword bit data reset
instruction

LD

Trigonomet-
ric function
instruction

SIN Floating-point SIN operation LD

COS Floating-point COS operation LD

TAN Floating-point TAN operation LD

ASIN Binary floating-point ARCSIN operation LD

ACOS
Binary floating-point ARCCOS
operation LD

ATAN
Binary floating-point ARCTAN
operation LD

RAD Binary floating-point degree-to-radian
conversion

LD

DEG Binary floating-point radian-to-degree
conversion

LD

SINH Binary floating-point SINH operation LD

COSH Binary floating-point COSH operation LD

TANH Binary floating-point TANH operation LD

Table
operation
instruction

WSUM Data sum calculation LD
MEAN Mean calculation LD
LIMIT Upper/Lower limit control LD
BZAND Dead zone control LD
ZONE Zone control LD

SCL
Coordinate determination (coordinate
data of different points) LD

SCL2
Coordinate determination 2 (X and Y
coordinates) LD

Instruction List

-58-

Instruction
Category Instruction Function Description Language Support

Exponent
operation
instruction

EXP
Binary floating-point exponentiation
operation LD

LOGE
Binary floating-point natural logarithm
operation LD

LOG
Binary floating-point common
logarithm operation LD

ESQR
Binary floating-point square root
operation LD

SQR Binary data square root operation LD

POW Floating-point weight instruction LD

Data
conversion
instruction

INT
Conversion from binary floating-point
number into BIN integer LD

BCD Conversion from binary into BCD LD

BIN Conversion from BCD into binary LD

FLT
Conversion from binary into binary
floating-point LD

EBCD
Conversion from binary floating-point
into decimal floating-point LD

EBIN
Conversion from decimal floating-
point into binary floating-point LD

DABIN Conversion from decimal ASCII into
BIN

LD

BINDA Conversion from BIN into decimal
ASCII

LD

WTOB Conversion from word to byte LD
BITW Conversion from bit to word LD and LiteST
BTOW Conversion from byte to word LD
WBIT Conversion from word to bit LD and LiteST

(Continued

Data
conversion
instruction

WTODW Conversion from word to dword LD
DWTOW Conversion from dword to word LD

MCPY
Data copy (memory copy, type
conversion) LD and LiteST

MSET
Data setting (memory setting and
reset) LD and LiteST

UNI 4-bit combination of 16-bit data LD
DIS 4-bit separation of 16-bit data LD
ASCI Conversion from HEX into ASCII LD
HEX Conversion from ASCII into HEX LD
DECO Data decoding LD
ENCO Data encoding LD

Instruction List

-59-

Instruction
Category Instruction Function Description Language Support

Data transfer
instruction

MOV Move LD
EMOV Binary floating-point move LD
SMOV Shift move LD
BMOV Batch move LD
FMOV Multi-point move LD

CML Complement LD

CMP Comparison LD

ECMP Floating-point comparison LD

ZCP Zone comparison LD

EZCP Floating-point zone comparison LD

SORTR Data sorting LD

SORTC Data sorting 2 LD
SER Data search LD
FDEL Deletion of data from data table LD
FINS Insertion of data to data table LD
POP Last-in data read LD
RAMP Ramp instruction LD

Data shift
instruction

ROR Rotation right LD
ROL Rotation left LD
RCR Rotation right with carry LD

RCL Rotation left with carry LD

SFTR Bit shift right LD
SFTL Bit shift left LD
WSFR Word shift right LD
WSFL Word shift left LD
SFWR Shift write (FIFO) LD

SFRD Shift read (FIFO) LD

SFR Bit shift right with carry LD

SFL Bit shift left with carry LD

Other data
processing
instruction

SWAP Byte swap LD
BON Bit state check LD
SUM Sum of ON bits LD

RAND Random number generation within
limits

LD

XCH Data exchange LD

ABS Absolute value of integer LD

EABS Absolute value of floating-point
number

LD

EFMOV Multi-point floating-point move LD
CCD Check code LD
CRC CRC code calculation LD
LRC LRC code calculation LD

Instruction List

-60-

Instruction
Category Instruction Function Description Language Support

Matrix
operation
instruction

BK+ Block data addition LD
BK– Block data subtraction LD
MAND Matrix AND LD
MOR Matrix OR LD
MXOR Matrix XOR LD
MXNR Matrix XNOR LD
MINV Matrix inversion LD

Matrix
comparison
instruction

BKCMP= Matrix comparison equal to (S1 = S2) LD

BKCMP>
Matrix comparison greater than (S1 >
S2) LD

BKCMP< Matrix comparison less than (S1 < S2) LD

BKCMP<>
Matrix comparison not equal to (S1 ≠
S2) LD

BKCMP<=
Matrix comparison less than or equal
to (S1 ≤ S2) LD

BKCMP>=
Matrix comparison greater than or
equal to (S1 ≥ S2) LD

String
instruction

STR Conversion from integer into string LD

STRMOV String assignment LD

VAL Conversion from string into integer LD

ESTR
Conversion from binary floating-point
into string LD

EVAL
Conversion from string into binary
floating-point LD

$ADD Character string linking LD

LEN Character string length detection LD

INSTR Character string search LD

RIGHT String data extraction from the right LD

LEFT String data extraction from the left LD

MIDR Random extraction of character string LD

MIDW
Random replacement of character
string LD

$MOV Character string transfer LD

Clock
instruction

TCMP Clock data comparison LD

TZCP Clock data zone comparison LD
TADD Clock data addition LD
TSUB Clock data subtraction LD

HTOS Conversion from hour-minute-second
into second

LD

STOH Conversion from second into hour-
minute-second

LD

TRD Clock data read LD
TWR Clock data write LD
HOUR Hour meter LD

Instruction List

-61-

Instruction
Category Instruction Function Description Language Support

High-speed
counter
instruction
(H5U)

HC_Counter High-speed counter enable LD and LiteST
HC_Preset High-speed counter preset LD and LiteST
HC_TouchProbe Probe LD and LiteST
HC_Compare High-speed counter comparison LD and LiteST
HC_
ArrayCompare High-speed counter array comparison LD and LiteST

HC_
StepCompare High-speed counter step comparison LD and LiteST

Bus encoder
axis
instruction
(H5U)

ENC_Counter Encoder enable LD and LiteST
ENC_Reset Encoder reset LD and LiteST
ENC_Preset Encoder preset LD and LiteST
ENC_
TouchProbe

Encoder probe LD and LiteST

ENC_
ArrayCompare

Encoder one-dimensional array
comparison

LD and LiteST

ENC_
StepCompare

Encoder one-dimensional step
comparison

LD and LiteST

ENC_
GroupArray-
Compare

Encoder two-dimensional array
comparison

LD and LiteST

ENC_
ReadStatus

Encoder state read LD and LiteST

ENC_
DigitalOutput

Encoder DO control LD and LiteST

ENC_
ResetCompare

Encoder comparison output reset LD and LiteST

ENC_SetUnit Gear ratio setting LD and LiteST
ENC_
SetLineRota-
tionMode

Rotation mode setting LD and LiteST

Instruction List

-62-

Instruction
Category Instruction Function Description Language Support

Encoder axis
instruction
(Easy)

ENC_Counter Encoder enable LD and LiteST
ENC_Reset Encoder reset LD and LiteST
ENC_Preset Encoder preset LD and LiteST

ENC_
TouchProbe

Encoder probe LD and LiteST

ENC_
ArrayCompare

Encoder one-dimensional array
comparison

LD and LiteST

ENC_
StepCompare

Encoder one-dimensional step
comparison

LD and LiteST

ENC_Compare Single-point comparison output LD

ENC_
GroupArray-
Compare

Encoder two-dimensional array
comparison

LD and LiteST

ENC_
ReadStatus

Encoder state read LD and LiteST

ENC_
DigitalOutput

Encoder DO control LD and LiteST

ENC_
ResetCompare

Encoder comparison output reset LD and LiteST

ENC_SetUnit Gear ratio setting LD and LiteST
ENC_
SetLineRota-
tionMode

Rotation mode setting LD and LiteST

Timer
instruction

TPR Pulse timer LD and LiteST
TONR On-delay timer LD and LiteST

TOFR Off-delay timer LD and LiteST

TACR Accumulating timer LD and LiteST

Pointer
instruction

PTGET Pointer variable assignment LD

PTINC
Pointer variable address incremented
by 1 LD

PTDEC
Pointer variable address decremented
by 1 LD

PTADD Pointer variable address addition LD
PTSUB Pointer variable address subtraction LD
PTSET Pointer variable assignment LD

PTMOV Pointer variable mutual assignment LD

PTLD>
Pointer variable contact comparison
greater than LD

PTLD>=
Pointer variable contact comparison
greater than or equal to LD

PTLD<=
Pointer variable contact comparison
less than or equal to LD

PTLD=
Pointer variable contact comparison
equal to LD

PTLD<>
Pointer variable contact comparison
not equal to LD

Instruction List

-63-

Instruction
Category Instruction Function Description Language Support

(Continued)

Pointer
instruction

PTAND>
Pointer variable AND contact
comparison greater than LD

PTAND>=
Pointer variable AND contact
comparison greater than or equal to LD

PTAND<
Pointer variable AND contact
comparison less than LD

PTAND<=
Pointer variable AND contact
comparison less than or equal to LD

PTAND=
Pointer variable AND contact
comparison equal to LD

PTAND<>
Pointer variable AND contact
comparison not equal to LD

PTOR>
Pointer variable OR contact
comparison greater than LD

PTOR>=
Pointer variable OR contact
comparison greater than or equal to LD

PTOR<
Pointer variable OR contact
comparison less than LD

PTOR<=
Pointer variable OR contact
comparison less than or equal to LD

PTOR=
Pointer variable OR contact
comparison equal to LD

PTOR<>
Pointer variable OR contact
comparison not equal to LD

FB/FC
instruction

PROG_AUTH Program block (FB/FC) authorization
verification

LD

Communica-
tion protocol
instruction

SerialSR
Serial port free protocol transmission
and reception LD

SerialSend Serial port free protocol transmission LD
SerialRcv Serial port free protocol reception LD
MB_Master Transmission and reception of serial

Modbus protocol LD

MB_Client Transmission and reception of the
Modbus TCP protocol LD

TCP_Listen TCP listening LD
TCP_Accept TCP connection request accept LD
TCP_Connect TCP connection request initiation LD
TCP_Close TCP connection close LD
TCP_Send TCP data transmission LD
TCP_Receive TCP data reception LD

UDP_Bind UDP socket binding LD
UDP_Send UDP data transmission LD

Instruction List

-64-

Instruction
Category Instruction Function Description Language Support

(Continued

Communica-
tion protocol
instruction

UDP_Receive UDP data reception LD
ETC_
ReadParame-
ter_CoE

Reading SDO parameters of ETC_
RestartMaster slave

LD and LiteST

ETC_
WriteParame-
ter_CoE

Writing SDO parameters of ETC_
RestartMaster slave

LD and LiteST

ETC_
RestartMaster

Restarting EtherCAT master LD and LiteST

EIP_Generic_
Service

Calling the "Generic" service LD

EIP_Get_
Attributes_All

Calling the "Get_Attributes_All" service LD

EIP_Get_
Attribute_Single

Calling the "Get_Attribute_Single"
service

LD

EIP_Set_
Attributes_All

Calling the "Set_Attributes_All" service LD

EIP_Set_
Attribute_Single

Calling the "Set_Attribute_Single"
service

LD

EIP_Apply_
Attributes

Calling the "Apply_Attributes" service LD

EIP_NOP Calling the "NOP" service LD

EIP_Reset Calling the "Reset" service LD

EIP_Start Calling the "Start" service LD

EIP_Stop Calling the "Stop" service LD

EtherCAT/
Local high-
speed pulse
output
motion
control axis
instruction

MC_Power Axis enable control LD and LiteST
MC_Reset Fault reset LD and LiteST
MC_ReadStatus Axis state read LD and LiteST
MC_
ReadAxisError Axis error read LD and LiteST

MC_
ReadDigitalIn-
put

Digital input read LD and LiteST

MC_
ReadActualPosi-
tion

Current position read LD and LiteST

MC_
ReadActualVe-
locity

Current velocity read LD and LiteST

MC_
ReadActualTor-
que

Current torque read LD and LiteST

MC_SetPosition Current position setting LD and LiteST
MC_TouchProbe Probe LD and LiteST
MC_
MoveRelative

Relative positioning LD and LiteST

MC_
MoveAbsolute

Absolute positioning LD and LiteST

MC_
MoveVelocity Velocity control LD and LiteST

Instruction List

-65-

Instruction
Category Instruction Function Description Language Support

(Continued)

EtherCAT/
Local high-
speed pulse
output
motion
control axis
instruction

MC_Jog Jogging LD and LiteST
MC_
TorqueControl Torque control LD and LiteST

MC_Home Homing LD and LiteST
MC_Stop Axis stop LD and LiteST
MC_Halt Axis halt LD and LiteST
MC_MoveFeed Interrupt positioning LD and LiteST
MC_MoveBuffer Multi-position positioning LD and LiteST
MC_
ImmediateStop Immediate stop LD and LiteST

MC_
MoveSuperIm-
posed

Motion superimposition LD and LiteST

MC_
MoveVeloci-
tyCSV

CSV-based velocity control with
adjustable pulse width

LD and LiteST

MC_
SyncMoveVeloc-
ity

CSV-based synchronous velocity
control with adjustable pulse width

LD and LiteST

MC_
FollowVelocity

CSP-based synchronous velocity
control

LD and LiteST

MC_
SyncTorqueCon-
trol

Synchronous torque control LD and LiteST

MC_
SetAxisConfig-
Para

Axis parameter configuration LD and LiteST

Electronic
cam
instruction

MC_CamIn Start cam operation LD and LiteST
MC_CamOut End cam operation LD and LiteST
MC_
GetCamTable-
Phase

Obtain cam table phase LD and LiteST

MC_
GetCamTable-
Distance

Obtain cam table displacement LD and LiteST

MC_
DigitalCamS-
witch

Electronic cam tappet control LD and LiteST

MC_GearIn Start gear operation LD and LiteST
MC_GearOut End gear operation LD and LiteST

MC_Phasing Master axis phase shifting LD and LiteST

MC_
SaveCamTable

Save cam table LD and LiteST

MC_
GenerateCamT-
able

Update cam table LD and LiteST

MC_GearInPos Start the gear operation at the
specified position

LD and LiteST

Instruction List

-66-

Instruction
Category Instruction Function Description Language Support

Axis group
control
instruction

MC_MoveLinear Linear interpolation LD and LiteST
MC_
MoveCircular

Circular interpolation LD and LiteST

MC_MoveEllipse Elliptical interpolation LD and LiteST
MC_GroupStop Stop axis group operation LD and LiteST
MC_GroupPause Pause axis group operation LD and LiteST

CANopen
motion
control axis
instruction

MC_Power_CO Enable servo axis through
communication

LD

MC_Reset_CO Reset servo axis fault through
communication

LD

MC_
ReadActualPosi-
tion_CO

Read current position of axis through
communication

LD

MC_
ReadActualVe-
locity_CO

Read current velocity of axis through
communication

LD

MC_Halt_CO
Stop servo axis through
communication (can be aborted) LD

MC_Stop_CO Stop servo axis through
communication (cannot be aborted) LD

MC_
MoveAbsolute_
CO

Control absolute positioning of axis
through communication LD

MC_
MoveRelative_
CO

Control relative positioning of axis
through communication LD

MC_
MoveVelocity_
CO

Control axis velocity through
communication

LD

MC_Jog_CO Control axis jogging through
communication

LD

MC_Home_CO Control axis homing through
communication

LD

MC_
WriteParame-
ter_CO

Write axis parameters through
communication

LD

MC_
ReadParame-
ter_CO

Read axis parameters through
communication

LD

Other
instructions

PID PID calculation LD

Instruction List

-67-

2.2 LiteST Instructions
Instruction Category Instruction Function Description

Trigonometric function

SIN Sine operation instruction
COS Cosine operation instruction
TAN Tangent operation instruction

ASIN Arcsine operation instruction
ACOS Arccosine operation instruction
ATAN Arctangent operation instruction

Exponent operation instruction

LOG Base-10 logarithm

LN Base-e (2.71828) logarithm

SQRT Square root operation instruction
EXPT Power operation instruction

Explicit conversion instruction

INT_TO_<TYPE> Convert the INT type into the type
specified by<TYPE>.

DINT_TO_<TYPE> Convert the DINT type into the type
specified by<TYPE>.

BOOL_TO_<TYPE> Convert the BOOL type into the type
specified by<TYPE>.

REAL_TO_<TYPE> Convert the REAL type into the type
specified by<TYPE>.

BYTE_TO_<TYPE> Convert the BYTE type into the type
specified by<TYPE>.

TO_<TYPE> Convert the variable into the type
specified by<TYPE>.

Comparison instruction
MAX Max operation
MIN Min operation

Shift instruction
SHL Shift left operation
SHR Shift right operation

Binary operation instruction SEL Binary operation

Absolute value operation instruction ABS Absolute value operation

Bit operation instruction

AND AND operation
OR OR operation

XOR XOR operation
NOT NOT operation

Instruction Description (LD & LiteST)

-68-

3 Instruction Description (LD & LiteST)

3.1 Program Logic Instructions

3.1.1 Contact Instructions

3.1.1.1 Instruction List

The following table lists the contact instructions.

Instruction Category Instruction Function

Contact instruction

LD Load NO contact
LDI Load NC contact
AND Serial connection of NO contacts
ANI Serial connection of NC contacts
OR Parallel connection of NO contacts
ORI Parallel connection of NC contacts
LDP Obtain pulse rising edge

LDF Obtain pulse falling edge

ANDP Serial connection of pulse rising edge

ANDF Serial connection of pulse falling edge

ORP Parallel connection of pulse rising edge

ORF Parallel connection of pulse falling edge

MEP Conversion of operation result to rising edge pulse

MEF Conversion of operation result to falling edge pulse

3.1.1.2 LD&LDI&LDP&LDF

LD – Load NO contact

LDI – Load NC contact

LDP – Obtain pulse rising edge

LDF – Obtain pulse falling edge

16-bit
instruction

LD: Continuous execution

32-bit
instruction

-

16-bit
instruction

LDI: Continuous execution

32-bit
instruction

-

16-bit
instruction

LDP: Continuous execution

32-bit
instruction

-

16-bit
instruction

LDF: Continuous execution

Instruction Description (LD & LiteST)

-69-

32-bit
instruction

-

Operand Name Description Range Data Type

S Bit element
Element or variable of which the
flow state is to be determined

- BOOL

Table 3–1 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - √ - - -

Function and Instruction Description

The LD, LDI, LDP, and LDF instructions are used for contacts starting from the left bus.

● The LDP instruction is used to detect the rising edge of a contact signal. If rising transition is de-
tected in the signal, the contact becomes active, and it becomes inactive upon the next scan
operation.

● The LDF instruction is used to detect the falling edge of a contact signal. If falling transition is de-
tected in the signal, the contact becomes active, and it becomes inactive upon the next scan
operation.

3.1.1.3 AND&ANDI&ANDP&ANDF

AND – Serial connection of NO contacts

ANDI – Serial connection of NC contacts

ANDP – Serial connection of pulse rising edge

ANDF – Serial connection of pulse falling edge

16-bit
instruction

AND: Continuous execution

32-bit
instruction

-

16-bit
instruction

ANDI: Continuous execution

32-bit
instruction

-

Instruction Description (LD & LiteST)

-70-

16-bit
instruction

ANDP: Continuous execution

32-bit
instruction

-

16-bit
instruction

ANDF: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Bit element
Element or variable of which the flow state is
to be determined

- BOOL

Table 3–2 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable
Pointer Variable K, H E

S √ √ √ - - √ - - -

S √ √ √ - - √ - - -

Function and Instruction Description

The AND, ANI, ANDP, and ANDF instructions are used for state operations of serial contacts. These
instructions are used to read the state of the designated serial contact and perform an AND operation
on the contact state and the contact's logical operation result. The AND result is stored in the
accumulator.

● The ANDP instruction is used to obtain the rising edge transition state of the contact for an AND
operation.

● The ANDP instruction is used to obtain the falling edge transition state of the contact for an AND
operation.

3.1.1.4 OR&ORI&ORP&ORF

OR – Parallel connection of NO contacts

ORI – Parallel connection of NC contacts

ORP – Parallel connection of pulse rising edge

ORF – Parallel connection of pulse falling edge

Instruction Description (LD & LiteST)

-71-

16-bit
instruction

OR: Continuous execution

32-bit
instruction

-

16-bit
instruction

ORI: Continuous execution

32-bit
instruction

-

16-bit
instruction

ORP: Continuous execution

32-bit
instruction

-

16-bit
instruction

ORF: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Bit element
Element or variable of which the
flow state is to be determined

- BOOL

Table 3–3 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - √ - - -

S √ √ √ - - √ - - -

Function and Instruction Description

The OR and ORI instructions are used for state operations of parallel contacts. These instructions are
used to read the state of the designated parallel contact and perform an OR operation on the contact
state and the contact's logical operation result. The OR result is stored in the accumulator.

● The ORP instruction is used to obtain the rising edge transition state of the contact for an OR
operation.

● The ORF instruction is used to obtain the falling edge transition state of the contact for an OR
operation.

Instruction Description (LD & LiteST)

-72-

3.1.1.5 MEP&MEF

MEP – Conversion of operation result to rising edge pulse

MEF– Conversion of operation result to falling edge pulse

16-bit instruction MEP: Continuous execution
32-bit instruction -
16-bit instruction MEF: Continuous execution
32-bit instruction -
Operand Name Description Range Data Type
- - - - BOOL

Function and Instruction Description

MEP

The operation results up to the MEP instruction become conductive when the driving contacts turn
from OFF to ON.

The use of MEP instructions simplifies the process of changing driving contacts to pulses when
multiple contact points connect in a series.

MEF

The operation results up to the MEF instruction become conductive when the driving contacts turn
from ON to OFF.

The use of MEF instructions simplifies the process of changing driving contacts to pulses when multiple
contact points connect in a series.

Instruction Example

● MEP instruction (ON during rising edge of operation results)

Figure 3-1 Timing Diagram

● MEF instruction (ON during falling edge of operation results)

Instruction Description (LD & LiteST)

-73-

Figure 3-2

3.1.2 Output Control Instructions

3.1.2.1 Instruction List

The following table lists the output control instructions.

Instruction Category Instruction Function

Output control instruction

OUT Coil drive
SET SET action storage coil instruction

RST Contact or cache clearing

ZSET Batch data setting

ZRST Batch data reset
PLS Pulse rising edge detection coil instruction

PLF Pulse falling edge detection coil instruction

ALT Alternate output

3.1.2.2 OUT

OUT – Coil drive
16-bit instruction OUT: Continuous execution
32-bit instruction -
Operand Name Description Range Data Type

D Output element Bit element or variable to output - BOOL

Table 3–4 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom
Bit

Variable
D, R, W

Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - √ - - -

Note[1] The X element is not supported. The S element applies to separate instructions. For details, see SFC

instructions.

Instruction Description (LD & LiteST)

-74-

Function and Instruction Description

The OUT instruction outputs the logical operation results prior to this instruction to the designated
element.

If the operand D is a pointer variable, use PGET to initialize the pointer variable. Otherwise, the system
will report an error indicating that the address is invalid.

Instruction Example

3.1.2.3 SET

SET – SET action storage coil

16-bit instruction SET: Continuous execution
32-bit instruction -
Operand Name Description Range Data Type

D Output element Bit element or variable to output - BOOL

Table 3–5 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - √ - - -

Note[1] The X element is not supported. The S element applies to separate instructions. For details, see SFC

instructions.

Function and Instruction Description

When the SET instruction is driven, the component designated by this instruction is set to ON and
remains so regardless of whether the instruction is still driven. You can use the RST instruction to set
the component to OFF.

If the operand D is a pointer variable, use PGET to initialize the pointer variable. Otherwise, the system
will report an error indicating that the address is invalid.

Instruction Example

3.1.2.4 RST

RST – Contact or cache clearing

Instruction Description (LD & LiteST)

-75-

16-bit instruction RST (bit): Continuous execution

32-bit instruction -
Operand Name Description Range Data Type

D Output element Bit element or variable to output - BOOL

Table 3–6 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - √ - - -

Note[1] The X element is not supported. The S element applies to separate instructions. For details, see SFC

instructions.

Function and Instruction Description

When the RST instruction is driven, the component designated by this instruction is set to OFF and
remains so regardless of whether the instruction is still driven. You can use the SET instruction to set
the component to ON.

Instruction Example

3.1.2.5 ZSET

ZSET – Batch setting

Instruction Name LD Expression LiteST Expression
ZSET Batch data setting ZSET(???, ???);

16-bit
instruction

ZSET (bit): Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

D1
Element
starting address

Starting address of elements or variables
to be set in batches

- BOOL

D2 Element ending
address

Ending address of elements or variables
to be set in batches

- BOOL

Instruction Description (LD & LiteST)

-76-

Table 3–7 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

Note[1] The X element is not supported.

Function and Instruction Description

The ZSET instruction sets the values of all variables between D1 and D2 to 1. D1 and D2 can be set to Y,
M, S, or B bit elements or other bit variables.

Note the following:

D1 and D2 must be of the same element type.

D1 cannot be greater than D2. If they are the same, only the specified element is set.

Instruction Example

Additional Information

Bit elements Y, M, S, and B can be set independently using the SET instruction.

3.1.2.6 ZRST

ZRST – Batch data reset

Instruction Name LD Expression LiteST Expression
ZRST Batch data reset ZRST(???, ???);

16-bit
instruction

ZRST: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-77-

D1 Element
starting address

Starting address of elements or variables
to be reset in batches

- BOOL, INT, DINT

Array*(D2–D1+1)

D2 Element ending
address

Ending address of elements or variables
to be reset in batches

- BOOL

Table 3–8 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D1 √[1] √ √ √ √ - - - -

D2 √[1] √ √ √ √ - - - -

Note[1] The X element is not supported.

Function and Instruction Description

The ZRST instruction clears values of all variables between D1 and D2. D1 and D2 can be specified as
word elements, word variables, bit elements, or bit variables.

Note the following:

D1 and D2 must be of the same element type.

D1 cannot be greater than D2. If they are the same, only the specified element is reset.

Instruction Example

Additional Information

Bit elements Y, M, S, and B can be reset independently using the RST instruction. Word elements D, R,
and W can be reset independently using the ZRST instruction.

Instruction Description (LD & LiteST)

-78-

3.1.2.7 PLS&PLF

PLS – Pulse rising edge detection coil instruction

16-bit
instruction

PLS: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

D
Output
element

Bit element or variable to
output - BOOL

Table 3–9 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - - - - -

Note[1] The X element is not supported.

PLF – Pulse falling edge detection coil instruction

16-bit
instruction

PLF: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

D
Output
element

Bit element or variable to
output - BOOL

Table 3–10 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - - - - -

Note[1] The X element is not supported.

Function and Instruction Description

When the PLS instruction is driven by the rising edge, the element designated by this instruction is set
to ON and remains so within only one scan cycle.

When the PLF instruction is driven by the falling edge, the component designated by this instruction is
set to ON and remains so within only one scan cycle.

Instruction Description (LD & LiteST)

-79-

Instruction Example

Figure 3-3 Timing Diagram

Figure 3-4 Timing Diagram

3.1.2.8 ALT

ALT – Alternate output

When the driving conditions are met, the ALT instruction switches the state (ON/OFF) of the bit
element D.

16-bit
instruction

ALT: Continuous execution/ALTP: Pulse execution

32-bit
instruction

-

Operand Name Description Range Data Type

D Execution device Bit element - BOOL

Table 3–11 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D √[1] √ √ - - - - - -

Note[1] The X element is not supported.

Function and Instruction Description

This instruction switches the state of the D element when the flow is active. D is a bit element or bit
variable.

The pulse execution ALTP instruction is usually used.

Instruction Description (LD & LiteST)

-80-

Instruction Example

The action generated by the following instruction is the same as that generated by the ALTP
instruction

3.1.2.9 R_TRIG

R_TRIG – Rising edge detection
The R_TRIG instruction is used to output a TRUE signal for only one task cycle when an input signal
transitions from FALSE to TRUE (rising edge).

Instruction Name LD Expression LiteST Expression
R_TRIG Rising edge detection R_TRIG(CLK:=,Q=>);

16-bit
instruction

Rising edge detection

32-bit
instruction

-

Operand Name Description Range Data Type

CLK Input value Bit element - BOOL
Q Input result Bit element - BOOL

Table 3–12 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

CLK √[1] √ √ - - - - - -

Q √[1] √ √ - - - - - -

Note[1] The X element is not supported.

Function and Instruction Description

This instruction is used to output a TRUE signal for only one task cycle when an input signal transitions
from FALSE to TRUE (rising edge).

Instruction Description (LD & LiteST)

-81-

Note
The R_TRIG instruction is used in the same way as a function block. You need to declare it in the instance table be-
fore calling.

Instruction Example

LD

LiteST

3.1.2.10 F_TRIG

F_TRIG – Falling edge detection
The F_TRIG instruction is used to output a TRUE signal for only one task cycle when an input signal
transitions from TRUE to FALSE (falling edge).

Instruction Name LD Expression LiteST Expression
F_TRIG Falling edge detection F_TRIG(CLK:=,Q=>);

16-bit
instruction

Falling edge detection

32-bit
instruction

-

Operand Name Description Range Data Type

CLK Input value Bit element - BOOL

Q Input result Bit element - BOOL

Instruction Description (LD & LiteST)

-82-

Table 3–13 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

CLK √[1] √ √ - - - - - -

Q √[1] √ √ - - - - - -

Note[1] The X element is not supported.

Function and Instruction Description

This instruction is used to output a TRUE signal for only one task cycle when an input signal transitions
from TRUE to FALSE (falling edge).

Note
The F_TRIG instruction is used in the same way as a function block. You need to declare it in the instance table be-
fore calling.

Instruction Example

LD

LiteST

3.1.3 Flow Control Instruction

3.1.3.1 INV

INV – Operation result inversion

16-bit
instruction

INV: Continuous execution

32-bit
instruction

-

Instruction Description (LD & LiteST)

-83-

Operand Name Description Range Data Type
- - - - -

Function and Instruction Description

The INV instruction inverts the logical operation result prior to this instruction. The result is stored in
the accumulator. After the INV instruction is executed, the flow state switches from ON to OFF, or vice
versa.

Instruction Example

3.2 Process Control Instructions

3.2.1 Instruction List

The following table lists the process control instructions.

Instruction Category Instruction Function

Process control instruction

CJ Conditional jump

LBL Label
CALL Call subprogram

SSRET Conditional subprogram return

EI Enable interrupt

DI Disable interrupt

WDT Watchdog timer reset

FOR Start of a loop

NEXT End of a loop

3.2.2 CJ

CJ – Conditional jump

16-bit
instruction

CJ: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Target label Target label to jump to - -

Table 3–14 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - - - L [1]

Instruction Description (LD & LiteST)

-84-

Note[1] Only the L element is supported.

3.2.3 LBL

LBL – Label
16-bit
instruction

LBL: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Label number Current label number - -

Table 3–15 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - - - L [1]

Note[1] Only the L element is supported.

Function and Instruction Description

● When the flow is active, the program automatically jumps from the address of the CJ instruction to
the address specified by L***. Program execution continues after the jump, and the program
instructions in the intermediate addresses are skipped.

● When the flow is inactive, the program is executed without jump. The CJ instruction is not
executed.

Note the following:

● The CJ instruction must work with the LBL instruction, and the target label must be located in the
current program block. Jumping across program blocks is not allowed.

● The addresses defined by the label cannot be duplicate in the same program block.
● When part of a program does not need to be executed or two coils are used for output, this

instruction can be used to avoid the double coil problem
● The CJ instruction can designate the same label repeatedly.

NoteThe CJ instruction cannot be used in subprograms, interrupt subprograms, FBs, and FCs.

Instruction Example

The CJ instruction is used as follows in AutoShop:

Instruction Description (LD & LiteST)

-85-

When X1 is disconnected, the program scans normally; when X1 is closed, the program jumps directly
to L2 upon detecting the CJ instruction.

3.2.4 CALL

CALL – Call subprogram

16-bit
instruction

CALL: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Subprogram
Serial number of the
target subprogram to be
called

- -

Table 3–16 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - - - P [1]

Note
● [1] Only the PL element is supported.
● It is added automatically by AutoShop without user input.
● Up to six nested layers (including the main program layer) of subprograms are supported.

Function and Instruction Description

When the flow is active, the program calls the subprogram specified by SBR_. After the subprogram is
executed, the program returns to the next instruction of the CALL (or CALLP) statement to execute the
subsequent statement.

Note the following about the SBR_ address pointer:

● The subprogram starting from SBR_ must be located after the end of the main program (ended with
the FEND instruction).

● A subprogram must end with the SRET statement.

Instruction Description (LD & LiteST)

-86-

● The subprogram starting from SBR_ can be called in multiple locations or by another subprogram,
but the number of nested layers cannot exceed six.

● A subprogram cannot be called within itself; otherwise, an infinite loop or program running timeout
occurs.

● Subprograms are programmed in an independent window in AutoShop, which eliminates the
problems of the FEND and SRET instructions. The names (including Chinese characters) of
subprograms can be modified as needed.

● A subprogram cannot be called recursively.

Instruction Example

The CALL instruction is used as follows in AutoShop:

● Main program

● Subprogram: SBR_001

3.2.5 SSRET

SSRET – Conditional subprogram return

16-bit
instruction

SSRET: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type
- - - - -

Instruction Example

As shown in the following figure, when M100 is ON, program execution directly returns to the main
program (this instruction can be executed only in a subprogram).

Instruction Description (LD & LiteST)

-87-

3.2.6 EI & DI

EI – Enable interrupt

DI – Disable interrupt

Instruction Name LD Expression LiteST Expression
EI Enable interrupt EI();

DI Disable interrupt DI();

16-bit
instruction

EI: Continuous execution

32-bit
instruction

-

16-bit
instruction

DI: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type
- - - - -

Function and Instruction Description

When the PLC program starts running, the interrupt function is disabled by default. The EI statement
enables the interrupt function, and the DI statement disables the interrupt function. The DI instruction
is not required when the program does not have a range in which interrupt insertion is prohibited.

For the introduction and usage of the interrupt subprogram, see the "Interrupts" and "Subprograms"
sections in the AutoShop Programming and Application Manual.

Interrupts are classified into the external signal input interrupt, high-speed count comparison
interrupt, and timer interrupt.

3.2.7 WDT

WDT – Watchdog timer reset

Instruction Description (LD & LiteST)

-88-

16-bit
instruction

WDT: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type
- - - - -

Function and Instruction Description

The PLC has a timer used to monitor the user program operation cycle. If the operation cycle times
out, the program is stopped and an alarm is generated. The WDT instruction can reset the watchdog
timer, allowing it to start timing again to avoid the timeout error.

An operation timeout error may occur when the operation performed by the user program is too
complicated (for example, too many loop calculations). To avoid this error, you can insert the WDT
instruction (for example, insert it between the FOR and NEXT instructions) when necessary during the
programming process.

Instruction Example

If the watchdog timer for the program is set to 200 ms, and the program scan time is 320 ms, running
the program directly will cause the watchdog timer to time out. In this case, you can insert the WDT
instruction to divide the program into two segments, each with a scan time of less than 200 ms.

3.2.8 FOR&NEXT

FOR – Start of a loop

16-bit
instruction

FOR: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S Number of loops Number of loops - INT

Function and Instruction Description

The FOR instruction identifies the start position and specifies the number of repetitions of the loop. It
must be used with the NEXT instruction. In the instruction, S is the variable that specifies the number
of loops.

NEXT – End of a loop

16-bit
instruction

NEXT: Continuous execution

32-bit
instruction

-

Instruction Description (LD & LiteST)

-89-

Operand Name Description Range Data Type
- - - - -

Function and Instruction Description

The NEXT instruction identifies the end position of a loop. After the loop between the FOR and NEXT
instructions is repeated for N times (N is specified by the FOR instruction), the PLC proceeds to
subsequent execution.

The FOR-NEXT loop can be nested up to six levels (including the outermost level). The PLC parses each
FOR-NEXT loop level in sequence during running. When the number of loops is too large, the PLC scan
cycle becomes too long, which may result in an error when the watchdog timer times out. To avoid this
error, you can insert the WDT instruction between the FOR and NEXT instructions.

NoteThe FOR-NEXT loop can be nested for up to six layers.

Errors

● An error will be reported in the following cases:
● The NEXT instruction precedes the FOR instruction.
● The FOR instruction exists without the NEXT instruction.
● The FOR and NEXT instructions are not equal in quantity.

Instruction Example

● Example 1

1 indicates loop 1, 2 indicates loop 2, and 3 indicates loop 3. After loop 1 is executed twice, program
execution after the NEXT instruction continues. Each time loop 1 is executed, loop 2 is repeated 3
times; each time loop 2 is executed, loop 3 is repeated 4 times. Therefore, loop 3 is repeated 24
times, and loop 2 is repeated 6 times.

● Example 2

Instruction Description (LD & LiteST)

-90-

1 indicates loop 1, and 2 indicates loop 2. To skip the FOR-NEXT loops, you can insert a CJ
instruction. In this example, when X0 is OFF, loop 1 and loop 2 are executed. When X0 is ON,
program execution jumps from the CJ instruction to L2, and loop 1 and loop 2 are not executed.

● Example 3

1 indicates loop 1, and 2 indicates loop 2. To skip the FOR-NEXT loop nested in a loop, you can also
insert a CJ instruction. In this example, when X0 is OFF, loop 2 inside loop 1 is executed. When X0 is
ON, program execution jumps from the CJ instruction to L2, and FOR-NEXT loop 2 nested in loop 1
is skipped.

3.3 SFC Instructions

3.3.1 Instruction List

The following table lists the SFC instructions.

Instruction Category Instruction Function

SFC instruction

STL Program jump to secondary bus

RET Program return to primary bus

OUTSTL Output program jump to secondary bus

SETSTL Setting program jump to secondary bus

RSTSTL Resetting program jump to secondary bus

Instruction Description (LD & LiteST)

-91-

Note
The SFC instruction is only used in the main program and cannot be used in subprograms and interrupt
subprograms.

3.3.2 STL

STL – Program jump to secondary bus

16-bit
instruction

STL: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

S STL number
S number of the STL
statement to be executed

- BOOL

Table 3–17 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - - - S [1]

Note
[1] Only the S element is supported.

3.3.3 RET

RET – Program return to primary bus

16-bit
instruction

RET: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type
- - - - -

Function and Instruction Description

STL splits the running process of a controlled device into several states or procedures, performs logical
programming based on each state, and then switches between states based on the signal condition.
STL programming simplifies logical design and makes commissioning and maintenance easier.

The STL instruction can be represented by a ladder chart, where the state (S) is considered as a control
procedure used for the sequential programming of input conditions and output control. This type of
control separates the ongoing procedure from the preceding procedure and implements device
control by executing various procedures in sequence.

STL and ladder charts differ in programming.

Instruction Description (LD & LiteST)

-92-

An STL program starts with the STL instruction (which is different from S used in general ladder charts)
and ends with the RET instruction. The intermediate programs are guided by the S state. The operation
logic of the S state is switched to the next state when conditions are met.

3.3.4 OUTSTL/SETSTL/RSTSTL

OUTSTL – Output program jump to secondary bus

SETSTL – Setting Program jump to secondary bus

RSTSTL – Resetting program jump to secondary bus

16-bit
instruction

OUTSTL: Continuous execution

32-bit
instruction

-

16-bit
instruction

SETSTL: Continuous execution

32-bit
instruction

-

Instruction Description (LD & LiteST)

-93-

16-bit
instruction

RSTSTL: Continuous execution

32-bit
instruction

-

Operand Name Description Range Data Type

D STL number
S number of the STL statement to be
executed

- BOOL

Table 3–18 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - - - - - - S [1]

Note
[1] Only the S element is supported.

Instruction Example

3.4 Contact Operation Instructions

3.4.1 Contact Comparison Instructions

3.4.1.1 Instruction List

The following table lists the contact comparison instructions.

Instruction Description (LD & LiteST)

-94-

Instruction
Category Instruction Function

Contact
comparison
instructions

LD= LD contact comparison equal to

LD> LD contact comparison greater than

LD< LD contact comparison less than

LD<> LD contact comparison not equal to

LD>= LD contact comparison greater than or equal to

LD<= LD contact comparison less than or equal to

AND= AND contact comparison equal to

AND> AND contact comparison greater than

AND< AND contact comparison less than

AND<> AND contact comparison not equal to

AND>= AND contact comparison greater than or equal to

AND<= AND contact comparison less than or equal to

OR= OR contact comparison equal to

OR> OR contact comparison greater than

OR< OR contact comparison less than

(Continued)

Contact
comparison
instructions

OR<> OR contact comparison not equal to

OR>= OR contact comparison greater than or equal to

OR<= OR contact comparison less than or equal to

FLDD> State contact of floating-point comparison >, conductive when S1 > S2

FLDD>= State contact of floating-point comparison >=, conductive when S1 ≥ S2

FLDD< State contact of floating-point comparison <, conductive when S1 < S2

FLDD<= State contact of floating-point comparison <=, conductive when S1 ≤ S2

FLDD= State contact of floating-point comparison =, conductive when S1 = S2

FLDD<> State contact of floating-point comparison <>, conductive when S1 ≠ S2

FANDD> AND state contact of floating-point comparison >, conductive when S1 > S2

FANDD>= AND state contact of floating-point comparison >=, conductive when S1 ≥
S2

Instruction Description (LD & LiteST)

-95-

Instruction
Category Instruction Function

(Continued)

Contact
comparison
instructions

FANDD< AND state contact of floating-point comparison <, conductive when S1 < S2

FANDD<= AND state contact of floating-point comparison <=, conductive when S1 ≤
S2

FANDD= AND state contact of floating-point comparison =, conductive when S1 = S2

FANDD<> AND state contact of floating-point comparison <>, conductive when S1 ≠
S2

FORD> OR state contact of floating-point comparison >, conductive when S1 > S2

FORD>= OR state contact of floating-point comparison >=, conductive when S1 ≥
S2

FORD< OR state contact of floating-point comparison <, conductive when S1 < S2

FORD<= OR state contact of floating-point comparison <=, conductive when S1 ≤
S2

FORD= OR state contact of floating-point comparison =, conductive when S1 = S2

FORD<> OR state contact of floating-point comparison <>, conductive when S1 ≠
S2

LDZ>
State contact of absolute value comparison >, conductive when |S1 – S2| > |
S3|

LDZ>=
State contact of absolute value comparison >=, conductive when |S1 – S2|
≥ |S3|

LDZ<
State contact of absolute value comparison <, conductive when |S1 – S2| < |
S3|

LDZ<=
State contact of absolute value comparison <=, conductive when |S1 – S2|
≤ |S3|

LDZ=
State contact of absolute value comparison =, conductive when |S1 – S2| = |
S3|

LDZ<>
State contact of absolute value comparison <>, conductive when |S1 – S2|
≠ |S3|

Instruction Description (LD & LiteST)

-96-

Instruction
Category Instruction Function

(Continued)

Contact
Comparison
Instructions

ANDZ>
AND state contact of absolute value comparison >, conductive when |S1 –
S2| > |S3|

ANDZ>=
AND state contact of absolute value comparison >=, conductive when |S1 –
S2| ≥ |S3|

ANDZ<
AND state contact of absolute value comparison <, conductive when |S1 –
S2| < |S3|

ANDZ<=
AND state contact of absolute value comparison <=, conductive when |S1 –
S2| ≤ |S3|

ANDZ=
AND state contact of absolute value comparison =, conductive when |S1 –
S2| = |S3|

ANDZ<>
AND state contact of absolute value comparison <>, conductive when |S1 –
S2| ≠ |S3|

ORZ>
OR state contact of absolute value comparison >, conductive when |S1 –
S2| > |S3|

ORZ>=
OR state contact of absolute value comparison >=, conductive when |S1 –
S2| ≥ |S3|

ORZ<
OR state contact of absolute value comparison <, conductive when |S1 –
S2| < |S3|

ORZ<=
OR state contact of absolute value comparison <=, conductive when |S1 –
S2| ≤ |S3|

ORZ=
OR state contact of absolute value comparison =, conductive when |S1 –
S2| = |S3|

ORZ<>
OR state contact of absolute value comparison <>, conductive when |S1 –
S2| ≠ |S3|

3.4.1.2 AND#

Data comparison instructions – The AND# instruction compares two operands and outputs the com-
parison result as a logical state. The variables in comparison are processed as signed numbers.
AND= – AND contact comparison equal to

AND> – AND contact comparison greater than

AND< – AND contact comparison less than

AND<> – AND contact comparison not equal to

AND>= – AND contact comparison greater than or equal to

AND<= – AND contact comparison less than or equal to

16-bit
instruction

AND=: Continuous execution

32-bit
instruction

ANDD=: Continuous execution

16-bit
instruction

AND>: Continuous execution

32-bit
instruction

ANDD>: Continuous execution

16-bit
instruction

AND<: Continuous execution

Instruction Description (LD & LiteST)

-97-

32-bit
instruction

ANDD<: Continuous execution

16-bit
instruction

AND<>: Continuous execution

32-bit
instruction

ANDD<>: Continuous execution

16-bit
instruction

AND<=: Continuous execution

32-bit
instruction

ANDD<=: Continuous execution

16-bit
instruction

AND>=: Continuous execution

32-bit
instruction

ANDD>=: Continuous execution

Operand Name Description Range Data Type

S1 Comparand 1 Data source to be compared or data variable
unit 1

- INT/DINT

S2 Comparand 2 Data source to be compared or data variable
unit 2

- INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● The AND# instruction is preceded by other logical operations.
● This instruction compares two operands and outputs the comparison result as a logical state, which is used for a

program flow operation. The variables in comparison are processed as signed numbers.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Table 3–19 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Function and Instruction Description

The following table lists the AND contact comparison modes.

Table 3–20
16-bit Instruction FNC NO 32-bit Instruction ON Condition OFF Condition

AND= 232 ANDD= S1 = S2 S1 ≠ S2
AND> 233 ANDD> S1 > S2 S1 <= S2
AND< 234 ANDD< S1 < S2 S1 >= S2
AND<> 236 ANDD<> S1 <> S2 S1 = S2
AND<= 237 ANDD<= S1 <= S2 S1 > S2
AND>= 238 ANDD>= S1 >= S2 S1 < S2

Instruction Description (LD & LiteST)

-98-

Instruction Example

When X0 is ON and the value of D10 is smaller than that of K5566, Y10 is ON and remains ON.

When the value of D0 is greater than that of K6 and the value of D10 is greater than that of K6789, Y12 is
ON and remains ON.

Use the 32-bit instruction ANDD# when comparing 32-bit variables; otherwise, an error will occur.

3.4.1.3 LD#

Contact comparison instructions – The LD# instruction compares two operands and outputs the com-
parison result as a logical state. The variables in comparison are processed as signed numbers.
LD= – Contact comparison equal to

LD> – Contact comparison greater than

LD< – Contact comparison less than

LD<> – Contact comparison not equal to

LD>= – Contact comparison greater than or equal to

LD<= – Contact comparison less than or equal to

16-bit
instruction

LD=: Continuous execution

32-bit
instruction

LDD=: Continuous execution

16-bit
instruction

LD>: Continuous execution

32-bit
instruction

LDD>: Continuous execution

16-bit
instruction

LD<: Continuous execution

32-bit
instruction

LDD<: Continuous execution

16-bit
instruction

LD<>: Continuous execution

32-bit
instruction

LDD<>: Continuous execution

16-bit
instruction

LD<=: Continuous execution

32-bit
instruction

LDD<=: Continuous execution

16-bit
instruction

LD>=: Continuous execution

32-bit
instruction

LDD>=: Continuous execution

Instruction Description (LD & LiteST)

-99-

Operand Name Description Range Data Type

S1 Comparand 1 Data source to be compared or data variable unit 1 - INT/DINT

S2 Comparand 2 Data source to be compared or data variable unit 2 - INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Function and Instruction Description

The following table lists the LD contact comparison modes.

16-bit Instruction FNC NO 32-bit Instruction ON Condition OFF Condition
LD= 224 LDD= S1 = S2 S1 ≠ S2
LD> 225 LDD> S1 > S2 S1 <= S2
LD< 226 LDD< S1 < S2 S1 >= S2
LD<> 228 LDD<> S1 ≠ S2 S1 = S2
LD<= 229 LDD<= S1 <= S2 S1 > S2
LD>= 230 LDD>= S1 >= S2 S1 < S2

Instruction Example

Use the 32-bit instruction LDD# when comparing 32-bit variables; otherwise, an error occur.

3.4.1.4 OR#

Data comparison instructions – The OR# instruction compares two operands and outputs the compari-
son result as a logical state. The variables in comparison are processed as signed numbers.
OR= – OR contact comparison equal to

OR> – OR contact comparison greater than

OR< – OR contact comparison less than

OR<> – OR contact comparison not equal to

OR>= – OR contact comparison greater than or equal to

OR<= – OR contact comparison less than or equal to

16-bit
instruction

OR=: Continuous execution

32-bit
instruction

ORD=: Continuous execution

Instruction Description (LD & LiteST)

-100-

16-bit
instruction

OR>: Continuous execution

32-bit
instruction

ORD>: Continuous execution

16-bit
instruction

OR<: Continuous execution

32-bit
instruction

ORD<: Continuous execution

16-bit
instruction

OR<>: Continuous execution

32-bit
instruction

ORD<>: Continuous execution

16-bit
instruction

OR<=: Continuous execution

32-bit
instruction

ORD<=: Continuous execution

16-bit
instruction

OR>=: Continuous execution

32-bit
instruction

ORD>=: Continuous execution

Operand Name Description Range Data Type

S1 Comparand 1 Data source to be compared or data variable
unit 1

- INT/DINT

S2 Comparand 2 Data source to be compared or data variable
unit 2

- INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● This instruction compares two operands and outputs the comparison result as a logical state, which is used for a

program flow operation. The variables in comparison are processed as signed numbers.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Table 3–21 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Function and Instruction Description

The following table lists the OR contact comparison modes.

16-bit Instruction FNC NO 32-bit Instruction ON Condition OFF Condition
OR= 240 ORD= S1 = S2 S1 ≠ S2
OR> 241 ORD> S1 > S2 S1 <= S2
OR< 242 ORD< S1 < S2 S1 >= S2
OR<> 244 ORD<> S1 <> S2 S1 = S2
OR<= 245 ORD<= S1 <= S2 S1 > S2
OR>= 246 ORD>= S1 >= S2 S1 < S2

Instruction Description (LD & LiteST)

-101-

Instruction Example

When M10 is ON, or the value of D2 is equal to that of D4, M20 is ON.

When M20 is ON, or the value of D6 is greater than or equal to that of K123, Y10 is ON and remains ON.

Use the 32-bit instruction ORD# when comparing 32-bit variables; otherwise, an error will occur.

3.4.1.5 FLDD#

Floating-point contact comparison – The FLDD# instruction compares two floating-point operands and
then sets a contact (a node directly connected to the left-hand bus) to ON or OFF based on the compar-
ison result.
FLDD= – Floating-point contact comparison equal to

FLDD> – Floating-point contact comparison greater than

FLDD< – Floating-point contact comparison less than

FLDD<> – Floating-point contact comparison not equal to

FLDD>= – Floating-point contact comparison greater than or equal to

FLDD<= – Floating-point contact comparison less than or equal to

16-bit
instruction

-

32-bit
instruction

FLDD>: Continuous execution

16-bit
instruction

-

32-bit
instruction

FLDD>=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FLDD<: Continuous execution

16-bit
instruction

-

32-bit
instruction

FLDD<=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FLDD=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FLDD<>: Continuous execution

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-102-

S1 Data 1 Element number of source data 1 - REAL
S2 Data 2 Element number of source data 2 - REAL

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the FLDD*, FANDD*, and FORD* instructions, the input is FLDD*, and the corresponding instructions are

automatically generated at the background.

Table 3–22 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

Function and Instruction Description

The FLDD# instruction compares S1 and S2. The contact becomes conductive (ON) when the
conditions are met; otherwise, it is non-conductive (OFF).

32-bit Instruction ON Condition OFF Condition
FLDD> S1 > S2 S1 <= S2
FLDD>= S1 >= S2 S1 < S2
FLDD< S1 < S2 S1 >= S2
FLDD<= S1 <= S2 S1 > S2
FLDD= S1 = S2 S1 <> S2
FLDD<> S1 <> S2 S1 = S2

Instruction Example

3.4.1.6 FANDD#

Floating-point AND contact comparison – The FANDD# instruction compares two floating-point oper-
ands and sets a contact (a node connected to another node in series) to ON or OFF based on the com-
parison result.
FANDD= – Floating-point AND contact comparison equal to

FANDD> – Floating-point AND contact comparison greater than

FANDD< – Floating-point AND contact comparison less than

FANDD<> – Floating-point AND contact comparison not equal to

FANDD>= – Floating-point AND contact comparison greater than or equal to

FANDD<= – Floating-point AND contact comparison less than or equal to

Instruction Description (LD & LiteST)

-103-

16-bit
instruction

-

32-bit
instruction

FANDD>: Continuous execution

16-bit
instruction

-

32-bit
instruction

FANDD>=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FANDD<: Continuous execution

16-bit
instruction

-

32-bit
instruction

FANDD<=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FANDD=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FANDD<>: Continuous execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source data 1 - REAL
S2 Data 2 Element number of source data 2 - REAL

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the FLDD*, FANDD*, and FORD* instructions, the input is FLDD*, and the corresponding instructions are

automatically generated at the background.

Table 3–23 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

Function and Instruction Description

The FANDD# instruction compares S1 and S2. The contact becomes conductive (ON) when the
conditions are met; otherwise, it is non-conductive (OFF).

32-bit Instruction ON Condition OFF Condition
FANDD> S1 > S2 S1 <= S2
FANDD>= S1 >= S2 S1 < S2
FANDD< S1 < S2 S1 >= S2
FLD<= S1 <= S2 S1 > S2
FANDD= S1 = S2 S1 <> S2
FANDD<> S1 <> S2 S1 = S2

Instruction Description (LD & LiteST)

-104-

Instruction Example

3.4.1.7 FORD#

Floating-point OR contact comparison – The FORD# instruction compares two floating-point operands
and sets a contact (a node connected to another node in parallel) to ON or OFF based on the compari-
son result.
FORD= – Floating-point OR contact comparison equal to

FORD> – Floating-point OR contact comparison greater than

FORD< – Floating-point OR contact comparison less than

FORD<> – Floating-point OR contact comparison not equal to

FORD>= – Floating-point OR contact comparison greater than or equal to

FORD<= – Floating-point OR contact comparison less than or equal to

16-bit
instruction

-

32-bit
instruction

FORD>: Continuous execution

16-bit
instruction

-

32-bit
instruction

FORD>=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FORD<: Continuous execution

16-bit
instruction

-

32-bit
instruction

FORD<=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FORD=: Continuous execution

16-bit
instruction

-

32-bit
instruction

FORD<>: Continuous execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source data 1 - REAL
S2 Data 2 Element number of source data 2 - REAL

Instruction Description (LD & LiteST)

-105-

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the FLDD*, FANDD*, and FORD* instructions, the input is FLDD*, and the corresponding instructions are

automatically generated at the background.

Table 3–24 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

Function and Instruction Description

The FORD# instruction compares S1 and S2. The contact becomes conductive (ON) when the
conditions are met; otherwise, it is non-conductive (OFF).

32-bit Instruction ON Condition OFF Condition
FORD> S1 > S2 S1 <= S2
FORD>= S1 >= S2 S1 < S2
FORD< S1 < S2 S1 >= S2
FORD<= S1 <= S2 S1 > S2
FORD= S1 = S2 S1 <> S2
FORD<> S1 <> S2 S1 = S2

Instruction Example

3.4.1.8 LDZ#

Absolute value comparison contact – The LDZ# instruction compares the absolute value of the S1 and
S2 subtraction result with the absolute value of S3 and sets a contact (a node directly connected to the
left-hand bus) to ON or OFF based on the comparison result.
LDZ= – Absolute value contact comparison equal to

LDZ> – Absolute value contact comparison greater than

LDZ< – Absolute value contact comparison less than

LDZ<> – Absolute value contact comparison not equal to

LDZ>= – Absolute value contact comparison greater than or equal to

LDZ<= – Absolute value contact comparison less than or equal to

Instruction Description (LD & LiteST)

-106-

16-bit
instruction

LDZ>: Continuous execution

32-bit
instruction

LDDZ>: Continuous execution

16-bit
instruction

LDZ>=: Continuous execution

32-bit
instruction

LDDZ>=: Continuous execution

16-bit
instruction

LDZ<: Continuous execution

32-bit
instruction

LDDZ<: Continuous execution

16-bit
instruction

LDZ<=: Continuous execution

32-bit
instruction

LDDZ<=: Continuous execution

16-bit
instruction

LDZ=: Continuous execution

32-bit
instruction

LDDZ=: Continuous execution

16-bit
instruction

LDZ<>: Continuous execution

32-bit
instruction

LDDZ<>: Continuous execution

Operand Name Description Range Data Type

S1 Subtrahend Source element of the subtrahend - INT/DINT
S2 Minuend Source element of the minuend - INT/DINT
S3 Comparand Source element of the comparand - INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the LDZ*/LDDZ*, ANDZ*/ANDDZ*, and ORZ*/ORDZ* instructions, the input is LDZ*/LDDZ*, and the

corresponding instructions are automatically generated at the background.

Table 3–25 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

Function and Instruction Description

The LDZ# instruction compares the absolute value of the S1 and S2 subtraction result with the
absolute value of S3. The contact becomes conductive (ON) when the conditions are met; otherwise, it
is non-conductive (OFF).

16-bit Instruction 32-bit Instruction ON Condition OFF Condition
LDZ> LDDZ> |S1 – S2| > |S3| |S1 – S2| <= |S3|

LDZ>= LDDZ>= |S1 – S2| >= |S3| |S1 – S2| < |S3|

Instruction Description (LD & LiteST)

-107-

16-bit Instruction 32-bit Instruction ON Condition OFF Condition
LDZ< LDDZ< |S1 – S2| < |S3| |S1 – S2| >= |S3|

LDZ<= LDDZ<= |S1 – S2| <= |S3| |S1 – S2| > |S3|

LDZ= LDDZ= |S1 – S2| = |S3| |S1 – S2| <> |S3|

LDZ<> LDDZ<> |S1 – S2| <> |S3| |S1 – S2| = |S3|

Instruction Example

3.4.1.9 ANDZ#

Absolute value comparison AND contact – The ANDZ# instruction compares the absolute value of the
S1 and S2 subtraction result with the absolute value of S3 and sets a contact (a node connected to an-
other node in series) to ON or OFF based on the comparison result.
ANDZ= – Absolute value AND contact comparison equal to

ANDZ> – Absolute value AND contact comparison greater than

ANDZ< – Absolute value AND contact comparison less than

ANDZ<> – Absolute value AND contact comparison not equal to

ANDZ>= – Absolute value AND contact comparison greater than or equal to

ANDZ<= – Absolute value AND contact comparison less than or equal to

16-bit
instruction

ANDZ>: Continuous execution

32-bit
instruction

ANDDZ>: Continuous execution

16-bit
instruction

ANDZ>=: Continuous execution

32-bit
instruction

ANDDZ>=: Continuous execution

16-bit
instruction

ANDZ<: Continuous execution

32-bit
instruction

ANDDZ<: Continuous execution

16-bit
instruction

ANDZ<=: Continuous execution

32-bit
instruction

ANDDZ<=: Continuous execution

16-bit
instruction

ANDZ=: Continuous execution

32-bit
instruction

ANDDZ=: Continuous execution

16-bit
instruction

ANDZ<>: Continuous execution

32-bit
instruction

ANDDZ<>: Continuous execution

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-108-

S1 Subtrahend Source element of the subtrahend - INT/DINT
S2 Minuend Source element of the minuend - INT/DINT
S3 Comparand Source element of the comparand - INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the LDZ*/LDDZ*, ANDZ*/ANDDZ*, and ORZ*/ORDZ* instructions, the input is LDZ*/LDDZ*, and the

corresponding instructions are automatically generated at the background.

Table 3–26 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

Function and Instruction Description

The ANDZ# instruction compares the absolute value of the S1 and S2 subtraction result with the
absolute value of S3. The contact becomes conductive (ON) when the conditions are met; otherwise, it
is non-conductive (OFF).

16-bit Instruction 32-bit Instruction ON Condition OFF Condition
ANDZ> ANDDZ> |S1 – S2| > |S3| |S1 – S2| <= |S3|

ANDZ>= ANDDZ>= |S1 – S2| >= |S3| |S1 – S2| < |S3|

ANDZ< ANDDZ< |S1 – S2| < |S3| |S1 – S2| >= |S3|

ANDZ<= ANDDZ<= |S1 – S2| <= |S3| |S1 – S2| > |S3|

ANDZ= ANDDZ= |S1 – S2| = |S3| |S1 – S2| <> |S3|

ANDZ<> ANDDZ<> |S1 – S2| <> |S3| |S1 – S2| = |S3|

Instruction Example

3.4.1.10 ORZ#

Absolute value comparison OR contact – The ORZ# instruction compares the absolute value of the S1
and S2 subtraction result with the absolute value of S3 and sets a contact (a node connected to anoth-
er node in parallel) to ON or OFF based on the comparison result.
ORZ= – Absolute value OR contact comparison equal to

ORZ> – Absolute value OR contact comparison greater than

ORZ< – Absolute value OR contact comparison less than

ORZ<> – Absolute value OR contact comparison not equal to

Instruction Description (LD & LiteST)

-109-

ORZ>= – Absolute value OR contact comparison greater than or equal to

ORZ<= – Absolute value OR contact comparison less than or equal to

16-bit
instruction

ORZ>: Continuous execution

32-bit
instruction

ORDZ>: Continuous execution

16-bit
instruction

ORZ>=: Continuous execution

32-bit
instruction

ORDZ>=: Continuous execution

16-bit
instruction

ORZ<: Continuous execution

32-bit
instruction

ORDZ<: Continuous execution

16-bit
instruction

ORZ<=: Continuous execution

32-bit
instruction

ORDZ<=: Continuous execution

16-bit
instruction

ORZ=: Continuous execution

32-bit
instruction

ORDZ=: Continuous execution

16-bit
instruction

ORZ<>: Continuous execution

32-bit
instruction

ORDZ<>: Continuous execution

Operand Name Description Range Data Type

S1 Subtrahend Source element of the subtrahend - INT/DINT
S2 Minuend Source element of the minuend - INT/DINT
S3 Comparand Source element of the comparand - INT/DINT

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● For the LDZ*/LDDZ*, ANDZ*/ANDDZ*, and ORZ*/ORDZ* instructions, the input is LDZ*/LDDZ*, and the

corresponding instructions are automatically generated at the background.

Table 3–27 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

Function and Instruction Description

The ORZ# instruction compares the absolute value of the S1 and S2 subtraction result with the
absolute value of S3. The contact becomes conductive (ON) when the conditions are met; otherwise, it
is non-conductive (OFF).

Instruction Description (LD & LiteST)

-110-

16-bit Instruction 32-bit Instruction ON Condition OFF Condition
ORZ> ORDZ> |S1 – S2| > |S3| |S1 – S2| <= |S3|

ORZ>= ORDZ >= |S1 – S2| >= |S3| |S1 – S2| < |S3|

ORZ< ORDZ< |S1 – S2| < |S3| |S1 – S2| >= |S3|

ORZ<= ORDZ<= |S1 – S2| <= |S3| |S1 – S2| > |S3|

ORZ= ORDZ= |S1 – S2| = |S3| |S1 – S2| <> |S3|

ORZ<> ORDZ<> |S1 – S2| <> |S3| |S1 – S2| = |S3|

Instruction Example

3.4.2 Contact Logical Operation Instructions

3.4.2.1 Instruction List

The following table lists the contact logical operation instructions.

Instruction
Category Instruction Function

Contact Logical
Operation
Instructions

LD& LD logical AND operation

LD| LD logical OR operation

LD^ LD logical XOR operation

AND& AND logical AND operation

AND| AND logical OR operation

AND^ AND logical XOR operation

OR& OR logical AND operation

OR| OR logical OR operation

OR^ OR logical XOR operation

3.4.2.2 LD*

LD logical operation instructions – The bit logical operation result is used to determine whether the
contact (a node directly connected to the left-hand bus) is conductive.
LD& – LD logical AND operation

LD| – LD logical OR operation

LD^ – LD logical XOR operation

16-bit
instruction

LD&: Continuous execution

32-bit
instruction

LDD&: Continuous execution

Instruction Description (LD & LiteST)

-111-

16-bit
instruction

LD|: Continuous execution

32-bit
instruction

LDD|: Continuous execution

16-bit
instruction

LD^: Continuous execution

32-bit
instruction

LDD^: Continuous execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source
data 1

- INT/DINT

S2 Data 2 Element number of source
data 2

- INT/DINT

Note
● * indicates &, |, or ^.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Table 3–28 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Function and Instruction Description

The instruction performs a logical operation (AND: &; NOT: |; XOR: ^) on S1 and S2. It is conductive (ON)
if the operation result is not 0 and non-conductive (OFF) if the operation result is 0. The execution
results are as follows:

16-bit
Instruction

32-bit Instruction ON Condition OFF Condition

LD& LDD& S1&S2 ≠ 0 S1&S2 = 0
LD| LDD| S1|S2 ≠ 0 S1|S2 = 0

LD^ LDD^ S1^S2 ≠ 0 S1^S2 = 0

Instruction Example

Instruction Description (LD & LiteST)

-112-

3.4.2.3 AND*

The bit logical operation result is used to determine whether the contact (a node connected to another
node in series) is conductive.
AND& – AND logical AND operation

AND| – AND logical OR operation

AND^ – AND logical XOR operation

16-bit
instruction

AND&: Continuous execution

32-bit
instruction

ANDD&: Continuous execution

16-bit
instruction

AND|: Continuous execution

32-bit
instruction

ANDD|: Continuous execution

16-bit
instruction

AND^: Continuous execution

32-bit
instruction

ANDD^: Continuous execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source
data 1

- INT/DINT

S2 Data 2 Element number of source
data 2

- INT/DINT

Note
● * indicates &, |, or ^.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Table 3–29 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Function and Instruction Description

The instruction performs a logical operation (AND: &; NOT: |; XOR: ^) on S1 and S2. It is conductive (ON)
if the operation result is not 0 and non-conductive (OFF) if the operation result is 0. The execution
results are as follows:

16-bit Instruction 32-bit Instruction ON Condition OFF Condition
AND& ANDD& S1&S2 ≠ 0 S1&S2 = 0
AND| ANDD| S1|S2 ≠ 0 S1|S2 = 0

AND^ ANDD^ S1^S2 ≠ 0 S1^S2 = 0

Instruction Description (LD & LiteST)

-113-

Instruction Example

3.4.2.4 OR*

The bit logical operation result is used to determine whether the contact (a node connected to another
node in parallel) is conductive.
OR& – OR logical AND operation

OR| – OR logical OR operation

OR^ – OR logical XOR operation

16-Bit
Instruction

OR&: Continuous execution

32-Bit
Instruction

ORD&: Continuous execution

16-Bit
Instruction

OR|: Continuous execution

32-Bit
Instruction

ORD|: Continuous execution

16-Bit
Instruction

OR^: Continuous execution

32-Bit
Instruction

ORD^: Continuous execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source
data 1

- INT/DINT

S2 Data 2 Element number of source
data 2

- INT/DINT

Note
● * indicates &, |, or ^.
● For the LD*/LDD*, AND*/ANDD*, and OR*/ORD* instructions, the input is LD*/LDD*, and the corresponding

instructions are automatically generated at the background.

Table 3–30 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-114-

Function and Instruction Description

The instruction performs a logical operation (AND: &; NOT: |; XOR: ^) on S1 and S2. It is conductive (ON)
if the operation result is not 0 and non-conductive (OFF) if the operation result is 0. The execution
results are as follows:

16-Bit Instruction 32-Bit Instruction ON Condition OFF Condition
OR& ORD& S1&S2 ≠ 0 S1&S2 = 0
OR| ORD| S1|S2 ≠ 0 S1|S2 = 0

OR^ ORD^ S1^S2 ≠ 0 S1^S2 = 0

Instruction Example

3.5 Data Operation Instructions

3.5.1 Arithmetic Operation Instructions

3.5.1.1 Instruction List

The following table lists the arithmetic operation instructions.

Instruction Category Instruction Function

Arithmetic Operation
Instructions

ADD Binary data addition

SUB Binary data subtraction

MUL Binary data multiplication

DIV Binary data division

MOD Remainder by binary data division

EADD Binary floating-point addition

ESUB Binary floating-point subtraction

EMUL Binary floating-point multiplication

EDIV Binary floating-point division

INC Binary data increment by 1

DEC Binary data decrement by 1

Instruction Description (LD & LiteST)

-115-

3.5.1.2 ADD

ADD – Binary data addition

16-bit
instruction

ADD: Continuous execution/ADDP: Pulse execution

32-bit
instruction

DADD: Continuous execution/DADDP: Pulse execution

Operand Name Description Range Data Type

S1 Augend Data, or address of the word element that
stores the data

- INT/DINT

S2 Addend Data, or address of the word element that
stores the data

- INT/DINT

D Sum Address of the word element that stores
the data

- INT/DINT

Table 3–31 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The ADD instruction requires contact driving and has three operands. It adds S1 and S2 algebraically in
binary format, and stores the addition result in D. The variables in the algebraic operation are
processed as signed numbers. The most significant bit is the sign bit. The value 0 indicates a positive
number, whereas the value 1 indicates a negative number.

● The zero flag (M8020) is set if the operation result is 0.
● The carry flag (M8022) is set if the operation result is greater than 32,767 (in 16-bit operation) or

2,147,483,647 (in 32-bit operation).
● The borrow flag (M8021) is set if the operation result is less than –32,768 (in 16-bit operation) or –

2,147,483,648 (in 32-bit operation).
● In 32-bit operation, the variable address in the ADD instruction is the low-order 16 bits of the

address, and the adjacent subsequent address unit contains the high-order 16 bits. This prevents
duplication or overwriting during programming.

Instruction Example

Example 1

When M8 is set, D110 (addend) is added to D100 (augend), and the addition result is stored to D100.
Assume that D100 is K8 and D110 is K-12, then D100 = 8 + (–12) = –4.

Example 2

Instruction Description (LD & LiteST)

-116-

D110 (addend) is added to D100 (augend) on the rising edge of M8, and the addition result is stored to
D100.

3.5.1.3 SUB

SUB – Binary data subtraction

16-bit
instruction

SUB: Continuous execution/SUBP: Pulse execution

32-bit
instruction

DSUB: Continuous execution/DSUBP: Pulse execution

Operand Name Description Range Data Type

S1 Subtrahend Data, or address of the word
element that stores the data

- INT/DINT

S2 Minuend Data, or address of the word
element that stores the data

- INT/DINT

D Difference Address of the word element
that stores the data

- INT/DINT

Table 3–32 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The SUB instruction requires contact driving and has three operands. It performs subtraction on S1
and S2 algebraically in binary format, and stores the subtraction result in D. The variables in the
algebraic operation are processed as signed numbers. The most significant bit is the sign bit. The value
0 indicates a positive number, whereas the value 1 indicates a negative number.

● The zero flag (M8020) is set if the operation result is 0.
● The carry flag (M8022) is set if the operation result is greater than 32,767 (in 16-bit operation) or

-2,147,483,647 (in 32-bit operation).
● The borrow flag (M8021) is set if the operation result is less than –32,768 (in 16-bit operation) or –

2,147,483,648 (in 32-bit operation).
● In 32-bit operation, the variable address in the SUB instruction is the low-order 16 bits of the

address, and the adjacent subsequent address unit contains the high-order 16 bits. This prevents
duplication or overwriting during programming.

Instruction Example

Instruction Description (LD & LiteST)

-117-

When M8 is set, D110 (minuend) is subtracted from D100 (subtrahend), and the subtraction result is
stored to D120. Assume that D100 is K10 and D110 is K8, then D120 = 10 – 8 = K2.

3.5.1.4 MUL

MUL – Binary data multiplication

16-bit
Instruction

MUL: Continuous execution/MULP: Pulse execution

32-bit
Instruction

DMUL: Continuous execution/DMULP: Pulse execution

Operand Name Description Range Data Type

S1 Multiplicand Data, or address of the word element
that stores the data

- INT/DINT

S2 Multiplier Data, or address of the word element
that stores the data

- INT/DINT

D Product Address of the word element that stores
the data

- DINT

Table 3–33 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The MUL instruction requires contact driving and has three operands. It multiplies S1 by S2
algebraically in binary format, and stores the multiplication result in D. The variables in the algebraic
operation are processed as signed numbers. The most significant bit is the sign bit. The value 0
indicates a positive number, whereas the value 1 indicates a negative number.

In 32-bit operation, the variable address in the MUL instruction is the low-order 16 bits of the address,
and the adjacent subsequent address unit contains the high-order 16 bits. This prevents duplication or
overwriting during programming. The operation result must be 32-bit data. If not, the floating-point
operation instruction EMUL is recommended.

For 16-bit multiplication, the product is 32-bit data.

For 32-bit multiplication, the product is 32-bit data.

Instruction Description (LD & LiteST)

-118-

Instruction Example

Figure 3-5 Ladder chart and instruction list

When M8 is set, D100 (multiplicand) is multiplied by D110 (multiplier), and the multiplication result is
stored in D120.

If D100 is K5 and D110 is K9, then D120 = 5 x 9 = K45.

If D100 is K1234 and D110 is K5678, then D120 and D121 = 1234 x 5678 = K7006652. Note that the
product is greater than 16 bits at this time, and both D121 and D120 are used.

3.5.1.5 DIV

DIV – Binary data division

16-bit
Instruction

DIV: Continuous execution/DIVP: Pulse execution

32-bit
Instruction

DDIV: Continuous execution/DDIVP: Pulse execution

Operand Name Description Range Data Type

S1 Dividend Data, or address of the word element that stores
the data

- INT/DINT

S2 Divisor Data, or address of the word element that stores
the data

- INT/DINT

D Quotient Address of the word element that stores the data - INT/DINT

Table 3–34 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The DIV instruction requires contact driving and has three operands. It divides S1 by S2 algebraically in
binary format and stores the quotient in D. The variables in the algebraic operation are processed as
signed numbers. The most significant bit is the sign bit. The value 0 indicates a positive number,
whereas the value 1 indicates a negative number.

In 32-bit operation, the variable address (S1 and S2) in the DIV instruction is the low-order 16 bits of
the address, and the adjacent subsequent address unit contains the high-order 16 bits. This prevents
duplication or overwriting during programming. The quotient is stored in the units pointed to by D and
D+1.

The DIV operation result involves only the quotient. To obtain the remainder, use the MOD instruction.

If the divisor S2 is 0, a calculation error occurs.

Instruction Description (LD & LiteST)

-119-

Instruction Example

When M8 is set, D100 (dividend) is divided by D110 (divisor), and the quotient is stored in D120.

3.5.1.6 MOD

The MOD instruction is used to calculate the remainder produced by a division of two integers.
MOD – Remainder by division

Instruction Name LD Expression LiteST Expression

MOD Remainder by division D := S1 MOD S2

16-bit
instruction

MOD: Continuous execution/MODP: Pulse execution

32-bit
instruction

DMOD: Continuous execution/DMODP: Pulse execution

Operand Name Description Range Data Type

S1 Data 1 Element number of source data 1 - INT/DINT
S2 Data 2 Element number of source data 2 - INT/DINT
D Operation result Start number of elements for storing the operation

result
- INT/DINT

Table 3–35 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The MOD instruction requires contact driving and has three operands. It divides S1 by S2 algebraically
in binary format and stores the remainder in D. The variables in the algebraic operation are processed
as signed numbers. The most significant bit is the sign bit. The value 0 indicates a positive number,
whereas the value 1 indicates a negative number.

Instruction Description (LD & LiteST)

-120-

In 32-bit operation, the variable address in the DIV instruction is the low-order 16 bits of the address,
and the adjacent subsequent address unit contains the high-order 16 bits. This prevents duplication or
overwriting during programming. The remainder is stored in the units pointed to by D and D+1.

If the divisor S2 is 0, a calculation error occurs. If the dividend is negative, the remainder is negative.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

3.5.1.7 EADD

The EADD instruction adds two binary floating-point numbers together.
EADD – Floating-point addition

16-bit
instruction

-

32-bit
instruction

DEADD: Continuous execution/DEADDP: Pulse execution

Operand Name Description Range Data Type

S1 Augend Binary floating-point augend - REAL

S2 Addend Binary floating-point addend - REAL

D Sum Unit that stores the binary floating-point sum - REAL

Table 3–36 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The EADD instruction performs addition of two binary floating-point numbers. Where,

● S1 and S2 are respectively the binary floating-point augend and addend.
● D is the unit that stores the sum of S1 and S2.

The zero flag (M8020) is set if the operation result is 0.

Instruction Description (LD & LiteST)

-121-

The carry flag (M8022) is set if the absolute value of the operation result is greater than the maximum
floating-point value.

The borrow flag (M8021) is set if the absolute value of the operation result is less than the minimum
floating-point value.

Instruction Example

Example Explanation

When X10 is ON, two binary floating-point numbers in (D3, D2) and (D5, D4) are added together and the
sum is stored in (D11, D10).

When X11 switches from OFF to ON, the floating-point number in (D21, D20) is incremented by 123.

If the sum is stored in the same unit as the augend or addend, use the DEADDP instruction of the pulse
execution type. If the instruction of the continuous execution type is used, calculation is performed
upon every program scan.

3.5.1.8 ESUB

The ESUB instruction performs subtraction on two binary floating-point numbers.
ESUB – Floating-point subtraction

16-bit
instruction

-

32-bit
instruction

DESUB: Continuous execution/DESUBP: Pulse execution

Operand Name Description Range Data Type

S1 Subtrahend Binary floating-point subtrahend - REAL

S2 Minuend Binary floating-point minuend - REAL

D Difference Unit that stores the binary floating-point
subtraction result

- REAL

Table 3–37 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The ESUB instruction subtracts one binary floating-point number from another. Where,

● S1 and S2 are respectively the binary floating-point subtrahend and minuend.
● D is the unit that stores the subtraction result.

Instruction Description (LD & LiteST)

-122-

The zero flag (M8020) is set if the operation result is 0.

The carry flag (M8022) is set if the absolute value of the operation result is greater than the maximum
floating-point value.

The borrow flag (M8021) is set if the absolute value of the operation result is less than the minimum
floating-point value.

Instruction Example

Example Explanation

When X10 is ON, the binary floating-point number in (D5, D4) is subtracted from that in (D3, D2) and the
binary floating-point difference is stored in (D11, D10).

When X11 switches from OFF to ON, the floating-point number in (D11, D10) is decremented by 123.

If the difference is stored in the same unit as the subtrahend or minuend, use the DESUBP instruction
of the pulse execution type. If the instruction of the continuous execution type is used, calculation is
performed upon every program scan.

3.5.1.9 EMUL

The EMUL instruction multiplies two binary floating-point numbers together.
EMUL – Floating-point multiplication

16-bit
instruction

-

32-bit
instruction

DEMUL: Continuous execution/DEMULP: Pulse execution

Operand Name Description Range Data Type

S1 Multiplicand Binary floating-point multiplicand - REAL

S2 Multiplier Binary floating-point multiplier - REAL

D Product Unit that stores the binary floating-point product - REAL

Table 3–38 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The EMUL instruction multiplies two binary floating-point numbers together. Where,

● S1 and S2 are respectively the binary floating-point multiplicand and multiplier.

Instruction Description (LD & LiteST)

-123-

● D is the unit that stores the binary floating-point multiplication product.

The zero flag (M8020) is set if the operation result is 0.

The carry flag (M8022) is set if the absolute value of the operation result is greater than the maximum
floating-point value.

The borrow flag (M8021) is set if the absolute value of the operation result is less than the minimum
floating-point value.

Instruction Example

Example Explanation

When X12 is ON, the binary floating-point number in (D3, D2) is multiplied by that in (D5, D4) and the
binary floating-point product is stored in (D11, D10).

When X13 switches from OFF to ON, the binary floating-point number in (D21, D20) is multiplied by 3
and the result is stored in (D21, D20)

If the product is stored in the same unit as the multiplicand or multiplier, use the DEMULP instruction
of the pulse execution type. If the instruction of the continuous execution type is used, calculation is
performed upon every program scan.

3.5.1.10 EDIV

The EDIV instruction divides one binary floating-point number by another.
EDIV – Floating-point division

16-bit
instruction

-

32-bit
instruction

DEDIV: Continuous execution/DEDIVP: Pulse execution

Operand Name Description Range Data Type

S1 Dividend Binary floating-point dividend - REAL

S2 Divisor Binary floating-point divisor - REAL

D Quotient Starting address of units that store the binary
floating-point quotient

- REAL

Table 3–39 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-124-

Function and Instruction Description

The EDIV instruction divides one binary floating-point number by another. Where,

● S1 and S2 are respectively the binary floating-point dividend and divisor.
● D is the starting address of units for storing the binary floating-point quotient.

The zero flag (M8020) is set if the operation result is 0.

The carry flag (M8022) is set if the absolute value of the operation result is greater than the maximum
floating-point value.

The borrow flag (M8021) is set if the absolute value of the operation result is less than the minimum
floating-point value.

If the divisor is 0, a calculation error occurs.

Instruction Example

Example Explanation

When X14 is ON, the binary floating-point number in (D3, D2) is divided by that in (D5, D4) and the
binary floating-point quotient is stored in (D11, D10).

When X15 switches from OFF to ON, the binary floating-point number in (D11, D10) is divided by 10 and
the result is stored in (D11, D10).

If the quotient is stored in the same unit as the dividend or divisor, use the DEDIVP instruction of the
pulse execution type. If the instruction of the continuous execution type is used, calculation is
performed upon every program scan.

3.5.1.11 INC

The INC instruction increases the binary data by 1.
INC – Increment by 1

16-bit
instruction

INC: Continuous execution/INCP: Pulse execution

32-bit
instruction

DINC: Continuous execution/DINCP: Pulse execution

Operand Name Description Range Data Type

D Cumulative result Address of the word
element that stores the
cumulative result

- INT/DINT

Instruction Description (LD & LiteST)

-125-

Table 3–40 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -

Function and Instruction Description

The INC instruction increases the value in D by 1 each time it is executed.

In 16-bit operation, when 32,767 increases by 1, the result is –32,768. In 32-bit operation, when
2,147,483,647 increases by 1, the result is –2,147,483,648.

This instruction does not refresh the zero flag, carry flag, and borrow flag.

In 32-bit operation, the variable address in the INC instruction is the low-order 16 bits of the address,
and the adjacent subsequent address unit contains the high-order 16 bits. This prevents duplication or
overwriting during programming.

Instruction Example

The value in D10 increases by 1 each time M5 is set to ON.

3.5.1.12 DEC

The DEC instruction decreases the binary data by 1.
DEC – Decrement by 1

16-bit
instruction

DEC: Continuous execution/DECP: Pulse execution

32-bit
instruction

DDEC: Continuous execution/DDECP: Pulse execution

Operand Name Description Range Data Type

D Regressive result Address of the word element that stores the
regressive result

- INT/DINT

Table 3–41 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ √ - -

Function and Instruction Description

The DEC instruction decreases the value in D by 1 each time it is executed.

This instruction does not refresh the zero flag, carry flag, and borrow flag.

Instruction Description (LD & LiteST)

-126-

In 16-bit operation, when –32,768 decreases by 1, the result is 32,767. In 32-bit operation, when –
2,147,483,648 decreases by 1, the result is 2,147,483,647.

In 32-bit operation, the variable address in the INC instruction is the low-order 16 bits of the address,
and the adjacent subsequent address unit contains the high-order 16 bits. This prevents duplication or
overwriting during programming.

Instruction Example

The value in D10 decreases by 1 each time M5 is set to ON.

3.5.2 Data Logical Operation Instructions

3.5.2.1 Instruction List

The following table lists the data logical operation instructions.

Instruction Category Instruction Function

Data Logical
Operation
Instructions

WAND Binary data logical AND

WOR Binary data logical OR

WXOR Binary data logical XOR

NEG Binary data negation

ENEG Binary floating-point sign negation

3.5.2.2 WAND

When the driving conditions are met, the WAND instruction performs a logical AND on S1 and S2 by bit
and stores the result in D.
WAND – Logical AND instruction

16-bit
Instruction

WAND: Continuous execution/WANDP: Pulse execution

32-bit
Instruction

DWAND: Continuous execution/DWANDP: Pulse execution

Operand Name Description Range Data Type

S1 Data 1 Data in the AND operation,
or address of the word
element that stores the
data

- INT/DINT

S2 Data 2 Data in the AND operation,
or address of the word
element that stores the
data

- INT/DINT

D Operation result Address of the word
element that stores the
operation result

- INT/DINT

Instruction Description (LD & LiteST)

-127-

Table 3–42 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The WAND instruction performs logical AND on the binary values in S1 and S2 by bit and stores the
operation result in the variable D.

The result of a logical AND operation is 0 if the value of either S1 or S2 is 0.

1∧1=1; 1∧0=0; 0∧1=0; 0∧0=0

Instruction Example

3.5.2.3 WOR

When the driving conditions are met, the WOR instruction performs a logical OR on S1 and S2 by bit
and stores the result in D.
WOR – Logical OR instruction

16-bit
Instruction

WOR: Continuous execution/WORP: Pulse execution

32-bit
Instruction

DWOR: Continuous execution/DWORP: Pulse execution

Operand Name Description Range Data Type

S1 Data 1 Data in the OR operation, or address of the word
element that stores the data

- INT/DINT

S2 Data 2 Data in the OR operation, or address of the word
element that stores the data

- INT/DINT

D Operation result Address of the word element that stores the
operation result

- INT/DINT

Instruction Description (LD & LiteST)

-128-

Table 3–43 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The WOR instruction performs logical OR on the binary values in S1 and S2 by bit and stores the
operation result in the variable D.

The result of a logical OR operation is 1 if the value of either S1 or S2 is 1.

1∨1=1; 1∨0=0; 0∨1=0; 0∨0=0

Instruction Example

3.5.2.4 WXOR

When the driving conditions are met, the WXOR instruction performs a logical XOR on S1 and S2 by bit
and stores the result in D.
WXOR – Logical XOR instruction

16-bit
Instruction

WXOR: Continuous execution/WXORP: Pulse execution

32-bit
Instruction

DWXOR: Continuous execution/DWXORP: Pulse execution

Operand Name Description Range Data Type

S1 Data 1 Data in the XOR operation, or address of the word
element that stores the data

- INT/DINT

S2 Data 2 Data in the XOR operation, or address of the word
element that stores the data

- INT/DINT

D Operation result Address of the word element that stores the
operation result

- INT/DINT

Instruction Description (LD & LiteST)

-129-

Table 3–44 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The WXOR instruction performs logical XOR on the binary values in S1 and S2 by bit and stores the
operation result in the variable D.

The result of a logical XOR operation is 0 if S1 and S2 are the same and 1 if they are different.

1⊻1=0; 1⊻0=1; 0⊻1=1; 0⊻0=0

Instruction Example

3.5.2.5 NEG

When the driving conditions are met, the NEG instruction inverts each bit of D, adds 1, and then writes
the result to D.
NEG – Negation instruction

16-bit
Instruction

NEG: Continuous execution/NEGP: Pulse execution

32-bit
Instruction

DNEG: Continuous execution/DNEGP: Pulse execution

Operand Name Description Range Data Type

D Operation result Address of the word element that stores the
data

- INT/DINT

Table 3–45 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-130-

Function and Instruction Description

The NEG instruction requires contact driving and has one operand. It inverts each bit of D, adds 1, and
then writes the result to D.

The instruction of the pulse execution type is used in normal cases.

The NEG instruction can be used to obtain the absolute value of a negative binary number.

Instruction Example

The following example illustrates how to obtain the absolute value of the difference in a subtraction:

When the value of D2 is greater than that of D4, M10 is ON. When the value of D2 is equal to that of D4,
M11 is ON. When the value of D2 is less than that of D4, M12 is ON. This ensures that the value in D10 is
positive.

The preceding program is represented as follows:

When bit 15 of D10 is 1 (indicating that the value in D10 is negative), M10 is ON. The NEG instruction
can be used to obtain the absolute value of D10.

In the preceding examples, when D2 is K4 and D4 is K8, or D2 is K8 and D4 is K4, the result in D10 is K4.

Additional Information

The most significant bit (leftmost bit) of the register indicates whether a number is positive or negative.
0 indicates positive and 1 indicates negative.

When the most significant bit is 1, the NEG instruction can be used to obtain absolute value.

Instruction Description (LD & LiteST)

-131-

3.5.2.6 ENEG

The ENEG instruction inverts the sign of a binary floating-point number (real number).
ENEG – Floating-point sign negation instruction

16-bit
Instruction

-

32-bit
Instruction

DENEG: Continuous execution/DENEGP: Pulse execution

Operand Name Description Range Data Type

D Operand Start number of elements that store the binary
floating-point number subject to a sign change

- REAL

Table 3–46 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-132-

Function and Instruction Description

The ENEG instruction inverts the sign of the binary floating-point number in [D+1, D] and stores the
result in [D+1, D]. The instruction of the pulse execution type is used in normal cases.

Instruction Example

Data in D100 and D101 is inverted, and the result is stored in D100 and D101.

● Before the instruction is executed

● After the instruction is executed

3.5.3 Word Bit Operation Instructions

3.5.3.1 Instruction List

The following table lists the word bit operation instructions.

Instruction Category Instruction Function

Word bit operation
instruction

BLD Word or dword bit contact instruction
BLDI Word or dword bit inversion contact instruction
BAND Word or dword bit AND contact instruction
BANDI Word or dword bit AND inversion contact instruction
BOR Word or dword bit OR contact instruction
BORI Word or dword bit OR inversion contact instruction
BOUT Word or dword bit data output instruction

BSET Word or dword bit data setting instruction

BRST Word or dword bit data reset instruction

3.5.3.2 BLD

The execution result (ON or OFF) of the BLD instruction is determined based on the state (ON or OFF)
of the specified bit of the source data.
BLD – Word or dword bit contact instruction

16-bit
Instruction

BLD: Continuous execution

32-bit
Instruction

DBLD: Continuous execution

Operand Name Description Range Data Type

S Source data Element number of the source data - INT/DINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Instruction Description (LD & LiteST)

-133-

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Table 3–47 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction uses the state of the specified bit of a word variable as the contact output.

Instruction Example

● n = 3:

● n = 4:

3.5.3.3 BLDI

The execution result (ON or OFF) of the BLDI instruction is determined based on the state (OFF or ON)
of the specified bit of the source data.
BLDI – Word or dword bit inversion contact instruction

16-bit
Instruction

BLDI: Continuous execution

32-bit
Instruction

DBLDI: Continuous execution

Operand Name Description Range Data Type

S Source data Element number of the source data - INT/DINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Instruction Description (LD & LiteST)

-134-

Table 3–48 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction inverts the state of the specified bit of a word variable and use the inversion result as
the contact output.

Instruction Example

● n = 3:

● n = 4:

3.5.3.4 BAND

The execution result (ON or OFF) of the BAND instruction is determined based on the state (ON or OFF)
of the specified bit of the source data.
BAND – Word or dword bit AND contact instruction

16-bit
Instruction

BAND: Continuous execution

32-bit
Instruction

DBAND: Continuous execution

Operand Name Description Range Data Type

S Source data Element number of the source data - INT/DINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Table 3–49 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-135-

Function and Instruction Description

This instruction uses the state of the specified bit of a word variable as the contact output.

Instruction Example

3.5.3.5 BANDI

The execution result (ON or OFF) of the BANDI instruction is determined based on the state (OFF or ON)
of the specified bit of the source data.
BANDI: Word or dword bit AND inversion contact instruction

16-bit
Instruction

BANDI: Continuous execution

32-bit
Instruction

DBANDI: Continuous execution

Operand Name Description Range Data Type

S Source data Element number of the source data - INT/DINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Table 3–50 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction inverts the state of the specified bit of a word variable and use the inversion result as
the contact output.

Instruction Example

Instruction Description (LD & LiteST)

-136-

3.5.3.6 BOR

The execution result (ON or OFF) of the BOR instruction is determined based on the state (ON or OFF)
of the specified bit of the source data.
BOR – Word or dword bit OR contact instruction

16-bit
Instruction

BOR: Continuous execution

32-bit
Instruction

DBOR: Continuous execution

Operand Name Description Range Data Type

S Source data Element number of the source data - INT/DINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Table 3–51 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction uses the state of the specified bit of a word variable as the contact output.

Instruction Example

3.5.3.7 BORI

The execution result (ON or OFF) of the BORI instruction is determined based on the state (OFF or ON)
of the specified bit of the source data.
BORI – Word or dword bit OR inversion contact instruction

16-bit
Instruction

BORI: Continuous execution

32-bit
Instruction

DBORI: Continuous execution

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-137-

S Source data Element number of the source data - INT/DDINT
n Load bit Specified load bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DDINT

Note
For the BLD/DBLD, BLDI/DBLDI, BAND/DBAND, BANDI/DBANDI, BOR/DBOR, and BORI/DBORI instructions, the input
is BLD/DBLD or BLDI/DBLDI, and the corresponding instructions are automatically generated at the background.

Table 3–52 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction inverts the state of the specified bit of a word variable and use the inversion result as
the contact output.

Instruction Example

3.5.3.8 BOUT

The BOUT instruction outputs the logical operation result prior to this instruction to the specified bit.
BOUT – Word or dword bit data output instruction

16-bit
Instruction

BOUT: Continuous execution

32-bit
Instruction

DBOUT: Continuous execution

Operand Name Description Range Data Type

D Output data Element number of the output data - INT/DINT

n Output bit Specified output bit, ranging from 0 to 15 (16-bit
instruction) or 0 to 31 (32-bit instruction)

0 to 15/31 INT/DINT

Table 3–53 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-138-

Function and Instruction Description

The BOUT instruction outputs the flow prior to this instruction to the specified bit of a word variable.

Instruction Example

The initial value of D100 is 2#1010 (decimal K10).

1. When R200 is 2 and M100 is ON, bit 2 of D100 is set and the value of D100 becomes 2#1110 (decimal
K14).

2. When R200 is 4 and M100 is ON, bit 4 of D100 is set and the value of D100 becomes 2#11110 (decimal
K30).

3. When M100 is OFF, bit 4 of D100 is reset and the value of D100 becomes 2#1110 (decimal K14).

3.5.3.9 BSET

When the BSET instruction is driven, the bit specified by this instruction is set to ON.
BSET – Word or dword bit data setting instruction

16-bit
Instruction

BSET: Continuous execution

32-bit
Instruction

DBSET: Continuous execution

Operand Name Description Range Data Type

D Output data Element number of the output data - INT/DINT
n Output bit Specified output bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Table 3–54 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BSET instruction sets the specified bit of a word variable to ON.

Instruction Example

● When M100 is ON:

Instruction Description (LD & LiteST)

-139-

● When M100 is OFF:

3.5.3.10 BRST

When the BRST instruction is driven, the bit specified by this instruction is set to OFF.
BRST – Word or dword bit data reset instruction

16-bit
Instruction

BRST: Continuous execution

32-bit
Instruction

DBRST: Continuous execution

Operand Name Description Range Data Type

D Output data Element number of the output data - INT/DINT
n Output bit Specified output bit, ranging from 0 to 15 (16-bit

instruction) or 0 to 31 (32-bit instruction)
0 to 15/31 INT/DINT

Table 3–55 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BRST resets the specified bit of a word variable.

Instruction Example

● When M100 is OFF:

● When M101 is ON:

Instruction Description (LD & LiteST)

-140-

3.5.4 Trigonometric Function Instructions

3.5.4.1 Instruction List

The following table lists the trigonometric function instructions.

Instruction Category Instruction Function

Trigonometric function
instruction

SIN Floating-point SIN operation

COS Floating-point COS operation

TAN Floating-point TAN operation

ASIN Binary floating-point ARCSIN operation

ACOS Binary floating-point ARCCOS operation

ATAN Binary floating-point ARCTAN operation

RAD Binary floating-point degree-to-radian conversion

DEG Binary floating-point radian-to-degree conversion

SINH Binary floating-point SINH operation

COSH Binary floating-point COSH operation

TANH Binary floating-point TANH operation

3.5.4.2 SIN

The SIN instruction calculates the sine of the specified angle (in radians). The variable is a binary float-
ing-point number.
SIN – Floating-point SIN operation instruction

16-bit
Instruction

-

32-bit
Instruction

DSIN: Continuous execution/DSINP: Pulse execution

Operand Name Description Range Data Type

S Data source Angle variable (binary floating-point number, in radians)
for which the sine is to be calculated; value range: 0 ≤ α
≤ 2π

- REAL

D Operation result Storage unit for storing the sine value (binary floating-
point)

- REAL

Instruction Description (LD & LiteST)

-141-

Table 3–56 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The SIN instruction obtains the sine of the specified angle (in radians). The variable is a binary floating-
point number. Where,

● S is the angle variable (binary floating-point number) for which the sine value is to be calculated, in
the unit of rad. The value range is as follows: 0 ≤ α ≤ 2π.

● D is the storage unit for storing the SIN operation result (binary floating-point number).

Instruction Example 1

The angle in radians specified in (D21, D20) is converted into the sine value and stored in (D31, D30).

Both the source data and SIN operation result are binary floating-point numbers.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

Instruction Example 2

● 1. X0 and X1 determine the angle in degrees, which is 45° or 60°. The value is stored in D10.
● 2. The decimal value in D10 is converted into a binary floating-point equivalent and stored in (D21,

D20).
● 3. The floating-point number of (π/180) is calculated and stored in (D25, D24).
● 4. The floating-point angle in degrees in (D21, D20) is converted to the floating-point angle in

radians and stored in (D31, D30).
● 5. The sine of the floating-point angle in radians (D31, D30) is calculated and stored in (D41, D40) as

a floating-point number.

3.5.4.3 TAN

The TAN instruction calculates the tangent of the specified angle (in radians). The variable is a binary
floating-point number.

Instruction Description (LD & LiteST)

-142-

TAN – Floating-point TAN operation instruction

16-bit
Instruction

-

32-bit
Instruction

DTAN: Continuous execution/DTANP: Pulse execution

Operand Name Description Range Data Type

S Data source Angle variable (binary floating-point number, in radians)
for which the tangent is to be calculated; value range: 0 ≤
α < 2π

- REAL

D Operation result Storage unit for storing the tangent value (binary floating-
point)

- REAL

Table 3–57 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The TAN instruction obtains the tangent of the specified angle (in radians). The variable is a binary
floating-point number.

Instruction Example

The angle in radians specified in (D21, D20) is converted into the tangent value and stored in (D31,
D30).

Both the source data and TAN operation result are binary floating-point numbers.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

3.5.4.4 COS

The COS instruction calculates the cosine of the specified angle (in radians). The variable is a binary
floating-point number.
COS – Floating-point COS operation instruction

16-bit
Instruction

-

32-bit
Instruction

DCOS: Continuous execution/DCOSP: Pulse execution

Operand Name Description Range Data Type

S Data source Angle variable (binary floating-point number, in radians)
for which the cosine is to be calculated; value range: 0 ≤
α ≤ 2π

- REAL

D Operation result Storage unit for storing the cosine value (binary floating-
point)

- REAL

Instruction Description (LD & LiteST)

-143-

Table 3–58 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The COS instruction obtains the cosine of the specified angle (in radians). The variable is a binary
floating-point number.

Instruction Example

The angle in radians specified in (D21, D20) is converted into the cosine value and stored in (D31, D30).

Both the source data and COS operation result are binary floating-point numbers.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

3.5.4.5 ASIN

The ASIN instruction calculates the angle in radians based on a sine value.
ASIN – Floating-point SIN-1 operation instruction

16-bit
Instruction

-

32-bit
Instruction

DASIN: Continuous execution/DASINP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which arcsine is to be
calculated

- REAL

D Operation result Storage unit for storing the operation result (–n/2 to +n/2) - REAL

Table 3–59 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The ASIN instruction calculates the angle in radians based on a sine value.

Note
An operation error will occur if the value in S falls beyond the range of –1.0 to +1.0.

Instruction Description (LD & LiteST)

-144-

Instruction Example 1

When M10 is ON, the SIN-1 value of the binary floating-point value in (D1, D0) is calculated and stored in
(D3, D2).

Instruction Example 2

Assume that the value in (D1, D0) is 0.707106781. When M10 switches from OFF to ON, the value in (D3,
D2) is 0.78539815, that in (D5, D4) is 45, and that in (D7, D6) is 45.

3.5.4.6 ACOS

The ACOS instruction calculates the angle in radians based a COS value.
ACOS – Floating-point COS-1 operation instruction

16-bit
Instruction

-

32-bit
Instruction

DACOS: Continuous execution/DACOSP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which arccosine is to be
calculated

- REAL

D Operation result Storage unit for storing the operation result (0 to n) - REAL

Table 3–60 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The ACOS instruction calculates the angle in radians based a COS value.

Note
An operation error will occur if the value in S falls beyond the range of –1.0 to +1.0.

Instruction Description (LD & LiteST)

-145-

Instruction Example 1

When M10 is ON, the COS-1 value of the binary floating-point value in (D1, D0) is calculated and stored
in (D3, D2).

Instruction Example 2

Assume that the value in (D1, D0) is 0.866025404. When M10 switches from OFF to ON, the value in (D3,
D2) is 0.52359877, that in (D5, D4) is 30, and that in (D7, D6) is 30.

3.5.4.7 ATAN

The ATAN instruction calculates the angle in radians based a TAN value.
ATAN – Floating-point TAN-1 operation instruction

16-bit
Instruction

-

32-bit
Instruction

DATAN: Continuous execution/DATANP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which arctangent is to
be calculated

- REAL

D Operation result Storage unit for storing the operation result (–n/2 to +n/
2)

- REAL

Table 3–61 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The ATAN instruction calculates the angle in radians based a TAN value.

Instruction Description (LD & LiteST)

-146-

Instruction Example 1

When M10 is ON, the TAN-1 value of the binary floating-point value in (D1, D0) is calculated and stored
in (D3, D2).

Instruction Example 2

Assume that the value in (D1, D0) is 1.732050808. When M10 switches from OFF to ON, the value in (D3,
D2) is 1.04719753, that in (D5, D4) is 60, and that in (D7, D6) is 60.

3.5.4.8 RAD

The RAD instruction converts a binary floating-point value in degrees into a value in radians.
RAD – Floating-point degree-to-radian conversion instruction

16-bit
Instruction

-

32-bit
Instruction

DRAD: Continuous execution/DRADP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point value in degrees to be converted to a
value in radians

- REAL

D Operation result Storage unit for storing the operation result - REAL

Table 3–62 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The RAD instruction converts a binary floating-point value in degrees into a value in radians. The
formula is as follows: Value in radians = Value in degrees x n/180.

Instruction Description (LD & LiteST)

-147-

Instruction Example 1

When M10 is ON, the binary floating-point value in degrees in (D1, D0) is converted into a value in
radians and stored in (D3, D2).

Instruction Example 2

When M10 switches from OFF to ON, the value 90 is assigned to D0. The integer in D0 is converted into
a floating-point number, which is then assigned to (D3, D2). Degree-to-radian conversion is performed
on (D3, D2) and the result is assigned to (D5, D4). The final value in (D5, D4) is π/2, that is, 1.570796.

3.5.4.9 DEG

The DEG instruction converts a binary floating-point value in radians into a value in degrees.
DEG – Floating-point radian-to-degree conversion instruction

16-bit
Instruction

-

32-bit
Instruction

DDEG: Continuous execution/DDEGP: Pulse execution

Operand Name Description Range Data Type

S Data source
Binary floating-point value in radians to be converted to
a value in degrees - REAL

D Operation result Storage unit for storing the operation result - REAL

Table 3–63 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The DEG instruction converts a binary floating-point value in radians into a value in degrees. The
formula is as follows: Value in degrees = Value in radians x 180/n.

Instruction Description (LD & LiteST)

-148-

Instruction Example 1

When M10 is ON, the binary floating-point value in radians in (D1, D0) is converted into a value in
degrees and stored in (D3, D2).

Instruction Example 2

Assume that the value in (D1, D0) is 3.1415926. When M10 switches from OFF to ON, the value in (D3,
D2) is 180. After the floating-point number is converted into an integer, the value in (D5, D4) is 180.

3.5.4.10 SINH

The SINH instruction calculates the hyperbolic sine of a binary floating-point number.
SINH – Floating-point SINH operation instruction

16-bit
Instruction

-

32-bit
Instruction

DSINH: Continuous execution/DSINHP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which the hyperbolic
sine is to be calculated

- REAL

D Operation result
Storage unit for storing the operation result (Error 6706 is
returned if the operation result in D exceeds the floating-
point range.)

- REAL

Table 3–64 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The SINH instruction calculates the hyperbolic sine of a binary floating-point number. The formula is as
follows: sinh = (es – e-s)/2.

Instruction Description (LD & LiteST)

-149-

Instruction Example

When M10 is ON, the hyperbolic sine of the binary floating-point value in (D1, D0) is calculated and
stored in (D3, D2).

3.5.4.11 COSH

The COSH instruction calculates the hyperbolic cosine of a binary floating-point number.
COSH – Floating-point COSH operation instruction

16-bit
Instruction

-

32-bit
Instruction

DCOSH: Continuous execution/DCOSHP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which the hyperbolic
cosine is to be calculated

- REAL

D Operation result Storage unit for storing the operation result - REAL

Table 3–65 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The COSH instruction calculates the hyperbolic cosine of a binary floating-point number. The formula
is as follows: cosh = (es + e-s)/2.

Instruction Example

When M10 is ON, the hyperbolic cosine of the binary floating-point value in (D1, D0) is calculated and
stored in (D3, D2).

3.5.4.12 TANH

The TANH instruction calculates the hyperbolic tangent of a binary floating-point number.
TANH – Floating-point TANH operation instruction

Instruction Description (LD & LiteST)

-150-

16-bit
Instruction

-

32-bit
Instruction

DTANH: Continuous execution/DTANHP: Pulse execution

Operand Name Description Range Data Type

S Data source
Binary floating-point variable for which the hyperbolic
tangent is to be calculated - REAL

D Operation result Storage unit for storing the operation result - REAL

Table 3–66 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The TANH instruction calculates the hyperbolic tangent of a binary floating-point number. The formula
is as follows: tanh = (es – e-s)/(es + e-s).

Instruction Example

When M10 is ON, the hyperbolic tangent of the binary floating-point value in (D1, D0) is calculated and
stored in (D3, D2).

3.5.5 Table Operation Instructions

3.5.5.1 Instruction List

The following table lists the table operation instructions.

Instruction Category Instruction Function

Table operation
instruction

WSUM Data sum calculation
MEAN Mean calculation
LIMIT Upper/Lower limit control
BZAND Dead zone control
ZONE Zone control
SCL Coordinate determination (coordinate data of different points)
SCL2 Coordinate determination 2 (X and Y coordinates)

3.5.5.2 WSUM

The WSUM instruction calculates the sum of consecutive 16-bit or 32-bit data entries.

Instruction Description (LD & LiteST)

-151-

WSUM – Data sum calculation
16-bit
Instruction

WSUM: Continuous execution/WSUMP: Pulse execution

32-bit
Instruction

DWSUM: Continuous execution/DWSUMP: Pulse execution

Operand Name Description Range Data Type

S Source data
Start number of elements that store the data entries
for which the sum is to be calculated

- INT/DINT, array*n

D Result Start number of elements that store the sum - INT/DINT, array*2

n Data count Data count 2 to 256 INT/DINT

Table 3–67 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

● 16-bit instruction
The WSUM instruction calculates the sum of n 16-bit data entries starting from [S] and stores the
result as 32-bit data in [D+1, D].

● 32-bit instruction
The WSUM instruction calculates the sum of n 32-bit data entries starting from [S+1, S] and stores
the result as 64-bit data in [D+3, D+2, D+1, D].

Errors

An error is returned in the following conditions:

The n elements starting from [S] are out of range.

[D] for data storage is out of range.

The operand n is less than or equal to 0.

Instruction Example

3.5.5.3 MEAN

When the driving conditions are met, the MEAN instruction calculates the mean value of n data entries
starting from S and stores the result in D.
MEAN – Mean calculation

Instruction Description (LD & LiteST)

-152-

16-bit
Instruction

MEAN: Continuous execution/MEANP: Pulse execution

32-bit
Instruction

DMEAN: Continuous execution/DMEANP: Pulse execution

Operand Name Description Range Data Type

S
Data start
address

Start address of word elements that store the data
entries for which the mean value is to be
calculated

- INT/DINT, array*n

D Average value Address of the word element that stores the mean
value

- INT/DINT

n Data length Immediate 1 to 256 INT/DINT

Table 3–68 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MEAN instruction calculates the mean value of n variables starting from S by dividing the sum of
the variables by n and then stores the result in D.

The remainder (if any) is discarded.

A calculation error occurs when n falls beyond the range of 1 to 256.

Instruction Example

(D10 + D11 + D12 + D13)/2 = D20

Assume that D10 is K5, D11 is K5, D12 is K15, and D13 is K52. Then D20 is K19, and the remainder 1 is
discarded.

3.5.5.4 LIMIT

The LIMIT instruction sets the upper and lower limits of an input value to control the output.
LIMIT – Upper/Lower limit control

16-bit
Instruction

LIMIT: Continuous execution/LIMITP: Pulse execution

32-bit
Instruction

DLIMIT: Continuous execution/DLIMITP: Pulse execution

Operand Name Description Range Data Type

S1 Lower limit Minimum output limit - INT/DINT

S2 Upper limit Maximum output limit - INT/DINT

Instruction Description (LD & LiteST)

-153-

S3 Input value Input value to be controlled by lower and upper limits - INT/DINT

D Output value
Start number of elements that store an output value under
lower/upper limit control - INT/DINT

Table 3–69 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - √ - -

S3 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The LIMIT instruction sets the upper and lower limits in [S1] and [S2] for the input in [S3] to control
the output in [D].

When the input is less than the lower limit ([S1] > [S3]), [S1] is used as the output ([D]).

When the input is greater than the upper limit ([S2] < [S3]), [S2] is used as the output ([D]).

When the input falls between the upper and lower limits ([S1] ≤ [S3] ≤ [S2]), [S3] is used as the
output ([D]).

When controlling the output value using only the upper limit, set the lower limit specified in S1 to
the minimum 16-bit signed value, that is, –32,768.

When controlling the output value using only the lower limit, set the upper limit specified in S2 to
the maximum 16-bit signed value, that is, 32767.

● 32-bit instruction
The LIMIT instruction sets the upper and lower limits in [S1+1, S1] and [S2+1, S2] for the input in [S3
+1, S3] to control the output in [D+1, D].

When the input is less than the lower limit ([S1+1, S1] > [S3+1, S3]), [S1+1, S1] is used as the output
([D+1, D]).

When the input is greater than the upper limit ([S2+1, S2] < [S3+1, S3]), [S2+1, S2] is used as the
output ([D+1, D]).

When the input falls between the upper and lower limits ([S1+1, S1] ≤ [S3+1, S3] ≤ [S2+1, S2]), [S3
+1, S3] is used as the output ([D+1, D]).

Instruction Description (LD & LiteST)

-154-

When controlling the output value using only the upper limit, set the lower limit specified in [S1+1,
S1] to the minimum 32-bit signed value, that is, –2,147,483,648.

When controlling the output value using only the lower limit, set the upper limit specified in [S2+1,
S2] to the maximum 32-bit signed value, that is, 2,147,483,647.

An error is returned in the following conditions:

The lower limit is greater than the upper limit in the 16-bit/32-bit instruction.

Instruction Example

3.5.5.5 BZAND

The BZAND instruction controls an output value based on whether the input value is within the speci-
fied dead zone range (defined by upper and lower limits).
BZAND – Dead zone control

16-bit
Instruction

BZAND: Continuous execution/BZANDP: Pulse execution

32-bit
Instruction

DBZAND: Continuous execution/DBZANDP: Pulse execution

Operand Name Description Range Data Type

S1 Lower limit Lower limit of a dead zone (with no output) - INT/DINT

S2 Upper limit Upper limit of a dead zone (with no output) - INT/DINT

S3 Input value Input value subject to dead zone control - INT/DINT

D Output value Number of the element that stores an output value under
dead zone control

- INT/DINT

Table 3–70 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - √ - -

S3 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The BZAND instruction sets a dead zone range in [S1] and [S2] for an input value in [S3] to control
the output in [D].

The output value is controlled as follows:

Instruction Description (LD & LiteST)

-155-

When the input is less than the lower limit of the dead zone ([S1] > [S3]), ([S3] – [S1]) is used as the
output ([D]).

When the input is greater than the upper limit of the dead zone ([S2] < [S3]), ([S3] – [S2]) is used as
the output ([D]).

When the input falls between the upper and lower limits of the dead zone ([S1] ≤ [S3] ≤ [S2]), 0 is
used as the output ([D]).

● 32-bit instruction
The BZAND instruction sets a dead zone range in [S1+1, S1] and [S2+1, S2] for an input value in [S3
+1, S3] to control the output in [D+1, D].

When the input is less than the lower limit of the dead zone ([S1+1, S1] > [S3+1, S3]), ([S3+1, S3] –
[S1+1, S1]) is used as the output ([D+1, D]).

When the input is greater than the upper limit of the dead zone ([S2+1, S2] < [S3+1, S3]), ([S3+1, S3]
– [S2+1, S2]) is used as the output ([D+1, D]).

When the input falls between the upper and lower limits of the dead zone ([S1+1, S1] ≤ [S3+1, S3]
≤ [S2+1, S2]), 0 is used as the output ([D+1, D]).

Data overflow conforms to cyclical processing during instruction execution. That is, the minimum
value is reached when the maximum value increases by 1; the maximum value is reached when the
minimum value decreases by 1.

An error is returned in the following conditions:

The lower limit is greater than the upper limit in the 16-bit/32-bit instruction.

Instruction Example

3.5.5.6 ZONE

The ZONE instruction controls an output value by using the specified deviation based on whether the
input value is positive or negative.
ZONE – Zone control

16-bit
Instruction

ZONE: Continuous execution/ZONEP: Pulse execution

32-bit
Instruction

DZONE: Continuous execution/DZONEP: Pulse execution

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-156-

S1
Negative
deviation

Negative deviation (which can be a positive or negative
number or 0) added to an input value - INT/DINT

S2
Positive
deviation

Positive deviation (which can be a positive or negative
number or 0) added to an input value - INT/DINT

S3 Input value Input value subject to zone control - INT/DINT

D Output value Start number of elements that store an output value
under zone control

- INT/DINT

Table 3–71 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - √ - -

S3 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The ZONE instruction adds the value in [S2] or [S1] to the input value in [S3] based on whether the
input is positive or negative and stores the result in [D].

When the input is less than 0 ([S3] < 0), ([S3] + [S1]) is used as the output ([D]).

When the input is greater than 0 ([S3] > 0), ([S3] + [S2]) is used as the output ([D]).

When the input is 0 ([S3] = 0), 0 is used as the output ([D]).

The instruction is executed as follows:

● 32-bit instruction
The ZONE instruction adds the value in [S2+1, S2] or [S1+1, S1] to the input value in [S3+1, S3]
based on whether the input is positive or negative and stores the result in [D+1, D].

Instruction Example

Instruction Description (LD & LiteST)

-157-

3.5.5.7 SCL

The SCL instruction determines the coordinates of an input value based on the specified data table
and outputs the result.
SCL – Coordinate determination (coordinates of different points)

16-bit
Instruction

SCL: Continuous execution/SCLP: Pulse execution

32-bit
Instruction

DSCL: Continuous execution/DSCLP: Pulse execution

Operand Name Description Range Data Type

S1 Input value
Input value for which the coordinate is to be
determined, or number of the element that stores the
input value

- INT/DINT

S2 Table data
Start number of elements that store the conversion
table used for coordinate determination

1 to 256
INT/DINT,
array*indetermi-
nate

D Output value Number of the element that stores the output value
under coordinate control

- INT/DINT

Table 3–72 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The SCL instruction determines the output value ([D]) corresponding to the input value in [S1]
based on the graph determined by the table data in [S2]. If the output value is not an integer, the
digit in the first decimal place is rounded.

The instruction is executed as follows:

Instruction Description (LD & LiteST)

-158-

Table 3–73 [S2] in the 16-bit instruction

Setting Element for Storage

Assume that the number of coordinate
points is 5. [S2]

Point 1
X coordinate [S2+1]

Y coordinate [S2+2]

Point 2
X coordinate [S2+3]

Y coordinate [S2+4]

Point 3
X coordinate [S2+5]

Y coordinate [S2+6]

Point 4
X coordinate [S2+7]

Y coordinate [S2+8]

Point 5
X coordinate [S2+9]

Y coordinate [S2+10]

● 32-bit instruction
The SCL instruction determines the output value ([D+1, D]) corresponding to the input value in [S1
+1, S1] based on the graph determined by the table data in [S2+1, S2]. If the output value is not an
integer, the digit in the first decimal place is rounded.

Table 3–74 [S2] in the 32-bit instruction

Setting Element for Storage

Assume that the number of coordinate
points is 5.

[S2+1, S]

Point 1
X coordinate [S2+3, S2+2]

Y coordinate [S2+5, S2+4]

Point 2
X coordinate [S2+7, S2+6]

Y coordinate [S2+9, S2+8]

Point 3
X coordinate [S2+11, S2+10]

Y coordinate [S2+13, S2+12]

Point 4
X coordinate [S2+15, S2+14]

Y coordinate [S2+17, S2+16]

Point 5
X coordinate [S2+19, S2+18]

Y coordinate [S2+21, S2+20]

An error is returned in the following conditions:

The x coordinates of table data are not sorted in ascending order.

The value in [S1] is beyond the range of the table data.

Instruction Example

Instruction Description (LD & LiteST)

-159-

3.5.5.8 SCL2

The SCL2 instruction determines the coordinates of an input value based on the specified data table
and outputs the result.
SCL2 – Coordinate determination 2 (X and Y coordinates)

16-bit
Instruction

SCL2: Continuous execution/SCL2P: Pulse execution

32-bit
Instruction

DSCL2: Continuous execution/DSCL2P: Pulse execution

Operand Name Description Range Data Type

S1 Input value
Input value for which the coordinate is to be determined,
or number of the element that stores the input value - INT/DINT

S2 Table data
Start number of elements that store the conversion table
used for coordinate determination

1 to 256
INT/DINT,
array*indetermi-
nate

D Output value Number of the element that stores the output value
under coordinate control

- INT/DINT

Table 3–75 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The SCL2 instruction determines the output value ([D]) corresponding to the input value in [S1]
based on the graph determined by the table data in [S2]. If the output value is not an integer, the
digit in the first decimal place is rounded.

The instruction is executed as follows:

Instruction Description (LD & LiteST)

-160-

Table 3–76 [S2] in the 16-bit instruction

Setting Element for Storage

Assume that the number of coordinate
points is 5. [S2]

X coordinate

Point 1 [S2+1]
Point 2 [S2+2]
Point 3 [S2+3]
Point 4 [S2+4]
Point 5 [S2+5]

Y coordinate

Point 1 [S2+6]
Point 2 [S2+7]
Point 3 [S2+8]
Point 4 [S2+9]
Point 5 [S2+10]

● 32-bit instruction
The SCL2 instruction determines the output value ([D+1, D]) corresponding to the input value in [S1
+1, S1] based on the graph determined by the table data in [S2+1, S2]. If the output value is not an
integer, the digit in the first decimal place is rounded.

Table 3–77 [S2+1, S2] in the 32-bit instruction

Setting Element for Storage

Assume that the number of coordinate
points is 5.

[S2+1, S2]

X coordinate

Point 1 [S2+3, S2+2]
Point 2 [S2+5, S2+4]
Point 3 [S2+7, S2+6]
Point 4 [S2+9, S2+8]
Point 5 [S2+11, S2+10]

Y coordinate

Point 1 [S2+13, S2+12]
Point 2 [S2+15, S2+14]
Point 3 [S2+17, S2+16]
Point 4 [S2+19, S2+18]
Point 5 [S2+21, S2+20]

An error is returned in the following conditions:

The x coordinates of table data are not sorted in ascending order.

The value in [S1] is beyond the range of the table data.

Instruction Description (LD & LiteST)

-161-

Instruction Example

3.5.6 Exponent Operation Instructions

3.5.6.1 Instruction List

The following table lists the exponent operation instructions.

Instruction
Category Instruction Function

Exponent
operation
instruction

EXP Binary floating-point exponentiation operation

LOGE Binary floating-point natural logarithm operation

LOG Binary floating-point common logarithm operation

ESQR Binary floating-point square root operation

SQR Binary data square root operation

POW Floating-point weight instruction

3.5.6.2 EXP

The EXP instruction performs exponentiation of a binary floating-point number with the base of mathe-
matical constant e (2.71828).
EXP – Floating-point exponentiation operation

16-bit
Instruction

-

32-bit
Instruction

DEXP: Continuous execution/DEXPP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable used as the exponent - REAL

D Operation result Unit that stores the result of exponentiation - REAL

Table 3–78 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The EXP instruction performs exponentiation of a binary floating-point number with the base of
mathematical constant e (2.71828). Where,

● S is the binary floating-point variable used as the exponent.
● D is the unit that stores the result of exponentiation.

Instruction Description (LD & LiteST)

-162-

Note
An operation error will occur when the operation result does not satisfy the following condition: 2–126≤ Operation
result < 2128.

Instruction Example

When X0 is ON, exponentiation is performed for the binary floating-point value in (D1, D0) with e as the
base, and the result is stored in (D3, D2). e(D1, D0)→(D3, D2)

3.5.6.3 LOG

The LOG instruction calculates the common logarithm of a binary floating-point number with base 10.
LOG – Floating-point common logarithm operation

16-bit
Instruction

-

32-bit
Instruction

DLOG: Continuous execution/DLOGP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable for which common logarithm
is to be calculated

- REAL

D Operation result Unit that stores the operation result - REAL

Table 3–79 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The LOG instruction calculates the common logarithm of a binary floating-point number with base 10.
Where,

● S is the binary floating-point variable for which common logarithm is to be calculated.
● D is the unit that stores the natural logarithm result.

Note
The value in S must be positive. If it is 0 or negative, an operation error will occur.

Instruction Description (LD & LiteST)

-163-

Instruction Example

When M10 is ON, the common logarithm for the binary floating-point value in (D1, D0) is calculated
with base 10 and the operation result is stored in (D3, D2).

Log 10 (D1, D0)→(D3, D2)

3.5.6.4 LOGE

The LOGE instruction calculates the natural logarithm of a binary floating-point number with the base
of mathematical constant e (2.71828).
LOGE – Floating-point natural logarithm operation

16-bit
Instruction

-

32-bit
Instruction

DLOGE: Continuous execution/DLOGEP: Pulse execution

Operand Name Description Range Data Type

S Data source
Binary floating-point variable for which the natural
logarithm is to be calculated - REAL

D Operation result Unit that stores the operation result - REAL

Table 3–80 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The LOGE instruction calculates the natural logarithm of a binary floating-point number with the base
of mathematical constant e (2.71828). Where,

● S is the binary floating-point variable for which natural logarithm is to be calculated.
● D is the unit that stores the natural logarithm result.

Note
The value in S must be positive. If it is 0 or negative, an operation error will occur.

Instruction Description (LD & LiteST)

-164-

Instruction Example

When X0 is ON, the natural logarithm for the binary floating-point value in (D1, D0) is calculated with
the base of mathematical constant e and the operation result is stored in (D3, D2).

The formula for converting the natural logarithm to common logarithm is as follows (0.4342945 is used
for common logarithm division):

3.5.6.5 ESQR

The ESQR instruction calculates the square root of a binary floating-point number.
ESQR – Floating-point square root operation

16-bit
Instruction

-

32-bit
Instruction

DESQR: Continuous execution/DESQRP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable of which the square root
is to be calculated

- REAL

D Operation result Unit that stores the calculated square root - REAL

Table 3–81 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The ESQR instruction calculates the square root of a binary floating-point number.

The zero flag (M8020) is set if the operation result is 0.

The value in S must be positive. If it is negative, a calculation error occurs.

Instruction Example

The square root result of the binary floating-point number () is stored in (D11, D10).

Instruction Description (LD & LiteST)

-165-

The square root of the binary floating-point number E6789 is calculated, and the result is stored in
(D21, D20).

3.5.6.6 SQR

The SQR instruction calculates the square root of an integer.
SQR – Square root operation

16-bit
Instruction

SQR: Continuous execution/SQRP: Pulse execution

32-bit
Instruction

DSQR: Continuous execution/DSQRP: Pulse execution

Operand Name Description Range Data Type

S Data source Data of which the square root is to be calculated, or
address of the word element that stores the data

- INT/DINT

D Operation result
Address of the word element that stores the calculated
square root - INT/DINT

Table 3–82 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The SQR instruction calculates the square root of S in binary format and stores the result in D.

The value in S must be positive. If it is negative, an operation error occurs, the error flag M8067 is set to
ON, and the instruction is not executed.

The operation result in D must be an integer. The borrow flag M8021 is set to ON when the decimal
places (if any) of the operation result are discarded.

The zero flag M8020 is set to ON when the operation result is 0.

Instruction Example

If D0 is K100, D12 is K10 when X2 is set to ON.

If D0 is K110, D12 is K10 (the decimal places are discarded) when X2 is set to ON.

3.5.6.7 POW

The POW instruction performs a mathematical operation in which the binary floating-point number in
[S1+1, S1] is raised to the power in [S2+1, S2] and stores the result in [D+1, D].
POW – Floating-point weight instruction

Instruction Description (LD & LiteST)

-166-

16-bit
Instruction

-

32-bit
Instruction

DPOW: Continuous execution/DPOWP: Pulse execution

Operand Name Description Range Data Type

S1 Base Start address of elements that store the base, which cannot be
0

- REAL

S2 Power Start address of elements that store the power - REAL

D Result Start address of elements that store the operation result - REAL

Table 3–83 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

Since the POW instruction uses only floating-point numbers, the values in [S1] and [S2] must be
converted to floating-point numbers.

1. The carry flag M8022 is set to ON if the absolute value of the operation result is greater than the
maximum floating-point value.

2. The borrow flag M8021 is set to ON if the absolute value of the operation result is less than the
minimum floating-point value.

3. The zero flag M8020 is set to ON if the operation result is 0.

Instruction Example

If [S1] is 2 and [S2] is 3, then [D] = 23 = 8.

3.6 Data Processing Instructions

3.6.1 Data Conversion Instructions

3.6.1.1 Instruction List

The following table lists the data conversion instructions.

Instruction Description (LD & LiteST)

-167-

Instruction
Category Instruction Function

Data
conversion
instruction

INT Conversion from binary floating-point number into BIN integer

BCD Conversion from binary into BCD

BIN Conversion from BCD into binary

FLT Conversion from binary into binary floating-point

EBCD Conversion from binary floating-point into decimal floating-point

EBIN Conversion from decimal floating-point into binary floating-point

DABIN Conversion from decimal ASCII into BIN
BINDA Conversion from BIN into decimal ASCII
WTOB Conversion from word to byte

BITW Conversion from bit to word
BTOW Conversion from byte to word

WBIT Conversion from word to bit
WTODW Conversion from word to dword
DWTOW Conversion from dword to word
MCPY Data copy (memory copy, type conversion)

MSET Data setting (memory setting and reset)

UNI 4-bit combination of 16-bit data
DIS 4-bit separation of 16-bit data

ASCI Conversion from HEX into ASCII
HEX Conversion from ASCII into HEX
DECO Data decoding

ENCO Data encoding

3.6.1.2 INT

The INT instruction rounds a binary floating-point number by discarding the decimal places and stores
the result in D.
INT – Conversion from floating-point number to binary integer

16-bit
Instruction

INT: Continuous execution/INTP: Pulse execution

32-bit
Instruction

DINT: Continuous execution/DINTP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point variable to be rounded - REAL, fixed to 32 bits

D Operation result Unit that stores the resulting binary integer - INT/DINT

Table 3–84 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √[1] -

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-168-

Note
[1]: The 16-bit instruction does not support the constant E.

Function and Instruction Description

The INT instruction rounds a binary floating-point number by discarding the decimal places and stores
the result in D.

● M8020 is set when S is 0.
● The borrow flag M8021 is set when the absolute value of S is less than or equal to 1 (|S| ≤ 1).

The carry flag M8022 is set if the operation result falls beyond the following range (which results in an
overflow):

● 16-bit instruction: –32,768 to +32,767
● 32-bit instruction: –2,147,483,648 to +2,147,483,647

Instruction Example

The floating-point number in (D51, D50) is rounded and then stored in D100.

The floating-point number in (D11, D10) is rounded and then stored in (D21, D20).

Note the difference in storing the operation result between the INT and DINT instructions.

3.6.1.3 BCD

The BCD instruction converts binary data into binary coded decimal (BCD) data.
BCD – Conversion from binary into BCD

16-bit
Instruction

BCD: Continuous execution/BCDP: Pulse execution

32-bit
Instruction

DBCD: Continuous execution/DBCDP: Pulse execution

Operand Name Description Range Data Type

S Data source
Binary data, or address of the word element that
stores the binary data - INT/DINT

D Conversion result
Address of the word element that stores the
conversion result

- INT/DINT

Table 3–85 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-169-

Function and Instruction Description

The BCD instruction requires contact driving and has two operands. It converts the binary number in S
to a BCD number and stores the result in D. The BCD instruction is generally used for data format
conversion before display.

● For the 16-bit instruction, the conversion result ranges from 0 to 9999. An error occurs when the
conversion result exceeds 9999.

● For the 32-bit instruction, the conversion result ranges from 0 to 99,999,999. An error occurs when
the conversion result exceeds 99,999,999.

Instruction Example

The binary number in D200 is converted into a BCD value, which is then stored in D300.

If the value in D200 is H000E (hexadecimal) or K14 (decimal), the conversion result in D300 is 10100
(binary number).

3.6.1.4 BIN

The BIN instruction converts BCD data into binary data.
BIN – Conversion from BCD into binary

16-bit
Instruction

BIN: Continuous execution/BINP: Pulse execution

32-bit
Instruction

DBIN: Continuous execution/DBINP: Pulse execution

Operand Name Description Range Data Type

S Data source BCD data, or address of the word element that stores
the data

- INT/DINT

D Conversion result
Address of the word element that stores the
conversion result

- INT/DINT

Table 3–86 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The BIN instruction requires contact driving and has two operands. It converts the BCD value in S to a
binary number and stores the result in D. This instruction is generally used to convert the data (for

Instruction Description (LD & LiteST)

-170-

example, encoder disk setting) read by external ports into binary data that can be directly used in
operation.

The BCD value in S ranges from 0 to 9999 for the 16-bit instruction or from 0 to 99,999,999 for the 32-bit
instruction.

If the data in S is not in BCD format (Hex indicates any digit beyond the range of 0 to 9), an operation
error occurs.

Instruction Example

The BCD value in D200 is converted into a binary value, which is then stored in D300.

3.6.1.5 FLT

The FLT instruction converts a binary integer into a binary floating-point number.
FLT – Conversion from binary integer to binary floating-point

16-bit
Instruction

FLT: Continuous execution/FLTP: Pulse execution

32-bit
Instruction

DFLT: Continuous execution/DFLTP: Pulse execution

Operand Name Description Range Data Type

S Integer Binary integer to be converted, or address of the word
element that stores the binary integer - INT/DINT

D Floating-point
number

Address of the word element that stores the floating-
point number after conversion - REAL, fixed to 32 bits

Table 3–87 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The FLT instruction converts the integer in S into a floating-point number and stores the result in D and
D+1.

This instruction implements the inverse function of the INT instruction (converting binary floating-
point values into binary integers).

Instruction Example 1

Instruction Description (LD & LiteST)

-171-

● When M8 is ON, the 16-bit binary integer in D10 is converted into a binary floating-point number.
The result is stored in (D121, D120).

● When M10 is ON, the 32-bit binary integer in (D21, D20) is converted into a binary floating-point
number. The result is stored in (D131, D130).

Instruction Example 2

Instructions are executed to multiply D100 by 125.5 and convert the calculation result into an integer.

● 1. Convert the value in D100 into a floating-point number and store the result in D110.
● 2. Store the conversion result of 125.5 in D120.
● 3. Multiply the value in D110 by that in D120 and store the result in D130.
● 4. Convert the calculation result into an integer and store it in D140.

3.6.1.6 EBCD

EBCD – Conversion from binary floating-point to decimal floating-point

16-bit
Instruction

-

32-bit
Instruction

DEBCD: Continuous execution/DEBCDP: Pulse execution

Operand Name Description Range Data Type

S Data source Binary floating-point
variable

- REAL

D Operation result
Unit that stores the
decimal floating-point
number after conversion

- DINT

Table 3–88 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -

Function and Instruction Description

The EBCD instruction converts a binary floating-point number into a decimal floating-point number.

Instruction Example

Instruction Description (LD & LiteST)

-172-

The binary floating-point number in (D3, D2) is converted into a decimal floating-point number, which
is then stored in (D11, D10).

For the binary floating-point number in (D3, D2), the real number occupies 23 bits, the exponent
occupies eight bits, and the sign occupies one bit. For the decimal floating-point number in (D11, D10),
the exponent (D3) and real number (D2) are expressed as D2 x 10D3 in scientific notation.

In floating-point operations of the PLC, all data is handled in binary floating-point format. Binary
floating-point numbers are converted into decimal equivalents for easy monitoring.

3.6.1.7 EBIN

EBIN – Conversion from decimal floating-point to binary floating-point

16-bit
Instruction

-

32-bit
Instruction

DEBIN: Continuous execution/DEBINP: Pulse execution

Operand Name Description Range Data Type

S Data source Decimal floating-point variable - DINT

D Result
Unit that stores the binary floating-point number after
conversion

- REAL

Table 3–89 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -

Function and Instruction Description

The EBIN instruction converts a decimal floating-point number into a binary floating-point number.

Instruction Example

The decimal floating-point number 3.142 in (D11, D10) is converted into a binary floating-point
number, which is then stored in (D3, D2).

3.6.1.8 DABIN

The DABIN instruction converts numeric data expressed in decimal ASCII codes (30H to 39H) into binary
data.
DABIN – Conversion from decimal ASCII into BIN

Instruction Description (LD & LiteST)

-173-

16-bit
Instruction

DABIN: Continuous execution/DABINP: Pulse execution

32-bit
Instruction

DDABIN: Continuous execution/DDABINP: Pulse execution

Operand Name Description Range Data Type

S Input value
Start number of elements that store the ASCII code to be
converted to a binary number - INT/DINT, array*3

D Output value Number of the element that stores the conversion result - INT/DINT

Table 3–90 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - √ - -

D - - - √ √ - - - -

Function and Instruction Description

16-bit instruction

The DABIN instruction converts the decimal ASCII code (30H to 39H) stored in [S] to [S+2] into a 16-bit
binary number. The result is stored in [D].

The value stored in [S] to [S+2] ranges from –32,768 to +32,767.

When the number to be converted is positive, the sign (lowest byte) is set to 20H (space); when it is
negative, the sign is set to 2DH (–).

The ASCII code of each digit falls within the range of 30H to 39H.

When the ASCII code of each digit is 20H (space) or 00H (NULL), it is handled as 30H.

32-bit instruction

The DABIN instruction converts the decimal ASCII code (30H to 39H) stored in [S] to [S+5] into a 32-bit
binary number. The result is stored in [D+1, D].

The value stored in [S] to [S+5] ranges from –2,147,483,648 to +2,147,483,647. The high-order byte in [S
+5] is ignored.

The ASCII code of each digit falls within the range of 30H to 39H.

Instruction Description (LD & LiteST)

-174-

When the ASCII code of each digit is 20H (space) or 00H (NULL), it is handled as 30H.

Errors

An operation error occurs in the following conditions.

● The sign data is not 20H (space) or 2DH (–).
● The ASCII code of each digit is not 20H (space), 00H (NULL), or a value between 30H and 39H.
● The value to be converted is beyond the value range of the 16-bit or 32-bit signed number.
● The element [S+2] (16-bit operation) or [S+5] (32-bit operation) is out of range.

Instruction Example

3.6.1.9 BINDA

The BINDA instruction converts binary data into decimal ASCII codes (30H to 39H).
BINDA – Conversion from BIN to decimal ASCII

16-bit
Instruction

BINDA: Continuous execution/BINDAP: Pulse execution

32-bit
Instruction

DBINDA: Continuous execution/DBINDAP: Pulse execution

Operand Name Description Range Data Type

S Input value Number of the element that stores the binary number to be
converted to ASCII code

- INT/DINT, array*4

D Output value Number of the element that stores the conversion result - INT/DINT

Table 3–91 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - √ - -

D - - - √ √ - - - -

Function and Instruction Description

16-bit instruction

The BINDA instruction converts each digit of the 16-bit binary data in [S] into an ASCII code (30H to
39H) in decimal format and stores the result in elements starting from [D].

Instruction Description (LD & LiteST)

-175-

The 16-bit data in [S] ranges from –32,768 to +32,767.

The operation result is as follows:
When the 16-bit number is positive, the sign bit is set to 20H (space). When it is negative, the sign bit is
set to 2DH (–).

When 0 exists on the left of valid digits, the sign bit is set to 20H (space).

The value in [D+3] is determined based on whether M8163 is set to ON or OFF.

32-bit instruction

The BINDA instruction converts each digit of the 32-bit binary data into an ASCII code (30H to 39H) in
decimal format and stores the result in elements starting from [D].

The 32-bit data in [S+1, S] ranges from –2,147,483,648 to +2,147,483,647.

The operation result is as follows:
When the 32-bit number is positive, the sign bit is set to 20H (space). When it is negative, the sign bit is
set to 2DH (–).

When 0 exists on the left of valid digits, the sign bit is set to 20H (space).

The value in [D+5] is determined based on whether M8163 is set to ON or OFF.

Instruction Example

3.6.1.10 WBIT

The WBIT instruction assigns the value of a word element to a combination of bit elements.

Instruction Description (LD & LiteST)

-176-

WBIT – Conversion from word to bit

Instruction Name LD Expression LiteST Expression
WBIT Conversion from word to

bit
WBIT(???, ???, ???);

16-bit
Instruction

WBIT: Continuous execution/WBITP: Pulse execution

32-bit
Instruction

DWBIT: Continuous execution/DWBITP: Pulse execution

Operand Name Description Range Data Type

S Source data Value to be assigned to bit elements - INT/DINT

D Bit element Start number of bit elements - BOOL, array*n

n
Bit element
quantity Number of bit elements

1 to 16/1 to
32

INT/DINT

Table 3–92 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D √[1] √ √ - - √ - - -

n - - - √ √ √ √ - -

Function and Instruction Description

The WBIT instruction converts the binary number in S into bit states and assigns the conversion result
to n bits starting from D.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

Instruction Description (LD & LiteST)

-177-

3.6.1.11 UNI

The UNI instruction combines the low-order four bits of consecutive 16-bit data.
UNI – 4-bit combination of 16-bit data

16-bit
Instruction

UNI: Continuous execution/UNIP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Source data
Start number of elements that store the data to
be combined

- INT, array*n

D Result
Number of the element that stores the data
after combination

- INT

n Combined data count
Number of data entries to be combined (ranging
from 0 to 4; no processing when n is 0)

0, 1 to 4 INT

Table 3–93 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The UNI instruction combines the low-order four bits of each of the n 16-bit data entries starting from S
into 16-bit data and stores the result in D.

n ranges from 1 to 4. The instruction is not executed when n is 0. When n is 1, 2, or 3, the high-order
bits are filled with 0s.

An operation error occurs in the following conditions.

● The element (S) is out of the specified range.
● n is out of the specified range.

Instruction Example

Instruction Description (LD & LiteST)

-178-

3.6.1.12 DWTOW

The DWTOW instruction assigns the values of 32-bit word elements to 16-bit word elements.
DWTOW – Conversion from dword to word

16-bit
Instruction

-

32-bit
Instruction

DWTOW: Continuous execution/DWTOWP: Pulse execution

Operand Name Description Range Data Type

S Dword element Start number of dword elements - DINT, array*n

D Word element Start number of word elements - INT, array*n

n Element quantity Number of elements 0, 1 to 256 DINT

Table 3–94 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The WTODW instruction converts the 32-bit data in n elements starting from S into 16-bit data and
stores the conversion result in n 16-bit registers starting from D. This instruction is used to convert the
32-bit data so that the data can be used in 16-bit instructions.

Note
When the value to be converted in this instruction is greater than the upper limit of 16-bit data, only the low-order
bits are retained after conversion.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

Instruction Description (LD & LiteST)

-179-

3.6.1.13 MCPY

The MCPY instruction assigns data with specified length (in byte) to the target address without any
change.

MCPY – Data copy (memory copy, type conversion) instruction

Instruction Name LD Expression LiteST Expression
MCPY Data copy (memory copy,

type conversion)
MCPY(???, ???, ???);

16-bit Instruction -
32-bit Instruction MCPY: Continuous execution/MCPYP: Pulse execution
Operand Name Description Range Data Type

S Address of source
data

Start number of
elements that store
the source data

- Array*n, structure

D Address of target
data

Start number of
elements that store
the target data

- Array*n, structure

n Length Data length, in byte - -

Table 3–95 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ √ √ - - - -

D √ √ √ √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction is a higher-order application and should be used with caution.

This instruction implements the data copy operation with no change in the data. It can also implement
memory copy, or even type conversion, if used skillfully.

n is the length of the data to be copied (in byte). For example, when two 16-bit data entries are
assigned to a 32-bit data entry, n is 4; when two 32-bit integers are copies to structures or 16-bit
integer arrays of the same size, n is 8.

Instruction Description (LD & LiteST)

-180-

When the operand S or D is a bit element, the addresses of the bit element must be aligned by byte.
Otherwise, an addressing error will occur. For example, if the instruction is MCPY M1 M15 K1, the
system will report "Invalid variable address: variable non-existent".

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

If "Size" is 5, then:

The MCPY instruction can be used to assign values between arrays and structures of the same type. As
shown in the following figure, if the length of the array is DINT[5], data in i32_arr1 can be assigned to
i32_arr2 (in byte). As each DINT data entry is 4 bytes, the data to be copied is 20 bytes (4 x 5 = 20). If the
data to be assigned is of the structure type, its length and size must be consistent with the size of the
structure, so that assignment can be performed properly.

After the program is completely compiled, the lengths of arrays and structures can be obtained in the
variable table. The obtained length is in the unit of bit. One byte is equal to 8 bits, one word is equal to
16 bits, and one dword is equal to 32 bits. The formula for calculating the variable length is as follows:

Size = (Length + 15)/16

Instruction Description (LD & LiteST)

-181-

3.6.1.14 MSET

The MSET instruction assigns data with specified length (in byte) to the target address without any
change.

MSET – Data setting (memory setting and reset) instruction

Instruction Name LD Expression LiteST Expression
MSET Data setting (memory

setting and reset)
MSET(???, ???, ???);

16-bit Instruction -
32-bit Instruction MSET: Continuous execution/MSETP: Pulse execution, 13 steps

Operand Name Description Range Data Type

S Data to be set Value to be set. Only
a single byte is valid.

- -

D Address of target
data

Start number of
elements that store
the target data

- Array*n, structure

n Length Data length, in byte - -

Table 3–96 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D √ √ √ √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction is a higher-order application and should be used with caution.

This instruction can set data in batches. It can be used to set fixed values in memory or reset the
memory. It is typically used to clear structures or arrays.

n is the length of the data to be set (in byte). For example, when 0x12 is assigned to a 32-bit data entry,
n is 4; when 0x1234 is set to two 32-bit elements, n is 8.

If you set 0x1234 to a 32-bit data entry in the unit of byte, the result is 0x34343434.

When the operand D is a bit element, the addresses of the bit element must be aligned by byte.
Otherwise, an addressing error will occur. For example, if the instruction is MSET D0 M15 K1, the
system will report "Invalid variable address: variable non-existent".

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

Instruction Description (LD & LiteST)

-182-

If "Size" is 5 and D0 is 0x1234, then:

The MSET instruction can be used to clear structures and arrays.

After the program is completely compiled, the lengths of arrays and structures can be obtained in the
variable table. The obtained length is in the unit of bit. One byte is equal to 8 bits, one word is equal to
16 bits, and one dword is equal to 32 bits. The formula for calculating the variable length is as follows:

Size = (Length + 15)/16

3.6.1.15 DIS

The DIS instruction separates 16-bit data in 4-bit units.
DIS – 4-bit separation of 16-bit data

16-bit
Instruction

DIS: Continuous execution/DISP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Source data
Start number of elements that store the data to
be separated - INT

D Result
Number of the element that stores the data after
separation - INT, array*n

n
Number of data to
be separated

Number of data entries to be separated (ranging
from 0 to 4; no processing when n is 0)

0, 1 to 4 INT

Instruction Description (LD & LiteST)

-183-

Table 3–97 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The DIS instruction separates the 16-bit data in S in 4-bit units and stores the separation results in the
low-order four bits of each of the elements starting from D. The high-order 12 bits are filled with 0s.

n ranges from 1 to 4. The instruction is not executed when n is 0.

An operation error occurs in the following conditions.

● The element (D) is out of the specified range.
● n is out of the specified range.

Instruction Example

The 16-bit data in D100 is separated in 4-bit units. The results are stored in three consecutive D
elements starting from D120.

3.6.1.16 BTOW

The BTOW instruction combines the low-order eight bits (low-order byte) of consecutive 16-bit/32-bit
data.
BTOW – Conversion from byte to word

16-bit
Instruction

BTOW: Continuous execution/BTOWP: Pulse execution

32-bit
Instruction

BTODW: Continuous execution/BTODWP: Pulse execution

Operand Name Description Range Data Type

S Source data
Start number of elements that store the data to be
combined by byte - INT, array*n

Instruction Description (LD & LiteST)

-184-

D Result
Start number of elements that store the data after
combination

- INT/DINT, array*n/
2

n Combined
data count

Number of bytes to be combined (n ≥ 0; no processing
when n = 0)

0, 1 to 256 INT/DINT

Table 3–98 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BTOW instruction combines the low-order eight bits of each of the n 16-bit data entries starting
from [S] into 16-bit/32-bit data and stores the combination result in elements starting from [D]. The
high-order eight bits of each source data entry ([S] and later) are ignored.

An error occurs when the elements starting from [S] or [D] are out of the specified range.

Instruction Example

3.6.1.17 WTOB

The WTOB instruction separates consecutive 16-bit/32-bit data by byte (eight bits).
WTOB – Conversion from word to byte

Instruction Description (LD & LiteST)

-185-

16-bit
Instruction

WTOB: Continuous execution/WTOBP: Pulse execution

32-bit
Instruction

DWTOB: Continuous execution/DWTOBP: Pulse execution

Operand Name Description Range Data Type

S Source data
Start number of elements that store the data to be
separated by byte -

INT/DINT,
array*n/2

D Result
Start number of elements that store the data separation
result

- INT, array*n

n
Number of
data to be
separated

Number of bytes to be separated (n ≥ 0; no processing
when n is 0)

0, 1 to 256 INT/DINT

Table 3–99 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The WTOB instruction separates the 16-bit/32-bit data in elements starting from [S] by byte and stores
the bytes to the low-order eight bits of each of the n elements starting from [D]. 00H is stored in the
high-order eight bits of each element.

An error occurs when the elements starting from [S] or [D] are out of the specified range.

Instruction Example

Instruction Description (LD & LiteST)

-186-

3.6.1.18 BITW

The BITW instruction assigns the values of a combination of bit elements to a word element.
BITW – Conversion from bit to word

Instruction Name LD Expression LiteST Expression
BITW Conversion from bit to word BITW(???, ???, ???);

16-bit
Instruction

BITW: Continuous execution/BITWP: Pulse execution

32-bit
Instruction

BITDW: Continuous execution/BITDWP: Pulse execution

Operand Name Description Range Data Type

S Bit element Start number of bit elements - BOOL, array*n

D Target data Combination value of bit elements - INT/DINT

n
Bit element
quantity Number of bit elements 1 to 16/1 to 32 INT/DINT

Table 3–100 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BITW instruction converts n bits starting from S into a binary number and transfers the conversion
result to D.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

Instruction Description (LD & LiteST)

-187-

3.6.1.19 WTODW

The WTODW instruction assigns the values of 16-bit word elements to 32-bit word elements.
WTODW – Conversion from word to dword

16-bit
Instruction

-

32-bit
Instruction

WTODW: Continuous execution/WTODWP: Pulse execution

Operand Name Description Range Data Type

S Word element Start number of word elements - INT, array*n

D Dword element Start number of dword elements - DINT, array*n

n Element quantity Number of elements 0, 1 to 256 DINT

Table 3–101 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The WTODW instruction converts the 16-bit data in n elements starting from S into 32-bit data and
stores the conversion result in n 32-bit registers starting from D. This instruction is used to convert the
16-bit data so that the data can be used in 32-bit instructions.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

Instruction Description (LD & LiteST)

-188-

3.6.1.20 ASCI

The ASCI instruction converts the value in S into ASCII codes and store the result in variables starting
from D.
ASCI – Conversion from HEX into ASCII

16-bit
Instruction

ASCI: Continuous execution/ASCIP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data source Address of the variable or the numeric constant
to be converted

- INT, array*n

D Conversion result
Start address of elements that store the ASCII
codes after conversion

- INT, array*n

n Converted
character count

Number of converted characters, ranging from
1 to 256

1 to 256 INT

Table 3–102 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The ASCI instruction converts the value in S into ASCII codes and store the result in variables starting
from D. Where,

● S is the address of the variable or the numeric constant to be converted.
● D is the start address for storing the ASCII codes after conversion.
● n is the number of converted characters, which ranges from 1 to 256.

Note
Note during programming that instructions including HEX, ASCI, and CCD share the M8161 mode flag.

The ASCI instruction conforms to the ASCII-hexadecimal mapping table. For example, the ASCII code 0
corresponds to H30 in hexadecimal format, and the ASCII code F corresponds to H46 in hexadecimal
format. For details about hexadecimal-ASCII mapping, see " “5.1 ASCII Code Conversion” on page 736".

Instruction Description (LD & LiteST)

-189-

Instruction Example

The M8161 flag determines the width mode of the target variable that stores the operation result.
When M8161 is OFF, the 16-bit mode is used, whereby the operation result is stored in the high-order
and low-order bytes of the variable separately. When M8161 is ON, the 8-bit mode is used, whereby the
operation result is stored only in the low-order byte of the variable. In this case, the length of the
actually used variable area is increased.

Instruction Description (LD & LiteST)

-190-

3.6.1.21 HEX

The HEX instruction converts the values of variables starting from S to hexadecimal equivalents and
stores the result in variables starting from D. The number of characters to convert and the storage
mode are configurable.
HEX – Conversion from ASCII to HEX

16-bit
Instruction

HEX: Continuous execution/HEXP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data source
Start address of variables or numeric constants to be
converted. Register variables are converted and
separated in units of 32 bits (four ASCII characters).

- INT, array*n

D Conversion result
Start address of variables that store the hexadecimal
characters after conversion. The occupied variable
space is related to S2.

- INT, array*n

n Converted
character count

Number of converted characters 1 to 256 INT

Table 3–103 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The HEX instruction converts the values of variables starting from S to hexadecimal equivalents and
stores the result in variables starting from D. The number of characters to convert and the storage
mode are configurable. Where,

● S is the start address of variables or the numeric constants to be converted. Register variables are
converted and separated in units of 32 bits (four ASCII characters).

● D is the start address of variables for storing the hexadecimal characters after conversion. The
occupied variable space is related to n.

● n is the number of converted characters, which ranges from 1 to 256.

Note
● Note during programming that instructions including HEX, ASCI, and CCD share the M8161 mode flag.
● The source data in S must be ASCII code characters; otherwise, a conversion error occurs.
● If the format of the output data is BCD, BCD-to-BIN conversion is required on the hexadecimal characters after

conversion to get the correct value.

Instruction Description (LD & LiteST)

-191-

Instruction Example

The M8161 flag determines the variable width mode. When M8161 is OFF, the 16-bit mode is used,
whereby both the high- and low-order bytes of variables are taken for the operation. When M8161 is
ON, the 8-bit mode is used, whereby only the low-order bytes of variables are taken for the operation
and the high-order bytes are discarded. In this case, the length of the actually used variable area is
increased.

3.6.1.22 DECO

The DECO instruction decodes data and stores the result.
DECO – Data decoding

16-bit
Instruction

DECO: Continuous execution/DECOP: Pulse execution

32-bit
Instruction

DDECO: Continuous execution/DDECOP: Pulse execution

Instruction Description (LD & LiteST)

-192-

Operand Name Description Range Data Type

S Decoding source Source data to be decoded - INT, DINT

D Decoding result Address of the element that stores the decoding result - BOOL

n
Bit length of the
decoding source

Bit length of source data to be decoded 0 to 8 INT, DINT

Table 3–104 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D √[1] √ √ - - - - - -

n - - - √ √ √ √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

The DECO instruction calculates the value of the low-order n bits of S, sets the bit variable or element
pointed to by this value among the 2n elements starting from D to ON, and resets other bits.

● Words are decoded into bits.
● When n is 0, the instruction is not executed. When n is beyond the range of 0 to 8, an operation

error occurs. When n is 8, D includes a total of 256 bit variables or elements.
● If the instruction flow is OFF, the instruction is not executed.
● The instruction of the pulse execution type is generally used.

Instruction Example

When the M345 flow is ON, the DECO instruction is executed. The low-order 3 bits of D400 is calculated
to obtain 5. Then B5 among the 23 (8) bit elements starting from B0 is set to ON.

Instruction Description (LD & LiteST)

-193-

3.6.1.23 ENCO

The ENCO instruction encodes data and stores the result.
ENCO – Data encoding

16-bit
Instruction

ENCO: Continuous execution/ENCOP: Pulse execution

32-bit
Instruction

DENCO: Continuous execution/DENCOP: Pulse execution

Operand Name Description Range Data Type

S Encoding source Source data to be encoded - BOOL

D Encoding result Address of the element that stores the encoding result - INT, DINT

n
Bit length of the
encoding result

Data bit length of the encoding result 0 to 8 INT, DINT

Table 3–105 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - - - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The ENCO instruction obtains the position of the bit variable or element that is set to ON among the 2n

S bit variables or elements, converts it into a value and assigns the value to the low-order n bits of D,
and resets other bits of D.

● Bits are encoded into words.
● This instruction can be used to determine whether there is a bit element set to ON among multiple

consecutive bit elements.
● When n is 0, the instruction is not executed. When n is beyond the range of 0 to 8, an operation

error occurs. When n is 8, S includes a total of 256 bit variables or elements.
● If multiple bits in the source address are 1, only the first ON bit on the high-order side is calculated.

If all bits in the source address S are 0, an operation error occurs.
● If the instruction flow is OFF, the instruction is not executed.
● The instruction of the pulse execution type is generally used.

Instruction Example

When the M345 flow is ON, the ENCO instruction is executed. The ON bit B6 is obtained among the 23

(8) bit elements starting from B0. Then the value 6 is assigned to the low-order 3 bits of D400, and
other bits are cleared.

Instruction Description (LD & LiteST)

-194-

3.6.2 Data Transfer And Comparison Instructions

3.6.2.1 Instruction List

The following table lists the data transfer and comparison instructions.

Instruction
Category Instruction Function

Data transfer
and

comparison
instruction

MOV Move
EMOV Binary floating-point move

SMOV Shift move
BMOV Batch move
FMOV Multi-point move

CML Complement

CMP Comparison

ECMP Floating-point comparison

ZCP Zone comparison

EZCP Floating-point zone comparison

3.6.2.2 MOV

The MOV instruction copies data in the source address S to the destination address.
MOV – Move

16-bit
Instruction

MOV: Continuous execution/MOVP: Pulse execution

32-bit
Instruction

DMOV: Continuous execution/DMOVP: Pulse execution

Operand Name Description Range Data Type

S Data source Data to be moved, or address of the word element
that stores the data

- INT/DINT

D
Destination to which
data is copied

Address of the word element to which data is copied - INT/DINT

Table 3–106 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - -

Instruction Description (LD & LiteST)

-195-

Function and Instruction Description

The MOV instruction requires contact driving and has two operands. It copies the value in S to D.

When the 32-bit instruction (DMOV) is executed, the operation involves the variable units (S+1, S) and
(D+1, D).

For example, when the statement [DMOV D1 D5] is executed, data in D1 is moved to D5, and data in D2
is moved to D6.

Instruction Example

When X0 is ON, K4 is assigned to D2. When X0 switches from ON to OFF, K4 in D2 remains unchanged
unless the value of D2 is changed again by the user program.

When the PLC is powered on again, the value of D2 becomes 0. The value of a register that is retentive
upon power failure remains unchanged when the PLC is powered on or starts running after stop.

3.6.2.3 EMOV

The EMOV instruction transfers binary floating-point data. This instruction requires contact driving.
When it is executed, the binary floating-point data in S is copied to D.
EMOV – Floating-point move

16-bit
Instruction

-

32-bit
Instruction

DEMOV: Continuous execution/DEMOVP: Pulse execution

Operand Name Description Range Data Type

S Data source Source from which the binary floating-point data
is transferred

- REAL

D Transfer
destination

Unit that stores the transferred binary floating-
point data - REAL

Table 3–107 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Function and Instruction Description

The EMOV instruction transfers binary floating-point data. This instruction requires contact driving.
When it is executed, the binary floating-point data in S is copied to D. Where,

Instruction Description (LD & LiteST)

-196-

● S is the source from which the binary floating-point data is transferred.
● D is the unit that stores the transferred binary floating-point data.

Instruction Example

Assume that the binary floating-point number in (D1, D0) is 12.3456. When X0 is ON, the binary floating-
point number in (D3, D2) becomes 12.3456. When X0 switches from ON to OFF, 12.3456 in (D3, D2)
remains unchanged, unless the value of (D3, D2) is changed again by the user program, or the PLC is
powered on again or starts running after stop. The value of a register that is retentive upon power
failure remains unchanged when the PLC is powered on or starts running after stop.

3.6.2.4 BMOV

When the driving conditions are met, the BMOV instruction transfers the data of n registers in addresses
starting from S to the n registers in addresses starting from D.
BMOV – Batch move

16-Bit
Instruction

BMOV: Continuous execution/BMOVP: Pulse execution

32-bit
Instruction

DBMOV: Continuous execution/DBMOVP: Pulse execution

Operand Name Description Range Data Type

S
Data source start
address

Start address of word elements that store the
data to be transferred in batches

-
INT/DINT,
array*n

D Transfer destination
start address

Start address of word elements that store the
transferred data

-
INT/DINT,
array*n

n Data length Number of word elements of which data will be
transferred in batches

1 to 512 INT/DINT

Table 3–108 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BMOV instruction requires contact driving and has three operands. It copies the values of n
variables in addresses starting from S to n units in addresses starting from D.

n ranges from 1 to 512.

Instruction Description (LD & LiteST)

-197-

Instruction Example

The operations are as follows:

D0→D10

D1→D11

D2→D12

D3→D13

3.6.2.5 SMOV

The SMOV instruction transfers m2 bits starting from the m1th bit in S to m2 bits starting from the nth
bit in D.
SMOV – Shift move

16-bit
Instruction

SMOV: Continuous execution/SMOVP: Pulse execution

32-bit
Instruction

DSMOV: Continuous execution/DSMOVP: Pulse execution

Operand Name Description Range Data Type

S Data source Address of the word element that stores
the data to be transferred

- INT/DINT

n1 Start bit to be transferred
Start position of bits to be transferred in
S

1 to 4/1 to 8 INT/DINT

n2 Number of bits to be
transferred

Number of bits to be transferred in S 1 to m1 INT/DINT

D Destination device
Address of the word element that stores
the transferred data

- INT/DINT

n Start bit at the destination Start position of bits transferred to D m2 to 4/m2 to 8 INT/DINT

Table 3–109 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

n1 - - - √ √ √ √ - -

n2 - - - √ √ √ √ - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The SMOV instruction requires contact driving and has a maximum of five operands, which are
described as follows:

Instruction Description (LD & LiteST)

-198-

● S is the data source variable. When M8168 is OFF, the BCD mode (decimal bits) is used. The S
operand ranges from 0000 to 9999/00000000 to 99999999 and cannot be negative. When M8168 is
ON, the BIN mode is used. The S operand can be a negative number.

● m1 is the start position of bits to be transferred. It ranges from 1 to 4/1 to 8.
● m2 is the number of bits to be transferred. It ranges from 1 to m1.
● D is the destination variable to which data is transferred.
● n is the start bit in the destination variable that stores transferred data. It ranges from m2 to 4/m2

to 8.

The data bit transfer process is related to the state of the special flag M8168. When M8168 is OFF, the
BCD mode (decimal bits) is used When M8168 is ON, the BIN mode is used, whereby every four bits
(hexadecimal) are transferred at a time as a whole unit.

Instruction Example

Assume that D8 is K1234 and D2 is K5678. When M8168 is OFF (BCD mode), the value in D2 changes to
K5128 if M2 is set to ON.

When M8168 is ON (BIN mode), D8 is H04D2 (K1234), and D2 is H162E (K5678), then the value in D2
changes to H104E (K4174) if M2 is set to ON.

3.6.2.6 FMOV

When the driving conditions are met, the FMOV instruction transfers the data in S to n registers starting
from the address specified in D.
FMOV – Multi-point move

16-bit
Instruction

FMOV: Continuous execution/FMOVP: Pulse execution

32-bit
Instruction

DFMOV: Continuous execution/DFMOVP: Pulse execution

Operand Name Description Range Data Type

S Data source Data to be transferred, or address of the word
element that stores the data

- INT/DINT

D Start address of the
transfer destination

Start address of word elements that store the
transferred data

-
INT/DINT,
array*n

n Target number Number of points of the word element to which
the data is transferred

1 to 512 INT/DINT

Instruction Description (LD & LiteST)

-199-

Table 3–110 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The FMOV instruction requires contact driving and has three operands. It copies the data in S to n units
starting from the address specified in D.

n ranges from 1 to 512.

FMOV is a 16-bit multi-point transfer instruction, whereas DFMOV is a 32-bit multi-point transfer
instruction.

Instruction Example

The operations are as follows when M8 is set to ON:

K100→D100

K100→D101

K100→D102

K100→D103

3.6.2.7 CML

The CML instruction inverts the data in S by bit and transfers the inverted data to D.
CML: Complement

16-bit
Instruction

CML: Continuous execution/CMLP: Pulse execution

32-bit
Instruction

DCML: Continuous execution/DCMLP: Pulse execution

Operand Name Description Range Data Type

S Data source Data to be inverted, or address of the word
element that stores the data

- INT/DINT

D Transfer destination
Address of the word element that stores the
transferred inverted data

- INT/DINT

Instruction Description (LD & LiteST)

-200-

Table 3–111 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The CML instruction requires contact driving and has two operands. It inverts the BIN value in S by bit
and copies the inverted data to D.

When the number of bits in D is less than 16, the inverted data is aligned by low-order bits and then
transferred to D.

When the 32-bit instruction (DCML) is executed, the operation involves the variable units (S+1, S) and
(D+1, D).

For example, when the statement [DCML D1 D5] is executed, the operation result is as follows:
/D1→D5; /D2→D6.

Instruction Example

Figure 3-6 Ladder chart and instruction list

3.6.2.8 CMP

CMP – Comparison

16-bit
Instruction

CMP: Continuous execution/CMPP: Pulse execution

32-bit
Instruction

DCMP: Continuous execution/DCMPP: Pulse execution

Operand Name Description Range Data Type

S1 Comparand 1 Data of comparand 1, or address of the word
element that stores the data

- INT/DINT

S2 Comparand 2 Data of comparand 2, or address of the word
element that stores the data

- INT/DINT

D Comparison result
Start address of three consecutive bits that store
the comparison result (ON or OFF) - BOOL, array*3

Instruction Description (LD & LiteST)

-201-

Table 3–112 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D √[1] √ √ - - √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The CMP instruction compares the values of two operands and outputs the comparison result to the
specified bit variable. The operands are handled as signed numbers in algebraic comparison.

When the driving conditions are met, the CMP instruction compares the values in S1 and S2 and then
sets a bit element among D, D+1, and D+2 to ON based on the comparison result (S1 > S2, S1 = S2, or
S1 < S2).

D is a bit variable that occupies three consecutive addresses.

Instruction Example

When X0 is ON, one among M0 to M2 is set to ON.

When X0 switches from ON to OFF and the CMP instruction is not executed, M0 to M2 remain in the
state just before X0 switches from ON to OFF.

To clear the comparison result indicated by M0 to M2, use the RST or ZRST instruction.

To obtain the results of ≥, ≤, or ≠, connect M0 to M2 in series or in parallel.

3.6.2.9 ECMP

ECMP – Floating-point comparison

16-bit
Instruction

-

32-bit
Instruction

DECMP: Continuous execution/DECMPP: Pulse execution

Operand Name Description Range Data Type

S1 Comparand 1 Binary floating-point number 1 to be compared - REAL

Instruction Description (LD & LiteST)

-202-

S2 Comparand 2 Binary floating-point number 2 to be compared - REAL

D Comparison result Comparison result storage unit, which occupies three
(bit) variables - BOOL, array*3

Table 3–113 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

D √[1] √ √ - - √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The ECMP instruction compares two floating-point variables and outputs the comparison result to
three variables.

Instruction Example

When X10 is ON, one among M10 to M12 is set to ON.

When X10 switches from ON to OFF and the DECMP instruction is not executed, M10 to M12 remain in
the state just before X10 switches from ON to OFF. To clear the comparison result indicated by M10 to
M12, use the RST or ZRST instruction.

To obtain the results of ≥, ≤, or ≠, connect M10 to M12 in series or in parallel.

3.6.2.10 ZCP

When the driving conditions are met, the ZCP instruction compares S with S1 and S2 and sets a bit ele-
ment among D, D+1, and D+2 to ON based on the comparison result (S < S1, S1 ≤ S ≤ S2, or S > S2).
ZCP – Zone comparison

16-bit
Instruction

ZCP: Continuous execution/ZCPP: Pulse execution

32-bit
Instruction

DZCP: Continuous execution/DZCPP: Pulse execution

Operand Name Description Range Data Type

S1
Lower limit for
comparison

Data, or address of the word element that stores
the data

- INT/DINT

Instruction Description (LD & LiteST)

-203-

S2
Upper limit for
comparison

Data, or address of the word element that stores
the data

- INT/DINT

S Comparison variable Data, or address of the word element that stores
the data

- INT/DINT

D Comparison result
Start address of three consecutive bits that store
the comparison result (ON or OFF) - BOOL, array*3

Table 3–114 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S - - - √ √ √ √ - -

D √[1] √ √ - - √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

The ZCP instruction requires contact driving and has four operands. When the control flow is active,
the ZCP instruction algebraically compares the operands as signed numbers and stores the
comparison result indicated by the position of S relative to S1 and S2 in three consecutive bit variables
starting from D.

Instruction Example

When X0 is ON, one among M3 to M5 is set to ON.

When X0 switches from ON to OFF and the ZCP instruction is not executed, M3 to M5 remain in the
state just before X0 switches from ON to OFF.

To clear the comparison result indicated by M3 to M5, use the RST or ZRST instruction.

3.6.2.11 EZCP

The EZCP instruction compares a binary floating-point variable with the upper and lower limits of a
floating-point variable zone and outputs the comparison result to three variables starting from D.
EZCP – Floating-point zone comparison

Instruction Description (LD & LiteST)

-204-

16-bit
Instruction

-

32-bit
Instruction

DEZCP: Continuous execution/DEZCPP: Pulse execution

Operand Name Description Range Data Type

S1
Lower limit for
comparison

Lower limit of a binary floating-point variable
range - REAL

S2
Upper limit for
comparison

Upper limit of a binary floating-point variable
range - REAL

S Comparand Binary floating-point variable to be compared - REAL

D Comparison result Comparison result storage unit, which occupies
three (bit) variables - BOOL, array*3

Table 3–115 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - √ -

S2 - - - √ √ √ - √ -

S - - - √ √ √ - √ -

D √[1] √ √ - - √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

The EZCP instruction compares a binary floating-point variable with the upper and lower limits of a
binary floating-point variable zone and outputs the comparison result to three variables starting from
D. Where,

● S1 is the lower limit of the binary floating-point variable zone.
● S2 is the upper limit of the binary floating-point variable zone.
● S is the binary floating-point variable to be compared.
● D is the comparison result storage unit, which occupies three (bit) variables.

Instruction Example

When X11 is ON, one among M0 to M2 is set to ON.

When X11 switches from ON to OFF and the DEZCP instruction is not executed, M0 to M2 remain in the
state just before X11 switches from ON to OFF.

To clear the comparison result indicated by M0 to M2, use the RST or ZRST instruction.

Instruction Description (LD & LiteST)

-205-

3.6.3 Table Operation Instructions

3.6.3.1 Instruction List

The following table lists the table operation instructions.

Instruction Category Instruction Function

Table operation
instruction

SORTR Data sorting by row

SORTC Data sorting by column

SER Data search
FDEL Deletion of data from data table
FINS Insertion of data to data table
POP Last-in data read
RAMP Ramp instruction

3.6.3.2 SORTR

When the driving conditions are met, the SORTR instruction sorts a data table (starting from address S)
with m1 rows and m2 columns in ascending or descending order according to the data of the nth row,
and stores the sorting result in a data table starting from address D1.

SORTR – Data sorting by row

16-bit
Instruction

SORTR: Continuous execution

32-bit
Instruction

DSORTR: Continuous execution

Operand Name Description Range Data Type

S Data to be sorted Start address of the array to be sorted - INT/DINT,
array*m1*m2

m1 Row count Total number of rows 1 to 32 INT/DINT
m2 Column count Total number of columns 1 to 32 INT/DINT
D1 Sorting result Data sorting result - INT/DINT,

array*m1*m2
n Reference row for

sorting
Number of the row which serves as the
reference for sorting

1 to m1 INT/DINT

D2 Sorting process
data

Process data during sorting - INT/DINT

Table 3–116 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

m1 - - - √ √ √ √ - -

m2 - - - √ √ √ √ - -

D1 - - - √ √ - - - -
n - - - √ √ √ √ - -

D2 - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-206-

Function and Instruction Description

This instruction sorts an array of m1 rows and m2 columns (starting from address S) based on data of
the nth row. The sorting result will then be stored in a variable area starting from D1. Where,

● S is the start unit for the first variable in the first row (or record).
● m1 is the number of rows (or records) in the array.
● m2 is the number of columns in the array, or the number of entries in each record.
● D1 is the start unit for storing the sorted data. The number of subsequent variable units occupied is

the same as the number of array variables before the sorting.
● n is the number of the array row that serves as the reference for sorting. n ranges from 1 to m1.
● D2 stores the sorting process data, ranging from 0 to (m2 – 1).

The following illustrates the sorting process of a 3 x 3 data table:

Before sorting:

Row Number Column Number
1 2 3

1 S S+3 S+6
1 2 8

2 S+1 S+4 S+7
6 7 2

3 S+2 S+5 S+8
3 4 3

After sorting (sorted in ascending order based on the second row)

Row Number Column Number
1 2 3

1 D D+3 D+6
8 1 2

2 D+1 D+4 D+7
2 6 7

3 D+2 D+5 D+8
3 3 4

The sorting order is determined by the ON/OFF state of M8165. ON indicates descending and OFF
indicates ascending.

Data sorting starts when the instruction flow becomes active. After m1 scan cycles, the sorting is
completed, and the instruction completion flag, M8029, is set to ON.

Precautions

● Do not modify the operands during the execution of the SORTR instruction.
● Switch the flow from OFF to ON before you execute the instruction for the second time.
● Keep the operands and data unchanged during execution.
● Data in S and D1 can overlap completely or be staggered, but they cannot overlap partially.

Otherwise, error 6705 will occur.
● The 32-bit instruction is used in the same way as the 16-bit instruction. The operands occupy two

16-bit elements.

Instruction Description (LD & LiteST)

-207-

Instruction Example

When M520 is set to ON, the flow of the SORTR instruction becomes active. The instruction sorts a 4x4
table starting from D500 in ascending order based on the values in the second row. The sorting result is
stored in a table starting from D600, and the process data is stored in D720.

Once the sorting is completed, the flag M8029 will be set to ON. However, if there are multiple sorting
instructions, the value of M8029 will be overwritten by the subsequent sorting instructions.

Before sorting:

After sorting:

3.6.3.3 SORTC

When the driving conditions are met, the SORTC instruction sorts a data table (starting from address S)
with m1 rows and m2 columns in ascending or descending order according to the data of the nth
column, and stores the sorting result in a data table starting from address D.

SORTC – Data sorting by column

Instruction Description (LD & LiteST)

-208-

16-bit
Instruction

SORTC: Continuous execution

32-bit
Instruction

DSORTC: Continuous execution

Operand Name Description Range Data Type

S Data to be sorted Start address of the array to be sorted -
INT/DINT,
array*m1*m2

m1 Row count Total number of rows 1 to 32 INT/DINT

m2 Column count Total number of columns 1 to 32 INT/DINT

D1 Sorting result Data sorting result -
INT/DINT,
array*m1*m2

n
Reference column
for sorting

Number of the column which serves as the
reference for sorting 1 to m2 INT/DINT

D2
Sorting process
data

Process data during sorting - INT/DINT

Table 3–117 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

m1 - - - √ √ √ √ - -

m2 - - - √ √ √ √ - -

D1 - - - √ √ - - - -
n - - - √ √ √ √ - -

D2 - - - √ √ √ - - -

Function and Instruction Description

This instruction sorts an array of m1 rows and m2 columns (starting from address S) based on data of
the nth column. The sorting result will then be stored in a variable area starting from D1. Where,

● S is the start unit for the first variable in the first row (or record).
● m1 is the number of rows (or records) in the array.
● m2 is the number of columns in the array, or the number of entries in each record.
● D1 is the start unit for storing the sorted data. The number of subsequent variable units occupied is

the same as the number of array variables before the sorting.
● n is the number of the array column that serves as the reference for sorting. n ranges from 1 to m2.
● D2 stores the sorting process data, ranging from 0 to (m1 – 1).

The sorting order is determined by the ON/OFF state of M8165. ON indicates descending and OFF
indicates ascending.

Data sorting starts when the instruction flow becomes active. After m1 scan cycles, the sorting is
completed, and the instruction completion flag, M8029, is set to ON.

The following illustrates the sorting process of a 3 x 3 data table:

Before sorting:

Instruction Description (LD & LiteST)

-209-

Row Number Column Number
1 2 3

1 S S+3 S+6
1 2 8

2 S+1 S+4 S+7
2 6 7

3 S+2 S+5 S+8
3 4 3

After sorting (sorted in ascending order based on the second column)

Row Number Column Number
1 2 3

1 D D+3 D+6
1 2 8

2 D+1 D+4 D+7
3 4 3

3 D+2 D+5 D+8
2 6 7

Precautions

● Do not modify the operands during the execution of the SORTR instruction.
● Switch the flow from OFF to ON before you execute the instruction for the second time.
● Keep the operands and data unchanged during execution.
● Data in S and D1 can overlap completely or be staggered, but they cannot overlap partially.

Otherwise, error 6705 will occur.
● The 32-bit instruction is used in the same way as the 16-bit instruction. The operands occupy two

16-bit elements.

Instruction Example

When M500 is set to ON, the flow of the SORTC instruction becomes active. The instruction sorts a 4x4
table starting from D500 in ascending order based on the values in the second column. The sorting
result is stored in a table starting from D600, and the process data is stored in D700.

Once the sorting is completed, the flag M8029 will be set to ON. However, if there are multiple sorting
instructions, the value of M8029 will be overwritten by the subsequent sorting instructions.

Before sorting:

Instruction Description (LD & LiteST)

-210-

After sorting:

3.6.3.4 SER

When the driving conditions are met, the SER instruction searches n data entries starting from source
address S1 to find the address of the data compliant with the condition specified by S2 and stores the
result in five consecutive registers starting from D.
SER – Data search

16-bit
Instruction

SER: Continuous execution/SERP: Pulse execution

32-bit
Instruction

DSER: Continuous execution/DSERP: Pulse execution

Operand Name Description Range Data Type

S1 Search start address
Start address of the data (n consecutive
registers) to be searched - INT/DINT, array*n

S2 Data for comparison Data for comparison, or address of the word
element that stores the data

- INT/DINT

D Search result storage
start address

Start address of word elements that store the
search result

- INT/DINT, array*5

n
Number of data
entries to be
searched

Number of data entries to be searched 1 to 256 INT/DINT

Instruction Description (LD & LiteST)

-211-

Table 3–118 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - √
D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The SER instruction searches a defined data stack for the units with the same data as the data for
comparison as well as the maximum and minimum values. Where,

● S1 is the start address of the searched data stack.
● S2 is the data to be searched for.
● D is the start address of elements for storing the search result.
● n is the length of the searched data area. It ranges from 1 to 256.

In 32-bit operation, S1, S2, and D point to 32-bit variables, and n is calculated based on the 32-bit
variable width.

When the driving conditions are met, the SER instruction searches k data entries starting from source
address S1 to find the address of the data compliant with the condition specified by S2 and stores the
result in five consecutive registers starting from D.

Instruction Example

The example is explained as follows:

Comparison is performed only when X20 is ON. Signed numbers are compared algebraically, for
example, –8 < +2.

When there are multiple minimum or maximum values, the element with the largest serial number is
displayed.

The search result is stored in five consecutive units starting from D. If no data that meets the
requirements is found, the values in D80 to D82 in the preceding example are all 0s.

Instruction Description (LD & LiteST)

-212-

3.6.3.5 FDEL

The FDEL instruction deletes any data from a table.
FDEL – Deletion of data from a table

16-bit
Instruction

FDEL: Continuous execution/FDELP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data to be deleted
Number of the element that stores the data to be
deleted

- INT

D Data table
information

Start number of elements that store the data table

D: Number of stored data entries

D+1: Start position of a data table

- INT, array*(D+1)

n Position of deletion Position in a table at which data is deleted 1 to 256 INT

Table 3–119 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The FDEL instruction deletes the nth data entry from a table (starting from [D+1]) and stores the
deleted data in [S]. The (n+1)th data entry and subsequent ones in the data table are shifted forward
one by one, and the number of stored data entries (D) decreases by 1.

An error is returned in the following conditions:

1. The number of stored data entries is out of range.

2. The table position n of the data to be deleted exceeds the number of stored data entries (D).

3. n is less than or equal to 0.

4. The number of stored data entries is less than or equal to 0.

Instruction Example

Instruction Description (LD & LiteST)

-213-

Before the instruction is executed

After the instruction is executed

3.6.3.6 FINS

The FINS instruction inserts data at any position in a table.
FINS – Insertion of data to a table

16-bit
Instruction

FINS: Continuous execution/FINSP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data to be inserted
Number of the element that stores the data to
be inserted

- INT

D Data table information

Start number of elements that store the data
table

D: Number of stored data entries

D+1: Start position of a data table

- INT, array*(D+2)

n Position of insertion Position in a table at which data is inserted 1 to 256 INT

Table 3–120 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-214-

Function and Instruction Description

The FINS instruction inserts the data stored in [S] at the nth data entry position in a data table starting
from [D+1]. The original nth data entry and subsequent ones in the data table are shifted backward
one by one, and the number of stored data entries (D) increases by 1.

An error is returned in the following conditions:

1. The number of stored data entries is out of range.

2. The data table range after insertion exceeds the corresponding element range.

3. The position of insertion (n) exceeds the number of stored data entries (D).

4. n is less than or equal to 0.

5. The number of stored data entries is less than or equal to 0.

Instruction Example

Before the instruction is executed

After the instruction is executed

Instruction Description (LD & LiteST)

-215-

3.6.3.7 POP

The POP instruction reads the last data written by a shift write instruction (SFWR) for first in last out (FI-
LO) control.
POP – Last-in data read

16-bit
Instruction

POP: Continuous execution/POPP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data to be read

Start number of elements that store first-in data
(including pointer data)

S: Pointer data (number of stored data entries)

S+1: Data area

- INT, array*n

D Stored result Number of the element that stores the last-out data - INT

n Data count

Count of stored data

(Because pointer data is also included, set n to a value
plus 1. Value range: 2 ≤ n ≤ 512.)

2 to 512 INT

Table 3–121 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

For the word elements [S] to [S+n–1], the POP instruction reads the values in elements starting from S
as well as the offset pointer (pointer data) in [S] and stores the result in [D]. The pointer in [S]
decreases by 1. n ranges from 2 to 512.

Address Content
S Pointer data (number of stored data entries)

[S]+1

Data area

(First-in data written by the SFWR instruction)

[S]+2
[S]+3
-
[S]+n–3
[S]+n-2
[S]+n-1

When the pointer in [S] is 0, the zero flag M8020 is set to ON and the POP instruction is not executed.

Instruction Description (LD & LiteST)

-216-

Check in advance using a comparison instruction whether the current value of [S] satisfies the
following condition before executing the POP instruction: 1 ≤ [S] ≤ (n – 1).

When the current value of the pointer in [S] is 1, 0 is written to [S] and the zero flag M8020 turns ON.

An error is returned in the following conditions:

[S] > n – 1

[S] < 0

Instruction Example

Before the instruction is executed

After the instruction is executed

3.6.3.8 RAMP

When the driving conditions are met, the RAMP instruction changes the value in D linearly from S1 to
S2 after a number (indicated by n) of scan cycles are completed.

RAMP – Ramp instruction

16-bit
Instruction

RAMP: Continuous execution

32-bit
Instruction

DRAMP: Continuous execution

Operand Name Description Range Data Type

S1 Start value Address of the word element that stores
the ramp start value

- INT/DINT

S2 End value Address of the word element that stores
the ramp end value

- INT/DINT

Instruction Description (LD & LiteST)

-217-

D Current value Address of the word element that stores
the current ramp value

- INT/DINT, array*2

n Cycle count Number of scan cycles required to
complete a ramp change

≥ 1 INT/DINT

Table 3–122 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ √ - -
n - - - √ √ √ √ - -

Function and Instruction Description

This instruction is used to perform linear interpolation between two given data entries a specified time
interval. It outputs intermediate values in a sequential manner based on the scanning execution time,
until the end value is reached. After each interpolation operation is completed, the M8029 flag is set to
ON. Where,

● S1 stores the start value of a ramp signal.
● S2 stores the end value of a ramp signal.
● D stores the process values of a linear interpolation signal. The interpolation timer is stored in D+1.
● n is the number of program scans required to complete the interpolation. (For a 16-bit instruction,

n ranges from 1 to 32,767.) Since interpolation output is performed within the normal main loop,
set program execution to fixed scan mode to ensure linear output.

Interpolation is performed using integers, and the fractional parts are discarded. The function of the
instruction is shown as follows:

Instruction Example

When M40 is ON, interpolation is performed 100 times directly from 1 to 10000. The output results are
stored in D30, and the number of interpolations is displayed in D31.

Instruction Description (LD & LiteST)

-218-

Additional Information

Different from that in H3U, the RAMP instruction in H5U only supports single interpolation mode but
not continuous interpolation.

3.6.4 Data Shift Instructions

3.6.4.1 Instruction List

The following table lists the data shift instructions.

Instruction Category Instruction Function

Data shift instruction

ROR Rotation right

ROL Rotation left
RCR Rotation right with carry

RCL Rotation left with carry

SFTR Bit shift right

SFTL Bit shift left
WSFR Word shift right

WSFL Word shift left
SFWR Shift write (FIFO)

SFRD Shift read (FIFO)

SFR Bit shift right with carry

SFL Bit shift left with carry

3.6.4.2 ROR

When the driving conditions are met, the ROR instruction shifts and rotates the data in D rightwards by
n bits. The low-order bits that are rotated out of D fill the high-order bits of D.
ROR – Rotation right

16-bit
Instruction

ROR: Continuous execution/RORP: Pulse execution

32-bit
Instruction

DROR: Continuous execution/DRORP: Pulse execution

Operand Name Description Range Data Type

D Source data/Target
data

Address of the word element that stores the data - INT/DINT

n
Number of bits to be
rotated upon each
execution

Value range: 1 ≤ n ≤16 (16-bit operation); 1 ≤ n ≤
32 (32-bit operation) 1 to 16/1 to 32 INT/DINT

Table 3–123 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-219-

Function and Instruction Description

The ROR instruction shifts and rotates the data in D with the carry flag M8022 rightwards by n bits. The
instruction of the pulse execution type is generally used. When the 32-bit instruction is executed, the
register variable occupies two consecutive units.

Instruction Example

3.6.4.3 ROL

When the driving conditions are met, the ROL instruction shifts and rotates the data in D leftwards by n
bits. The high-order bits that are rotated out of D fill the low-order bits of D.
ROL – Rotation left

16-bit
Instruction

ROL: Continuous execution/ROLP: Pulse execution

32-bit
Instruction

DROL: Continuous execution/DROLP: Pulse execution

Operand Name Description Range Data Type

D Source data/Target
data

Address of the word element that stores
the data

- INT/DINT

n Number of bits to be
rotated upon each
execution

Value range: 1 ≤ n ≤ 16 (16-bit operation);
1 ≤ n ≤ 32 (32-bit operation)

1 to 16/1 to 32 INT/DINT

Table 3–124 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The ROL instruction shifts and rotates the data in D leftwards by n bits. The instruction of the pulse
execution type is generally used. When the 32-bit instruction is executed, the register variable occupies
two consecutive units.

The final bit is stored in the carry flag.

Instruction Description (LD & LiteST)

-220-

Instruction Example

3.6.4.4 RCR

When the driving conditions are met, the RCR instruction shifts and rotates the data in D with the carry
flag (M8022) rightwards by n bits. The low-order bits with the carry flag (M8022) that are rotated out of
D fill the high-order bits of D.
RCR – Rotation right with carry

16-bit
Instruction

RCR: Continuous execution/RCRP: Pulse execution

32-bit
Instruction

DRCR: Continuous execution/DRCRP: Pulse execution

Operand Name Description Range Data Type

D Source data/Target
data

Address of the word element that stores the
data

- INT/DINT

n
Number of bits to be
rotated upon each
execution

Value range: 1 ≤ n ≤ 16 (16-bit operation); 1 ≤
n ≤ 32 (32-bit operation) 1 to 16/1 to 32 INT/DINT

Table 3–125 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The RCR instruction shifts and rotates the data in D with the carry flag M8022 rightwards by n bits.

The instruction of the pulse execution type is generally used. When the 32-bit instruction is executed,
the register variable occupies two consecutive units.

Instruction Description (LD & LiteST)

-221-

Instruction Example

3.6.4.5 RCL

When the driving conditions are met, the RCL instruction shifts and rotates the data in D with the carry
flag (M8022) leftwards by n bits. The high-order bits with the carry flag (M8022) that are rotated out of
D fill the low-order bits of D.
RCL – Rotation left with carry

16-bit
Instruction

RCL: Continuous execution/RCLP: Pulse execution

32-bit
Instruction

DRCL: Continuous execution/DRCLP: Pulse execution

Operand Name Description Range Data Type

D Source data/Target
data

Address of the word element that stores the
data

- INT/DINT

n
Number of bits to be
rotated upon each
execution

Value range: 1 ≤ n ≤ 16 (16-bit operation); 1 ≤
n ≤ 32 (32-bit operation) 1 to 16/1 to 32 INT/DINT

Table 3–126 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The RCL instruction shifts and rotates the data in D with the carry flag (M8022) leftwards by n bits. The
instruction of the pulse execution type is generally used.

When the 32-bit instruction is executed, the register variable occupies two consecutive units.

Instruction Description (LD & LiteST)

-222-

Instruction Example

3.6.4.6 SFTR

When the driving conditions are met, the SFTR instruction shifts n1 bit elements starting from D right-
wards by n2 bits and transfers n2 bit elements starting from S to fill the high-order bits. The n2 low-or-
der bits that are shifted out are discarded. The values in the bit elements starting from S remain
unchanged.
SFTR – Bit shift right

16-bit
Instruction

SFTR: Continuous execution/SFTRP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Bit element start
address

Start address of bit elements to be shifted - BOOL, array*n2

D Incoming bit start
address

Start address of incoming bit elements - BOOL, array*n1

n1 Incoming bit count Number of incoming bit elements 1 to 256 INT

n2 Bit element quantity Number of shifted bit elements 1 to n1 INT

Table 3–127 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - √ - - -

D ✓[1] √ √ - - √ - - -

n1 - - - √ √ √ √ - -

n2 - - - √ √ √ √ - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-223-

Function and Instruction Description

The SFTR instruction transfers n2 bit variables starting from S to D and shifts the bit variables
rightwards by n2 bits.

The instruction of the pulse execution type is generally used.

Instruction Example

3.6.4.7 SFTL

When the driving conditions are met, the SFTL instruction shifts n1 bit elements starting from D left-
wards by n2 bits and transfers n2 bit elements starting from S to fill the low-order bits. The n2 high-or-
der bits that are shifted out are discarded. The values in the bit elements starting from S remain
unchanged.
SFTL – Bit shift left

16-bit
Instruction

SFTL: Continuous execution/SFTLP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Bit element start
address

Start address of bit elements to be shifted - BOOL, array*n2

D Incoming bit start
address

Start address of incoming bit elements - BOOL, array*n1

n1 Incoming bit count Number of incoming bit elements 1 to 256 INT

n2 Bit element quantity Number of shifted bit elements 1 to n1 INT

Table 3–128 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S √ √ √ - - √ - - -

D ✓[1] √ √ - - √ - - -

n1 - - - √ √ √ √ - -

n2 - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-224-

Note
[1] The X element is not supported.

Function and Instruction Description

The SFTL instruction transfers n2 bit variables starting from S to D and shifts the bit variables leftwards
by n2 bits.

The instruction of the pulse execution type is generally used.

Instruction Example

3.6.4.8 WSFR

When the driving conditions are met, the WSFR instruction shifts n1 word elements starting from D
rightwards by n2 words and transfers n2 word elements starting from S to fill the high-order words.
The n2 low-order words that are shifted out are discarded. The values in the word elements starting
from S remain unchanged.
WSFR – Word shift right

16-bit
Instruction

WSFR: Continuous execution/WSFRP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Word element start
address

Start address of word elements to be shifted - INT, array*n2

D Incoming word start
address

Start address of incoming word elements - INT, array*n1

n1 Incoming word
count

Number of incoming word elements 1 to 256 INT

n2 Word element count Number of shifted word elements 1 to n1 INT

Instruction Description (LD & LiteST)

-225-

Table 3–129 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

n1 - - - √ √ √ √ - -

n2 - - - √ √ √ √ - -

Function and Instruction Description

The WSFR instruction shifts n1 word variables starting from D rightwards by n2 words and then
transfers the n2 word variables starting from S to D to fill the high-order words. The instruction of the
pulse execution type is generally used.

Instruction Example

3.6.4.9 WSFL

When the driving conditions are met, the WSFL instruction shifts n1 word elements starting from D left-
wards by n2 words and transfers n2 word elements starting from S to fill the low-order words. The n2
high-order words that are shifted out are discarded. The values in the word elements starting from S re-
main unchanged.
WSFL – Word shift left

16-bit
Instruction

WSFL: Continuous execution/WSFLP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Word element start
address

Start address of word elements to be shifted - INT, array*n2

D Incoming word start
address

Start address of incoming word elements - INT, array*n1

n1 Incoming word
count

Number of incoming word elements 1 to 256 INT

n2 Word element
count

Number of shifted word elements 1 to n1 INT

Instruction Description (LD & LiteST)

-226-

Table 3–130 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

n1 - - - √ √ √ √ - -

n2 - - - √ √ √ √ - -

Function and Instruction Description

The WSFL instruction shifts n1 word variables starting from D leftwards by n2 words and then transfers
the n2 word variables starting from S to D to fill the low-order words. The instruction of the pulse
execution type is generally used.

Instruction Example

3.6.4.10 SFWR

When the driving conditions are met, the SFWR instruction writes the current value in S to a data regis-
ter starting from D+1 (with the length of n). The value of the pointer D increases by 1 each time a data
entry is written to the database.
SFWR: Shift write (FIFO)

16-bit
Instruction

SFWR: Continuous execution/SFWRP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data source Data to be written, or address of the word
element that stores the data

- INT

D
Data area start
address

Start address of word elements that store the
data

- INT, array*n

n Data area length Length of the data area, including the pointer 2 to 512 INT

Instruction Description (LD & LiteST)

-227-

Table 3–131 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - √ - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The SFWR instruction writes the value of S to the first in first out (FIFO) queue starting from D (with the
length of n). The first device stores a pointer. When the instruction is executed, the pointer value
increases by 1 and then the content of the device specified by S is written to the position specified by
the pointer in the FIFO queue (D).

The instruction of the pulse execution type is generally used.

Instruction Example

When X0 is 1, the value in D0 is written to D2, and the value of D1 changes to 1. When X0 switches from
OFF to ON again, the value in D0 is written to D3, and the value of D1 changes to 2, and so on. If the
value in D1 exceeds the value of n minus 1, the instruction is not executed, and the carry flag M8022 is
set to 1.

3.6.4.11 SFRD

When the driving conditions are met, the SFRD instruction reads the data in the data register starting
from S+1 (with the length of n) to the destination register D.
SFRD: Shift read (FIFO)

16-bit
Instruction

SFRD: Continuous execution/SFRDP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S
Data area start
address

Start address of word elements that store
the data

- INT, array*n

D Read data Address for storing the read data - INT

n Data area length Length of the data area 2 to 512 INT

Table 3–132 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-228-

Function and Instruction Description

The SFRD instruction reads the first data entry in the FIFO queue (S) to D and shifts the data within the
queue rightwards by one word. The queue pointer decreases by 1. The first device stores a pointer.
When the instruction is executed, the pointer value decreases by 1 and then the content of the device
specified by S is written to position specified by the pointer in the FIFO queue (D). If the pointer is 0,
the instruction is not executed and the zero flag M8020 is set to 1.

The instruction of the pulse execution type is generally used.

Instruction Example

When X0 switches from OFF to ON, the following operations are performed (the content in D10 remains
unchanged):

1. The content of D2 is read and transferred to D20.

2. D10 to D3 are shifted rightwards by one register.

3. The value of pointer D1 decreases by 1.

3.6.4.12 SFR

The SFR instruction shifts the data in a word element rightwards by n bits.
SFR – Bit shift right with carry

16-bit
Instruction

SFR: Continuous execution/SFRP: Pulse execution

32-bit
Instruction

DSFR: Continuous execution/DSFRP: Pulse execution

Operand Name Description Range Data Type

D Word to be
shifted

Number of the element that stores the data to be
shifted

- INT/DINT

n Shift times

Number of shift times

0 ≤ n ≤ 15 (16-bit operation); 0 ≤ n ≤ 31 (32-bit
operation)

0 to 15/31 INT/DINT

Table 3–133 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-229-

Function and Instruction Description

16-bit instruction:

n ranges from 0 to 15. When n is greater than or equal to 16, bits are shifted by the remainder of n%16.
For example, when n is 20, bits are shifted rightwards by four bits (20%16 = 4).

32-bit instruction:

n ranges from 0 to 31. When n is greater than or equal to 32, bits are shifted by the remainder of n%32.
For example, when n is 40, bits are shifted rightwards by eight bits (40%32 = 8).

The 1/0 state of the (bn – 1)th bit in [D] is written to the carry flag M8022. The n bits starting from the
most significant bit in [D] are filled with 0s.

Errors

An error is reported when n is less than 0.

Instruction Example

Before the instruction is executed

After the instruction is executed

3.6.4.13 SFL

The SFL instruction shifts the data in a word element leftwards by n bits.
SFL – Bit shift left with carry

Instruction Description (LD & LiteST)

-230-

16-bit
Instruction

SFL: Continuous execution/SFLP: Pulse execution

32-bit
Instruction

DSFL: Continuous execution/DSFLP: Pulse execution

Operand Name Description Range Data Type

D Word to be
shifted

Number of the element that stores the data to
be shifted

- INT/DINT

n Shift times

Number of shift times

0 ≤ n ≤ 15 (16-bit operation); 0 ≤ n ≤ 31 (32-
bit operation)

0 to 15/31 INT/DINT

Table 3–134 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

16-bit instruction:

n ranges from 0 to 15. When n is greater than or equal to 16, bits are shifted by the remainder of n%16.
For example, when n is 20, bits are shifted leftwards by four bits (20%16 = 4).

32-bit instruction:

n ranges from 0 to 31. When n is greater than or equal to 32, bits are shifted by the remainder of n%32.
For example, when n is 40, bits are shifted leftwards by eight bits (40%32 = 8).

The 1/0 state of the bn bit in [D] is written to the carry flag M8022.

The n bits starting from the least significant bit in [D] are filled with 0s.

Errors

An error is reported when n is less than 0.

Instruction Example

Before the instruction is executed

Instruction Description (LD & LiteST)

-231-

After the instruction is executed

3.6.5 Other Data Processing Instructions

3.6.5.1 Instruction List

The following table lists other data processing instructions.

Instruction Category Instruction Function

Other data processing
instruction

SWAP Byte swap
BON Bit state check
SUM Sum of ON bits
RAND Random number generation within limits

XCH Data exchange

ABS Absolute value of integer

EABS Absolute value of floating-point number

EFMOV Multi-point floating-point move

CCD Check code
CRC CRC code calculation
LRC LRC code calculation

3.6.5.2 SWAP

The SWAP instruction exchanges the upper and lower bytes of the variable in S.
SWAP: Byte swap

16-bit
Instruction

SWAP: Continuous execution/SWAPP: Pulse execution

32-bit
Instruction

DSWAP: Continuous execution/DSWAPP: Pulse execution

Operand Name Description Range Data Type

D Operand
Unit that stores the data of which the upper
and lower bytes will be exchanged - INT/DINT

Instruction Description (LD & LiteST)

-232-

Table 3–135 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ √ - - -

Function and Instruction Description

The SWAP instruction exchanges the upper and lower bytes of the variable in S.

In 16-bit operation, the high-order 8 bits and the low-order 8 bits are swapped.

In 32-bit operation, the high-order 8 bits and the low-order 8 bits of each of the two registers are
swapped.

Note
This instruction is generally programmed as the pulse execution type. If it is programmed as the continuous execu-
tion type, swap is performed on every program scan.

Instruction Example

In the figure on the left, the values of the high-order 8 bits and low-order 8 bits in D20 are swapped.

In the figure on the right, the values of the high-order 8 bits and low-order 8 bits in D20 are swapped.

The values of the high-order 8 bits and low-order 8 bits in D21 are swapped.

3.6.5.3 BON

When the driving conditions are met, the BON instruction checks the state of the nth bit of the binary
data in S and outputs the result to D.

BON – Bit state check
16-bit
Instruction

BON: Continuous execution/BONP: Pulse execution

32-bit
Instruction

DBON: Continuous execution/DBONP: Pulse execution

Operand Name Description Range Data Type

S Source data
Data, or address of the word element that stores
the data

- INT/DINT

D Controlled
bit

Controlled bit element - BOOL

n Designated
bit

Designated bit in S; value range: 0 ≤ n ≤ 15 (16-
bit operation); 0 ≤ n ≤ 31 (32-bit operation) 0 to 15/31 INT/DINT

Instruction Description (LD & LiteST)

-233-

Table 3–136 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D ✓[1] √ √ - - √ - - -
n - - - √ √ √ √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

The BON instruction checks the state of the nth bit in S and stores the result in D.

Instruction Example

When the 14th bit in D10 is 1, M10 is set to ON.

When the 14th bit in D10 is 0, M10 is reset.

When X10 switches from ON to OFF, the state of M10 remains unchanged.

3.6.5.4 SUM

When the driving conditions are met, the SUM instruction counts the ON bits (the value is 1) in the bina-
ry data in S and stores the result in D.
SUM – Sum of ON bits

16-bit
Instruction

SUM: Continuous execution/SUMP: Pulse execution

32-bit
Instruction

DSUM: Continuous execution/DSUMP: Pulse execution

Operand Name Description Range Data Type

S Data to be
counted

Data to be counted, or address of the element
that stores the data

- INT/DINT

D Counting result Address of the element that stores the result - INT/DINT

Instruction Description (LD & LiteST)

-234-

Table 3–137 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The SUM instruction counts the number of ON bits (the value is 1) in the binary data in S and stores the
result in D.

When DSUM or DSUMP is executed, the number of ON bits (the value is 1) among the 32 bits in (S+1, S)
is written to D, and all bits in D+1 are set to 0.

If all bits in S are 0, the zero flag M8020 is set to ON.

Instruction Example

The number of ON bits (the value is 1) in D1 is counted and the result is stored in D2.

3.6.5.5 RAND

The RAND instruction generates a random number within a specified range.
RAND – Random number generation within limits

16-bit
Instruction

-

32-bit
Instruction

RAND: Continuous execution/RANDP: Pulse execution

Operand Name Description Range Data Type

S1 Random number
lower limit

Lower limit of the random number DINT

S2
Random number
upper limit

Upper limit of the random number DINT

S3 Random seed
Random seed, which is used as input. The random
number generated varies with the seed. DINT

D Random number Generated random number DINT

Table 3–138 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-235-

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S3 - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The RAND instruction generates a random number within a specified range. The random number is
generated by the random seed. When the range is determined, there is a one-to-one correspondence
between the random seed and the generated random number. That is, when the random seed
changes, the generated random number changes accordingly.

The parameters of this instruction are described as follows:

● Lower limit: Lower limit of the random number
● Upper limit: Upper limit of the random number
● Random seed: Input for generating the random number, which is not restricted by the upper and

lower limits
● Random number: Generated random number, which is between the upper and lower limits An error

is returned when S1 is greater than S2.

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

3.6.5.6 XCH

When the driving conditions are met, the XCH instruction exchanges the data in S and D.
XCH – Data exchange

16-bit
Instruction

XCH: Continuous execution/XCHP: Pulse execution

32-bit
Instruction

DXCH: Continuous execution/DXCHP: Pulse execution

Operand Name Description Range Data Type

S Data 1 Word element 1 that stores the data to be exchanged - INT/DINT

D Data 2 Word element 2 that stores the data to be exchanged - INT/DINT

Instruction Description (LD & LiteST)

-236-

Table 3–139 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The XCH instruction requires contact driving and has two operands. It exchanges the values in S and D.

Instruction Example

Example 1

Figure 3-7 Before execution and after execution

Example 2

Figure 3-8 Before execution and after execution

3.6.5.7 ABS

The ABS instruction calculates the absolute value of an integer.
ABS – Absolute value of integer

16-bit
Instruction

ABS: Continuous execution/ABSP: Pulse execution

32-bit
Instruction

DABS: Continuous execution/DABSP: Pulse execution

Operand Name Description Range Data Type

S Source data
Source data for which the absolute value is
calculated

- INT/DINT

D Absolute value Obtained absolute value - INT/DINT

Instruction Description (LD & LiteST)

-237-

Table 3–140 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ √ - -

D - - - √ √ √ - - -

Function and Instruction Description

The ABS instruction requires contact driving and has two operands. It assigns the absolute value of the
integer in S to D.

When the 32-bit instruction (DABS) is executed, the operation involves the variable units (S+1, S) and (D
+1, D).

S: Integer for which the absolute value is to be calculated

D: Obtained absolute value

3.6.5.8 EABS

The EABS instruction calculates the absolute value of a floating-point number.

EABS – Absolute value of floating-point number

16-bit
Instruction

-

32-bit
Instruction

DEABS: Continuous execution/DEABSP: Pulse execution

Operand Name Description Range Data Type

S Source data
Source data for which the absolute value is
calculated

- REAL

D Absolute value Obtained absolute value - REAL

Table 3–141 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-238-

Function and Instruction Description

The EABS instruction calculates the absolute value a single-precision floating-point number. It requires
contact driving. When it is executed, the absolute value of the floating-point number in S is assigned to
D.

S: Floating-point number for which the absolute value is to be calculated

D: Obtained absolute value

Instruction Example

When the flow is active, the absolute value of the source floating-point number is calculated and then
assigned to the target register or variable.

3.6.5.9 EFMOV

When the driving conditions are met, the EFMOV instruction transfers the floating-point number data
in S to the n registers starting from the address specified in D.

EFMOV – Multi-point floating-point move

16-bit Instruction -
32-bit Instruction DEFMOV: Continuous execution/DEFMOVP: Pulse execution, 13 steps

Operand Name Description Range Data Type

S Source data Data to be
transferred, or
address of the
floating-point
element that stores
the data

- -

D Start address of the
transfer destination

Start address of
word elements that
store the transferred
data

- Array*n

n Target number Number of points of
the word element to
which the data is
transferred

1 to 512 -

Instruction Description (LD & LiteST)

-239-

Table 3–142 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - √ -

D - - - √ √ √ - - -

n - - - √ √ √ √ - -

Function and Instruction Description

The EFMOV instruction requires contact driving and has three operands. It copies the floating-point
number data in S to the n units starting from the address specified in D.

n ranges from 1 to 512.

Instruction Example

When M333 is ON, the calculation result is as follows:

Instruction Description (LD & LiteST)

-240-

3.6.5.10 CCD

When the driving conditions are met, the CCD instruction calculates the checksum of the n data entries
starting from S and stores the result in D. The XOR operation result is stored in D+1.
CCD – Check code

16-bit
Instruction

CCD: Continuous execution/CCDP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Data source Start address of consecutive units that store the
variables for which checksum will be calculated

- INT, array*n

D Operation result Checksum result stored in D; XOR logical operation
result stored in D+1

- INT, array*2

n Checked byte count Number of bytes contained in checked variables 1 to 256 INT

Table 3–143 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The CCD instruction performs two types of checksum operations on n variables starting from S and
stores the summation result in D and the XOR logical operation result in D+1. The string checksum
operation ensures correct data transfer during communication. Where,

Summation is the process where the values of n variables are directly added together.

The XOR logical operation is described as follows:

● Convert the variables involved in the operation into binary numbers.
● Count the number of variables of which bit 0 is 1. If it is an even number, bit 0 of the XOR result is 0;

if it is an odd number, bit 0 of the XOR result is 1.

Instruction Description (LD & LiteST)

-241-

● Count the number of variables of which bit 1 is 1. If it is an even number, bit 1 of the XOR result is 0;
if it is an odd number, bit 1 of the XOR result is 1.

Calculate bit 2 to bit 7 in a similar way. Convert the resulting binary number into a hexadecimal
equivalent, which is the XOR operation result (or called a polarity value).

Note
Note during programming that instructions including HEX, ASCI, and CCD share the M8161 mode flag.

Instruction Example

The M8161 flag determines the variable width mode. When M8161 is OFF, the 16-bit mode is used,
whereby both the high- and low-order bytes of variables are taken for the operation. When M8161 is
ON, the 8-bit mode is used, whereby only the low-order bytes of variables are taken for the operation
and the high-order bytes are discarded. In this case, the length of the actually used variable area is
increased.

3.6.5.11 CRC

Cyclic redundancy check (CRC) is commonly used during communication. The CRC instruction is used
to calculate the CRC code.
CRC – CRC code calculation

16-bit
Instruction

CRC: Continuous execution/CRCP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Source data
Start address of elements that store the data
for CRC code calculation (RTU mode) - INT, array*n

n Data count Number of operated data entries (K1 to K256) 1 to 256 INT

D Result
Start address of elements that store the
operation result - INT, array*2

Instruction Description (LD & LiteST)

-242-

Table 3–144 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ √ √ - -
n - - - √ √ - - - -

Function and Instruction Description

16-bit conversion mode: When M8161 is OFF, the CRC instruction takes the high-order 8 bits and low-
order 8 bits (n data points in total) starting from [S] in the unit of 16 bits for CRC code calculation and
stores the result in the high-order 8 bits and low-order 8 bits in [D].

8-bit conversion mode: When M8161 is ON, the CRC instruction takes the low-order 8 bits (n data points
in total) starting from [S] in the unit of 8 bits for CRC code calculation and stores the low-order 8 bits of
the result in [D] and the high-order 8 bits of the result in [D+1].

Errors

An error is returned in the following conditions:

The error flag M8067 is set to ON, and the error code is stored in D8067.

Error 6706 is returned when n is out of range.

Instruction Example

When M8161 is ON, the 8-bit conversion mode is used. The low-order 8 bits of elements D100 to D105
are taken for CRC code calculation. The result is stored in the low-order 8 bits of D200 and D201.

When M8161 is OFF, the 16-bit conversion mode is used. The low-order 8 bits of elements D100 to D105
are taken for CRC code calculation. The result is stored in the high-order 8 bits and low-order 8 bits of
D200.

Instruction Description (LD & LiteST)

-243-

3.6.5.12 LRC

The LRC instruction calculates the longitudinal redundancy check (LRC) code in ASCII mode.
LRC – LRC code calculation

16-bit
Instruction

LRC: Continuous execution/LRCP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Source data
Start address of elements that store the data for
LRC code calculation (ASCII mode)

INT, array*n

n Data count
Number of operated data entries (value range:
K1 to K256), which must be an even number 1 to 256 INT

D Result Register that stores the operation result INT, array*2

Table 3–145 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -
n - - - √ √ √ √ - -

D - - - √ √ - - - -

Function and Instruction Description

The LRC code is acquired by calculating the two's complement of the sum of values within the range
from the communication address to the end of the data content.

The following are two examples. 01 H + 03 H + 21 H + 02 H + 00 H + 02 H = 29 H, and the two's
complement of the sum is D7H (which corresponds to the ASCII codes 44H and 37H).

16-bit conversion mode: When M8161 is OFF, the LRC instruction takes the high-order 8 bits and low-
order 8 bits (n data points in total) starting from [S] in the unit of 16 bits for LRC code calculation and
stores the result in the high-order 8 bits and low-order 8 bits in [D].

8-bit conversion mode: When M8161 is ON, the LRC instruction takes the low-order 8 bits (n data points
in total) starting from [S] in the unit of 8 bits for LRC code calculation and stores the low-order 8 bits of
the result in [D] and the high-order 8 bits of the result in [D+1].

Instruction Description (LD & LiteST)

-244-

Errors

An error is returned in the following conditions:

● n is out of the specified range.
● n is an odd number.

Instruction Example

1. 16-bit mode (M8161 = OFF)

2. 8-bit mode (M8161 = ON)

3.7 Matrix Instructions

3.7.1 Matrix Operation Instructions

3.7.1.1 Instruction List

The following table lists the matrix operation instructions.

Instruction Description (LD & LiteST)

-245-

Instruction Category Instruction Function

Matrix operation
instruction

BK+ Block data addition
BK– Block data subtraction
MAND Matrix AND
MOR Matrix OR
MXOR Matrix XOR
MXNR Matrix XNOR
MINV Matrix inversion

3.7.1.2 BK+

The BK+ instruction adds binary block data.
BK+ – Block data addition

16-bit
Instruction

BK+: Continuous execution/BK+P: Pulse execution

32-bit
Instruction

DBK+: Continuous execution/DBK+P: Pulse execution

Operand Name Description Range Data Type

S1 Source address
1

Start number of elements that store the data for
which the addition operation is performed - INT/DINT, array*n

S2 Source address
2

Constant for which the addition operation is
performed, or start number of elements that store
the data for which the addition operation is
performed

- INT/DINT, array*n

D Destination
address

Start number of elements that store the operation
result

- INT/DINT, array*n

n Data count Number of data entries involved in an operation 1 to 256 INT/DINT

Note
n indicates the number of data entries to be operated. If it is a constant, only a fixed number of data entries can be
operated; if it is a variable, the number of data entries to be operated can be changed by adjusting the value of n.

Table 3–146 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BK+ instruction adds the n data entries (16- or 32-bit) starting from [S1] and the n data entries (16-
or 32-bit) starting from [S2] together and stores the result in n units (16- or 32-bit) starting from [D].

Instruction Description (LD & LiteST)

-246-

[S1+0]

[S1+1]

[S1+n-2]

[S1+n-1]

...

K1111

K1111

K1111

K1111

...

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

K2222

K-1111

K4444

K5555

...

[S2+0]

[S2+1]

[S2+n-2]

[S2+n-1]

...

K1111

K-2222

K3333

K4444

...

A signed constant (16- or 32-bit) can be directly specified in [S2].

[S1+0]

[S1+1]

[S1+n-2]

[S1+n-1]

...

K1111

K1111

K1111

K1111

... K2222

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

K3333

K3333

K3333

K3333

...

If the elements starting from [S1], [S2], or [D] are beyond the corresponding element range, an error is
returned and the instruction is not executed.

Instruction Example

3.7.1.3 BK–

The BK– instruction subtracts binary block data.
BK– – Block data subtraction

16-bit
Instruction

BK–: Continuous execution/BK–P: Pulse execution

32-bit
Instruction

DBK–: Continuous execution/DBK–P: Pulse execution

Operand Name Description Range Data Type

Instruction Description (LD & LiteST)

-247-

S1 Source address
1

Start number of elements that store the data for
which the subtraction operation is performed

INT/DINT, array*n

S2 Source address
2

Constant for which the subtraction operation is
performed, or start number of elements that store
the data for which the subtraction operation is
performed

INT/DINT, array*n

D
Destination
address

Start number of elements that store the operation
result

INT/DINT, array*n

n Data count Number of data entries involved in an operation 1 to 256 INT/DINT

Table 3–147 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ √ - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The BK– instruction subtracts the n data entries (16- or 32-bit) starting from [S2] from the n data
entries (16- or 32-bit) starting from [S1] and stores the result in n units (16- or 32-bit) starting from [D].

[S1+0]

[S1+1]

[S1+n-2]

[S1+n-1]

...

K1111

K1111

K1111

K1111

...

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

K0

K3333

K-2222

K-3333

...

[S2+0]

[S2+1]

[S2+n-2]

[S2+n-1]

...

K1111

K-2222

K3333

K4444

...

A signed constant (16- or 32-bit) can be directly specified in [S2].

[S1+0]

[S1+1]

[S1+n-2]

[S1+n-1]

...

K1111

K1111

K1111

K1111

... K-2222

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

K3333

K3333

K3333

K3333

...

If the elements starting from [S1], [S2], or [D] are beyond the corresponding element range, an error is
returned and the instruction is not executed.

Instruction Example

Instruction Description (LD & LiteST)

-248-

3.7.1.4 MAND

The MAND instruction performs an AND operation on the matrices and stores the result in D.
MAND – Matrix AND

16-bit Instruction MAND: Continuous execution/MANDP: Pulse execution

32-bit Instruction DMAND: Continuous execution/DMANDP: Pulse execution
Operand Name Description Range Data Type

S1 Matrix 1 Operand element 1 for the operation - INT/DINT, array*n

S2 Matrix 2 Operand element 2 for the operation - INT/DINT, array*n

D Operation result
Start number of elements for storing the
operation result - INT/DINT, array*n

n
Data group
quantity

Number of data groups involved in an
operation; ranging from 1 to 256 1 to 256 INT/DINT

Table 3–148 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MAND instruction performs an AND operation by bit on the n groups of data starting from [S1] and
the n groups of data starting from [S2] and stores the result in elements starting from [D].

The result of the AND operation is 1 when the values of both bits are 1; otherwise, the result is 0.

Assume that n is 4. A matrix AND operation is performed as follows.

Instruction Description (LD & LiteST)

-249-

Note
For the 16-bit instruction, n indicates the number of words; for the 32-bit instruction, n indicates the number of
dwords.

Instruction Example

3.7.1.5 MOR

The MOR instruction performs an OR operation on the matrix and stores the result in D.
MOR – Matrix OR

16-bit
Instruction

MOR: Continuous execution/MORP: Pulse execution

32-bit
Instruction

DMOR: Continuous execution/DMORP: Pulse execution

Operand Name Description Range Data Type

S1 Matrix 1 Operand element 1 for the operation - INT/DDINT, array*n

S2 Matrix 2 Operand element 2 for the operation - INT/DDINT, array*n

D Operation result
Start number of elements for storing the
operation result - INT/DDINT, array*n

n
Data group
quantity

Number of data groups involved in an
operation; ranging from 1 to 256 1 to 256 INT/DDINT

Instruction Description (LD & LiteST)

-250-

Table 3–149 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MOR instruction performs an OR operation by bit on the n groups of data starting from [S1] and
the n groups of data starting from [S2] and stores the result in elements starting from [D].

The result of the OR operation is 1 when the value of either bit is 1; otherwise, the result is 0.

Assume that n is 4. A matrix OR operation is performed as follows.

Note
For the 16-bit instruction, n indicates the number of words; for the 32-bit instruction, n indicates the number of
dwords.

Instruction Example

3.7.1.6 MXNR

The MXNR instruction performs an XNOR operation on the matrix and stores the result in D.
MXNR: Matrix XNOR

Instruction Description (LD & LiteST)

-251-

16-bit Instruction MXNR: Continuous execution/MXNRP: Pulse execution

32-bit Instruction DMXNR: Continuous execution/DMXNRP: Pulse execution
Operand Name Description Range Data Type

S1 Matrix 1 Operand element 1 for the operation - INT/DINT, array*n

S2 Matrix 2 Operand element 2 for the operation - INT/DINT, array*n

D Operation result
Start number of elements for storing the
operation result - INT/DINT, array*n

n
Data group
quantity

Number of data groups involved in an
operation; ranging from 1 to 256 1 to 256 INT/DINT

Table 3–150 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MXNR instruction performs an XNOR operation by bit on the n groups of data starting from [S1]
and the n groups of data starting from [S2] and stores the result in elements starting from [D].

The result of the XNOR operation is 1 when the values of the two bits are different; otherwise, the result
is 0.

Assume that n is 4. A matrix XNR operation is performed as follows.

Note
For the 16-bit instruction, n indicates the number of words; for the 32-bit instruction, n indicates the number of
dwords.

Instruction Description (LD & LiteST)

-252-

Instruction Example

3.7.1.7 MXOR

The MXOR instruction performs an XOR operation on the matrix and stores the result in D.
MXOR – Matrix XOR

16-bit Instruction MXOR: Continuous execution/MXORP: Pulse execution

32-bit Instruction DMXOR: Continuous execution/DMXORP: Pulse execution
Operand Name Description Range Data Type

S1 Matrix 1 Operand element 1 for the operation - INT/DINT, array*n

S2 Matrix 2 Operand element 2 for the operation - INT/DINT, array*n

D Operation result
Start number of elements for storing the
operation result - INT/DINT, array*n

n
Data group
quantity

Number of data groups involved in an
operation 1 to 256 INT/DINT

Table 3–151 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MXOR instruction performs an XOR operation by bit on the n groups of data starting from [S1] and
the n groups of data starting from [S2] and stores the result in elements starting from [D].

The result of the XOR operation is 1 when the values of the two bits are different; otherwise, the result
is 0.

Assume that n is 4. A matrix XOR operation is performed as follows.

Instruction Description (LD & LiteST)

-253-

Note
For the 16-bit instruction, n indicates the number of words; for the 32-bit instruction, n indicates the number of
dwords.

XOR (bit-based XOR)

Instruction Example

3.7.1.8 MINV

The MINV instruction inverts all bits of the specified matrix.
MINV – Matrix inversion

16-bit Instruction MINV: Continuous execution/MINVP: Pulse execution

32-bit Instruction DMINV: Continuous execution/DMINVP: Pulse execution
Operand Name Description Range Data Type

S Matrix Operand element for the operation - INT/DINT, array*n

D Operation result
Start number of elements for storing the
operation result - INT/DINT, array*n

n
Data group
quantity

Number of data groups involved in an
operation; ranging from 1 to 256 1 to 256 INT/DINT

Instruction Description (LD & LiteST)

-254-

Table 3–152 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ √ - - -

D - - - √ √ √ - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The MINV instruction inverts the n groups of data starting from [S] by bit and stores the result in
elements starting from [D].

Note
For the 16-bit instruction, n indicates the number of words; for the 32-bit instruction, n indicates the number of
dwords.

Instruction Example

3.7.2 Matrix Comparison Instructions

3.7.2.1 Instruction List

The following table lists the matrix comparison instructions.

Instruction Description (LD & LiteST)

-255-

Instruction Category Instruction Function

Matrix comparison
instruction

BKCMP= Matrix comparison equal to (S1 = S2)
BKCMP> Matrix comparison greater than (S1 > S2)

BKCMP< Matrix comparison less than (S1 < S2)
BKCMP<> Matrix comparison not equal to (S1 ≠ S2)

BKCMP<= Matrix comparison less than or equal to (S1 ≤ S2)
BKCMP>= Matrix comparison greater than or equal to (S1 ≥ S2)

3.7.2.2 BKCMP#

The following instructions compare block data according to the comparison condition set in each
instruction.
BKCMP= – Matrix comparison equal to(S1 = S2)

BKCMP> – Matrix comparison greater than(S1 > S2)

BKCMP< – Matrix comparison less than(S1 < S2)

BKCMP<> – Matrix comparison not equal to(S1 ≠ S2)

BKCMP<= – Matrix comparison less than or equal to(S1 ≤ S2)

BKCMP>= – Matrix comparison greater than or equal to(S1 ≥ S2)

16-bit Instruction BKCMP=: Continuous execution/BKCMP=P: Pulse execution

32-bit Instruction DBKCMP=: Continuous execution/DBKCMP=P: Pulse execution

16-bit Instruction BKCMP>: Continuous execution/BKCMP>P: Pulse execution

32-bit Instruction DBKCMP>: Continuous execution/DBKCMP>P: Pulse execution

16-bit Instruction BKCMP<: Continuous execution/BKCMP<P: Pulse execution

32-bit Instruction DBKCMP<: Continuous execution/DBKCMP<P: Pulse execution

16-bit Instruction BKCMP<>: Continuous execution/BKCMP<>P: Pulse execution

32-bit Instruction DBKCMP<>: Continuous execution/DBKCMP<>P: Pulse execution

16-bit Instruction BKCMP>=: Continuous execution/BKCMP>=P: Pulse execution

32-bit Instruction DBKCMP>=: Continuous execution/DBKCMP>=P: Pulse execution

16-bit Instruction BKCMP<=: Continuous execution/BKCMP<=P: Pulse execution

32-bit Instruction DBKCMP<=: Continuous execution/DBKCMP<=P: Pulse execution
Operand Name Description Range Data Type

S1 Comparand
Comparand, or number of the element that
stores the comparand - INT/DINT, array*n

S2 Compared value
Start number of elements that store the
source data to be compared - INT/DINT, array*n

D
Destination
address

Start number of elements that store the
comparison result - BOOL, array*n

n Data count
Number of data entries involved in an
operation 1 to 256 INT/DINT

Instruction Description (LD & LiteST)

-256-

Table 3–153 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

D √[1] √ √ - - - - - -

n - - - √ √ √ √ - -

Note
● # indicates the comparison operator =, >, <, <>, <=, or >=.
● [1] The X element is not supported.

Function and Instruction Description

The BKCMP# instruction compares the n data entries (16- or 32-bit) starting from [S1] with the n data
entries (16- or 32-bit) starting from [S2] and stores the comparison result in n units (16- or 32-bit)
starting from [D].

Take the BKCMP> instruction an example.

[S1+0]

[S1+1]

[S1+n-2]

[S1+n-1]

...

K1111

K1111

K1111

K1111

...

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

OFF

ON

ON

OFF

...

[S2+0]

[S2+1]

[S2+n-2]

[S2+n-1]

...

K1111

K-2222

K500

K3333

...

A signed constant (16- or 32-bit) can be directly specified in [S1].

Take the BKCMP> instruction an example.

[D+0]

[D+1]

[D+n-2]

[D+n-1]

...

OFF

ON

ON

OFF

...

[S2+0]

[S2+1]

[S2+n-2]

[S2+n-1]

...

K1111

K-2222

K500

K3333

...K1111

M8333 is set to ON when all of the n results starting from [D] are ON.

An error is returned in the following conditions, in which the instruction is not executed:

1. The elements starting from [S1], [S2], or [D] are beyond the corresponding element range.

2. 32-bit variables are used in a 16-bit instruction.

You need to use 32-bit instructions (such as DBKCMP=, DBKCMP>, and DBKCMP<) to compare 32-bit
variables.

Instruction Description (LD & LiteST)

-257-

Instruction Example

3.8 String Instructions

3.8.1 Instruction List

The following table lists the string instructions.

Instruction Category Instruction Function

String instruction

STR Conversion from integer into string

STRMOV String assignment

VAL Conversion from string into integer

ESTR Conversion from binary floating-point into string

EVAL Conversion from string into binary floating-point

$ADD Character string linking

LEN Character string length detection

INSTR Character string search

RIGHT String data extraction from the right

LEFT String data extraction from the left

MIDR Random extraction of character string

MIDW Random replacement of character string

$MOV Character string transfer

3.8.2 STR

The STR instruction converts integers into character strings (ASCII codes).
STR – Conversion from integer into string

16-bit
Instruction

STR: Continuous execution/STRP: Pulse execution

32-bit
Instruction

DSTR: Continuous execution/DSTRP: Pulse execution

Instruction Description (LD & LiteST)

-258-

Operand Name Description Range Data Type

S1 Data to be
converted

Number of the element that stores the integer
to be converted

- INT/DINT, array*2

S2 Data to be
converted

Start number of elements that store the total
number of characters contained in a string
after conversion

- INT/DINT

D Output Start number of elements that store the
character string after conversion -

INT/DINT,
array*indeterminate

Table 3–154 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

1. 16-bit operation (STR and STRP)
The STR/STRP instruction inserts a decimal point in the position specified by [S1] and [S1+1],
converts the 16-bit binary number in [S2] into a character string, and stores the result in elements
starting from [D].

STR S1 S2 D

● The total number of digits specified in [S1] ranges from 2 to 8.
● The number of digits of the decimal part specified in [S1+1] ranges from 0 to 5. Make sure that

the following condition is met: [S1+1] ≤ [S1] – 3.
● The 16-bit binary number to be converted ranges from –32768 to +32767. The character string

after conversion is stored in elements starting from [D], as shown in the following figure.

Instruction Description (LD & LiteST)

-259-

● The sign bit stores "space" (20H) when the 16-bit binary number in [S2] is positive or "–" (2DH)
when it is negative.

● When the number of digits of the decimal part in [S1+1] is set to any value other than 0, the
decimal point "." (2EH) is automatically added in the "number of digits of the decimal part + 1"th
digit. No decimal point is inserted when the value in [S1+1] is 0.

If the number of digits of the decimal part in [S1+1] is greater than the number of digits of 16-bit
binary data in [S2], data is automatically aligned to the right and "0" (30H) is automatically added on
the left during conversion.

If the number of all digits in [S1] excluding the sign and decimal point is greater than the number of
digits of 16-bit binary data in [S2], "space" (20H) is inserted between the sign and the numeric value.

If the number of digits of 16-bit binary data in [S2] is larger, an error occurs.

"00H" indicating the end of a character string is automatically added at the end of a converted
character string.

When the total number of digits is even, "0000H" is stored in the element after the one that stores
the last character. When the total number of digits is odd, "00H" is stored in the high-order byte (8
bits) of the element that stores the last character.

2. 32-bit operation (DSTR and DSTRP)
The DSTR/DSTRP instruction inserts a decimal point in the position specified by [S1+1], converts the
32-bit binary number in [S2+1, S2] into a character string, and stores the result in elements starting
from [D].

DSTR S1 S2 D

Instruction Description (LD & LiteST)

-260-

● The total number of digits specified in [S1] ranges from 2 to 13.
● The number of digits of the decimal part specified in [S1+1] ranges from 0 to 10. Make sure that

the following condition is met: [S1+1] ≤ [S1] – 3.
● The 32-bit binary number to be converted ranges from –2147483648 to +2147483647. The

character string after conversion is stored in elements starting from [D], as shown in the following
figure.

● The sign bit stores "space" (20H) when the 32-bit binary number in [S2] is positive or "–" (2DH)
when it is negative.

● When the number of digits of the decimal part in [S1+1] is set to any value other than 0, the
decimal point "." (2EH) is automatically added in the "number of digits of the decimal part + 1"th
digit. No decimal point is inserted when the value in [S1+1] is 0.

If the number of digits of the decimal part in [S1+1] is greater than the number of digits of 16-bit
binary data in [S2], data is automatically aligned to the right and "0" (30H) is automatically added on
the left during conversion.

If the number of all digits in [S1] excluding the sign and decimal point is greater than the number of
digits of 32-bit binary data in [S2], "space" (20H) is inserted between the sign and the numeric value.

If the number of digits of 32-bit binary data in [S2] is larger, an error occurs.

"00H" indicating the end of a character string is automatically added at the end of a converted
character string.

When the total number of digits is even, "0000H" is stored in the element after the one that stores
the last character. When the total number of digits is odd, "00H" is stored in the high-order byte (8
bits) of the element that stores the last character.

Errors

An operation error occurs in the following conditions.

Instruction Description (LD & LiteST)

-261-

● The value in [S1] is out of the following range.

Operation Value Range
16-bit operation 2 to 8
32-bit operation 2 to 13

● The value in [S1+1] is out of the following range.

Operation Value Range
16-bit operation 0 to 5
32-bit operation 0 to 10

● The relationship between the number of all digits specified in [S1] and the number of digits of the
decimal part specified in [S1+1] does not meet the following requirements:

■ Total number of digits – 3 ≥ Number of digits of the decimal part
■ Total number of digits ([S1]) including the digits for the sign and the decimal point < Number of

digits of the binary data stored in [S2]
■ The elements starting from [D] for storing the character string are beyond the corresponding

element range.

Instruction Example

When M0 is ON, the 16-bit binary number in D10 is converted to a character string in accordance with
the digit numbers specified by D0 and D1. The result is stored in D20 to D23.

3.8.3 STRMOV

The STRMOV instruction directly assigns character strings.
STRMOV – String assignment

Instruction Description (LD & LiteST)

-262-

Instruction Name LD Expression
STRMOV String assignment

16-bit Instruction STRMOV: Continuous execution/STRMOVP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S Character string
data

Character string data to be assigned 1 to 127 String

D Storage register Destination storage register - INT, array*strlen [1]

Note
[1]: strlen indicates the string length. One character occupies one byte.

Table 3–155 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - - - String [1]

D - - - √ √ - - - -

Note
[1]: Only the string data type constants can be input directly.

Function and Instruction Description

The STRMOV instruction supports direct input of character strings. It can be used to receive and
transmit character string data in communication.

The character string data is stored in sequence.

Instruction Example

3.8.4 VAL

The VAL instruction converts character strings (ASCII codes) into integers.

Instruction Description (LD & LiteST)

-263-

VAL – Conversion from string into integer

16-bit Instruction VAL: Continuous execution/VALP: Pulse execution

32-bit Instruction DVAL: Continuous execution/DVALP: Pulse execution
Operand Name Description Range Data Type

S Data to be
converted

Start number of elements that store the string to
be converted

-
INT/DINT,
array*indetermi-
nate

D1 Data to be
converted

Number of the element that stores the total
number of characters contained in the string - INT/DINT, array*2

D2 Output Start number of elements that store the
character string after conversion - INT/DINT

Table 3–156 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D1 - - - √ √ - - - -

D2 - - - √ √ - - - -

Function and Instruction Description

1. 16-bit operation (VAL and VALP)
The VAL/VALP instruction converts the string stored in elements starting from [S] into a 16-bit binary
number. The total number of digits of the obtained binary data is stored in [D1], the number of digits
of the decimal part is stored in [D1+1], and the binary data is stored in [D2].

During the conversion, the data stored within the range from [S] to the element that stores 00H is
handled as a character string in the unit of byte.

VAL S D1 D2

● String data to be converted
The number of characters in and the value range (decimal point ignored) of the character string
to be converted must meet the following requirements:

Instruction Description (LD & LiteST)

-264-

Item Value Range
Total number of characters 2 to 8
Number of characters of the decimal part 0 to 5
Value range (decimal point ignored) –32768 to +32767 For example, 123.45

is processed as 12345.

The types of characters that can be used in the character string to be converted are as follows:

Item Character Type
Positive number Space (20H)
Negative number – (2DH)
Decimal point . (2EH)
Digit 0 (30H) to 9 (39H)

● [D1] stores the total number of digits, including the digits, sign, and decimal point.
● [D1+1] stores the number of digits of the decimal part, that is, the characters to the right of the

decimal point "." (2EH).
● [D2] stores the 16-bit binary data converted from a character string with the decimal point

ignored.

In the character string, "space" (20H) and "0" (30H) characters between the sign and the first number
other than "0" are ignored in the conversion to 16-bit binary data.

2. 32-bit operation (DVAL and DVALP)
The DVAL/DVALP instruction converts the string stored in elements starting from [S] into a 32-bit
binary number. The total number of digits of the obtained binary data is stored in [D1], the number
of digits of the decimal part is stored in [D1+1], and the binary data is stored in [D2+1, D2].

During the conversion, the data stored within the range from [S] to the element that stores 00H is
handled as a character string in the unit of byte.

DVAL S D1 D2

● String data to be converted

Instruction Description (LD & LiteST)

-265-

The number of characters in and the value range (decimal point ignored) of the character string
to be converted must meet the following requirements:

Item Value Range
Total number of characters 2 to 8
Number of characters of the decimal part 0 to 10
Value range (decimal point ignored) –2147483648 to +2147483647 For

example, 123.45 is processed as 12345.

The types of characters that can be used in the character string to be converted are as follows:

Item Character Type
Positive number Space (20H)
Negative number – (2DH)
Decimal point . (2EH)
Digit 0 (30H) to 9 (39H)

● [D1] stores the total number of digits, including the digits, sign, and decimal point.
● [D1+1] stores the number of digits of the decimal part, that is, the characters to the right of the

decimal point "." (2EH).
● [D2+1, D2] stores the 32-bit binary data converted from a character string with the decimal point

ignored.

In the character string, "space" (20H) and "0" (30H) characters between the sign and the first number
other than "0" are ignored in the conversion to 32-bit binary data.

Note
● The sign data, spaces (20H) or – (2DH), must be stored in the first byte (low-order 8 bits of the elements starting

from [S]).
● Only digits 0 (30H) to 9 (39H), spaces (20H), and decimal points (2EH) can be stored in the ASCII code data area

within the range from the second byte of [S] to the string end "00H". An operation error will occur when "–"
(2DH) is stored after the second byte.

Errors

An operation error occurs in the following conditions.

● The total number of digits of the character string to be converted is out of the following range.

Operation Value Range
16-bit operation 2 to 8
32-bit operation 2 to 13

● The number of digits of the decimal part of the character string to be converted is out of the
following range.

Instruction Description (LD & LiteST)

-266-

Operation Value Range
16-bit operation 0 to 5
32-bit operation 0 to 10

● The relationship between the number of all digits and the number of digits of the decimal part of
the character string to be converted (starting from [S]) does not meet the following requirements:

■ Total number of digits – 3 ≥ Number of digits of the decimal part
■ The sign is set to any ASCII code other than "space" (20H) and "–" (2DH).
■ A digit of a number is set to any ASCII code other than "0" (30H) to "9" (39H) or a decimal point

"." (2EH).
■ The character string (starting from [S]) to be converted contains multiple decimal points "."

(2EH).

● The binary data after conversion is out of the following range.

Operation Value Range
16-bit operation –32768 to +32767
32-bit operation –2147483648 to +2147483647

● "00H" does not exist in elements starting from [S].

Instruction Example

● When M0 is ON, the character string data stored in D20 to D22 is regarded as an integer value,
converted into a binary value, and stored in D0.

31(1)

2EH(.)

34H(4)

D20

D21

D22

b7-----b0
2DH(-)

36H(6)

35H(5)

b15-----b8

0000HD23

D0 -1654

D10 6
D11 2

● When M0 is ON, the character string data stored in D20 to D24 is regarded as an integer value,
converted into a binary value, and stored in [D1, D0].

Instruction Description (LD & LiteST)

-267-

3.8.5 ESTR

The ESTR instruction converts binary floating-point data (real number) into a character string (ASCII co-
des) with specified number of digits.
ESTR – Conversion from binary floating-point into string

16-bit Instruction -
32-bit Instruction DESTR: Continuous execution/DESTRP: Pulse execution
Operand Name Description Range Data Type

S1 Operand
Start number of elements that store the binary
floating-point number to be converted - REAL

S2 Start number
Start number of elements that store the display
format of the value to be converted

- INT, array*3

D Result
Start number of elements that store the
character string after conversion -

DINT,
array*indeterminate

Table 3–157 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

32-bit operation (DESTR)

The DESTR instruction converts the binary floating-point number in [S1 +1, S] into a character string
based on the content of [S2, S2+1, S2+2] and stores the result in elements starting from D.

● Decimal point format

The total number of digits (max. 24 digits) is specified in [S2+1] based on the following rules:

Instruction Description (LD & LiteST)

-268-

■ When the number of digits of the decimal part is 0, the total number of digits is greater than or
equal to 2.

■ When the number of digits of the decimal part is not 0, the total number of digits is greater than
or equal to the number of digits of the decimal part plus 3.

The number of digits of the decimal part specified in [S2+2] ranges from 0 to 7. Meanwhile, it cannot
be greater than the total number of digits minus 3.

● Exponent format

The total number of digits (max. 24 digits) is specified in [S2+1] based on the following rules:

■ When the number of digits of the decimal part is 0, the total number of digits is greater than or
equal to 6.

■ When the number of digits of the decimal part is not 0, the total number of digits is greater than
or equal to the number of digits of the decimal part plus +7.

The number of digits of the decimal part specified in [S2+2] ranges from 0 to 7. Meanwhile, it cannot
be greater than the total number of digits minus 3.

Errors

An operation error occurs in the following conditions. The error flag M8067 turns ON and the error code
is stored in D8067.

● The value in [S1] is out of range. (Error code: K6706)
● The value in [S2] is neither 0 nor 1. (Error code: K6706)
● The total number of digits specified in [S2+1] is out of range. (Error code: K6706)

Decimal point format:

When the number of digits of the decimal part is 0, the total number of digits is greater than or
equal to 2.

When the number of digits of the decimal part is not 0, the total number of digits is greater than or
equal to the number of digits of the decimal part plus 3.

Exponent format:

When the number of digits of the decimal part is 0, the total number of digits is greater than or
equal to 6.

Instruction Description (LD & LiteST)

-269-

When the number of digits of the decimal part is not 0, the total number of digits is greater than or
equal to the number of digits of the decimal part plus +7.

● The number of digits of the decimal part specified in [S2+2] is out of range. (Error code: K6706)
Decimal point format: Number of digits of the decimal part ≤ Total number of digits – 3

Exponent format: Number of digits of the decimal part ≤ Total number of digits – 7

● The elements starting from [D] for storing the character string are out of the corresponding
element range. (Error code: K6705)

● The number of digits in the conversion result exceeds the specified total number of digits. (Error
code: K6705)

Instruction Example

● When M100 is ON, the binary floating-point number in D0 and D1 is converted based on the content
(decimal form) of D10 to D12. The result is stored in elements starting from D20.

● When M100 is ON, the binary floating-point number in D0 and D1 is converted based on the content
(exponential form) of D10 to D12. The result is stored in elements starting from D20.

Instruction Description (LD & LiteST)

-270-

3.8.6 EVAL

The EVAL instruction converts a character string (ASCII codes) into binary floating-point data.
EVAL – Conversion from string into binary floating-point

16-bit Instruction -
32-bit Instruction DEVAL: Continuous execution/DEVALP: Pulse execution
Operand Name Description Range Data Type

S Operand
Start number of elements that store the character
string to be converted -

DINT,
array*indeterminate

D Result
Start number of elements that store the binary
floating-point number after conversion - REAL

Table 3–158 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

32-bit operation (DEVAL)

The DEVAL instruction converts the character string stored in elements starting from [S] into a binary
floating-point number and stores the result in [D+1, D].

A specified character string may be in the decimal point format or exponent format. A character string
in either format can be converted into binary floating-point data.

Instruction Description (LD & LiteST)

-271-

● Decimal point format

● Exponent format

When a character string to be converted into binary floating-point specified by [S] has 7 digits or more
excluding the sign, decimal point, and exponent part, the digits after the 7th digit are discarded.

When "2BH" (+) is specified as the sign in the decimal point format or when the sign is omitted, a
character string is converted into a positive value. When "2DH" (–) is specified as the sign, a character
string is converted into a negative value.

Instruction Description (LD & LiteST)

-272-

When "2BH" (+) is specified as the sign in the exponent format or when the sign is omitted, a character
string is converted into a positive exponent. When "2DH" (–) is specified as the sign, a character string
is converted into a negative exponent.

If the source string specified in [S] contains 20H (space) or 30H (0) between digits other than the first 0,
20H or 30H is ignored when the string is converted.

The source string can contain a maximum of 24 characters, including 20H (space) and 30H (0).

Related Elements
Element Name Condition Action

M8020 Zero flag The conversion result is true 0
(The mantissa part is 0).

The zero flag M8020 turns ON.

M8021 Borrow flag The absolute value of the
conversion result is less than 2-

126.

The value in D is 2-126 (the minimum value of 32-
bit real numbers), and the borrow flag M8021
turns ON.

M8022 Carry flag The absolute value of the
conversion result is greater
than or equal to 2128.

The value in D is 2128 (the maximum value of 32-
bit real numbers), and the carry flag M8022
turns ON.

Errors

An operation error occurs in the following conditions.

● The integer or decimal part contains characters other than 30H (0) to 39H (9).
● The character string starting from [S] contains two or more decimal points (2EH).
● The exponent contains characters other than "45H" (E), "2BH" (+), and "2DH" (–), or multiple

exponents exist.
● "00H" does not exist in the corresponding element range starting from [S].
● The number of characters after [S] is 0 or more than 24.

Instruction Example

● When M101 is ON, the character string stored in elements starting from D0 is converted into a
binary floating-point number (in decimal point format). The result is stored in D10 and D11.

Instruction Description (LD & LiteST)

-273-

● When M100 is ON, the character string stored in elements starting from D0 is converted into a
binary floating-point number (in exponent format). The result is stored in D0 and D11.

Instruction Description (LD & LiteST)

-274-

3.8.7 $ADD

The $ADD instruction links a character string to another character string.
$ADD – Character string linking

16-bit
Instruction

$ADD: Continuous execution/$ADDP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S1 String to be linked
Start number of elements that store the source data
(character string) to be linked, or a directly specified
character string

-
INT,
array*indeterminate

S2
String to be linked
to the source string

Start number of elements that store the data
(character string) to be linked to the source string,
or a directly specified character string

-
INT,
array*indeterminate

D Link result
Start number of elements that store the data
(character string) after linking -

INT,
array*indeterminate

Table 3–159 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

The $ADD instruction links the character string in elements starting from [S2] to the end of the
character string in elements starting from [S1] and stores the resulting character string in [D].

A character string stored in [S1] or [S2] is organized by byte and ends with the first "00H" byte.

During linking, "00H" indicating the end of a string is ignored and the last character of a character
string is linked to the last character of another specified character string. After a character string is
linked, "00H" is automatically added at the end.

When the number of characters in the new character string after linking is odd, "00H" is stored in the
high-order byte of the element that stores the last character.

When the number of characters in the new character string after linking is even, "0000H" is stored in
the element after the one that stores the last character.

Instruction Description (LD & LiteST)

-275-

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from[S1] or [S2].
● The number of elements required to store the linking result is beyond the element range starting

from [D].

Instruction Example

Program running flag

● Running: ON
● Stopped: OFF

3.8.8 LEN

The LEN instruction detects the number of characters (bytes) of a specified character string.
LEN: Character string length detection

16-bit
Instruction

LEN: Continuous execution/LENP: Pulse execution

32-bit
Instruction

-

Operand Name Description Range Data Type

S Checked data
Start number of elements that store the character string
of which the length is to be detected -

INT,
array*indetermi-
nate

D
Detection
result

Number of the element that stores the detected number
of characters (bytes) contained in the string -

INT,
array*indetermi-
nate

Instruction Description (LD & LiteST)

-276-

Table 3–160 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

The LEN instruction detects the number of characters in the character string stored in elements
starting from [S] and stores the result in [D]. Data starting from [S] to the first element that stores
"00H" is handled as a character string in the unit of byte.

An error is returned in the following conditions:

1. "00H" is not found within the corresponding element range starting from [S].

2. The detected number of characters is greater than 32,767.

Instruction Example

3.8.9 INSTR

The INSTR instruction searches a specified character string within another character string.
INSTR – Character string search

16-bit Instruction INSTR: Continuous execution/INSTRP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Source data
Start number of elements that store the
character string to be searched for -

INT,
array*indetermi-
nate

S2 Search source
Start number of elements that store the
character string to be searched -

INT,
array*indetermi-
nate

D Search result
Start number of elements that store the
search result

- INT

n
Search start
position Position from which the search starts 1 to 32767 INT

Instruction Description (LD & LiteST)

-277-

Table 3–161 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The INSTR instruction searches for the character string stored in elements starting from [S1] in the
source data stored in elements starting from [S2]. The search begins at the nth character from the left
end (start of a string) of [S2] and the search result (start position of the searched character string, that
is, position of the first matching character located from the left end) is stored in [D].

If no character string in elements starting from [S2] matches the character string in elements starting
from [S1], 0 is stored in [D].

If n (search start position) is negative or 0, the instruction is not executed.

Errors

An error is returned in the following conditions:

1. The value of n (search start position) is greater than the number of characters stored in elements
starting from [S2].

2. "00H" is not found within the corresponding element range starting from [S1] or [S2].

Instruction Example

Instruction Description (LD & LiteST)

-278-

3.8.10 RIGHT

The RIGHT instruction extracts a specified number of characters from the right end of a specified char-
acter string.
RIGHT – String data extraction from the right

16-bit Instruction RIGHT: Continuous execution/RIGHTP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S Source data
Start number of elements that store a character
string -

INT,
array*indetermi-
nate

D Extraction result
Start number of elements that store the
extracted character string -

INT,
array*indetermi-
nate

n Extracted
character count

Number of characters to be extracted 1 to 32767 INT

Table 3–162 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The RIGHT instruction extracts n characters from the right end (that is, from the end) of the character
string stored in elements starting from [S] and stores the extraction result to elements starting from
[D].

Instruction Description (LD & LiteST)

-279-

"00H" is automatically added at the end of the extracted characters.

● When the number of extracted characters is odd, "00H" is stored in the high-order byte of the
element that stores the last character.

● When the number of extracted characters is even, "0000H" is stored in the element after the one
that stores the last character.

● When the number of bytes to be extracted is 0, "0000H" is stored in [D].

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from [S].
● The number of elements starting from [D] is smaller than the number of elements required to store

the extracted n characters.
● n is greater than the number of characters stored in elements starting from [S].
● n is a negative number.

Instruction Example

3.8.11 LEFT

The LEFT instruction extracts a specified number of characters from the left end of a specified charac-
ter string.
LEFT – String data extraction from the left

Instruction Description (LD & LiteST)

-280-

16-bit Instruction LEFT: Continuous execution/LEFTP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S Source data
Start number of elements that store a character
string -

INT,
array*indetermi-
nate

D Extraction result
Start number of elements that store the
extracted character string -

INT,
array*indetermi-
nate

n Extracted
character count

Number of characters to be extracted 1 to 32767 INT

Table 3–163 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -
n - - - √ √ √ √ - -

Function and Instruction Description

The LEFT instruction extracts n characters from the left end (that is, from the start) of the character
string stored in elements starting from [S] and stores the extraction result to elements starting from
[D].

"00H" is automatically added at the end of the extracted characters.

● When the number of extracted characters is odd, "00H" is stored in the high-order byte of the
element that stores the last character.

● When the number of extracted characters is even, "0000H" is stored in the element after the one
that stores the last character.

● When the number of bytes to be extracted is 0, "0000H" is stored in [D].

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from [S].

Instruction Description (LD & LiteST)

-281-

● The number of elements starting from [D] is smaller than the number of elements required to store
the extracted n characters.

● n is greater than the number of characters stored in elements starting from [S].
● n is a negative number.

Instruction Example

3.8.12 MIDW

The MIDW instruction replaces the characters in arbitrary positions of a specified character string with
characters in another specified character string.
MIDW – Random replacement of character string

16-bit Instruction MIDW: Continuous execution/MIDWP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Source data
Start number of elements that store the
source character string -

INT,
array*indetermi-
nate

D Replacement result
Start number of elements that store the
character string after replacement -

INT,
array*indetermi-
nate

S2 Replacement position

Start number of elements that specify the
start position of replacement and the
number of characters to be replaced

S2: Position of the first character of the
character string to be replaced

S2+1: Number of characters to be replaced

- INT, array*2

Instruction Description (LD & LiteST)

-282-

Table 3–164 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

D - - - √ √ - - - -

S2 - - - √ √ - - - -

Function and Instruction Description

The MIDW instruction extracts [S2+1] characters from the left (that is, the start) of the character string
stored in elements starting from [S1] and stores the extracted data to the position specified by [S2] of
the character string stored in elements starting from [D].

● The character string specified in [S1] indicates data stored in elements starting from [S1] and
ending with the element that stores the first "00H".

● When the value in [S2+1] is 0, the instruction is not executed.
● When the value in [S2+1] is –1, the entire character string in elements starting from [S1] is stored to

elements starting from [D].
● If the value in [S2+1] exceeds the number of characters starting from the character specified by [S2]

in elements starting from [D], data is stored up to the last character in elements starting from [D],
and redundant characters of the source string are discarded.

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from [S1] or [D].
● The value specified in [S2] is greater than the number of characters of the character string stored in

elements starting from [D].
● The value specified in [S2] is negative.
● The value specified in [S2+1] is –2 or less.
● The value specified in [S2+1] exceeds the number of characters stored in elements starting from

[S1].

Instruction Description (LD & LiteST)

-283-

Instruction Example

3.8.13 MIDR

The MIDR instruction extracts a specified number of characters from arbitrary positions of a specified
character string.
MIDR – Random extraction of character string

16-bit Instruction MIDR: Continuous execution/MIDRP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Source data
Start number of elements that store a
character string -

INT,
array*indeterminate

D Extraction result
Start number of elements that store the
extracted character string -

INT,
array*indeterminate

S2 Extraction position

Start number of elements that specify the
start position of characters to be extracted
and the number of characters to be
extracted

S2: Start position of characters to be
extracted

S2+1: Number of characters to be extracted

- INT, array*2

Table 3–165 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

D - - - √ √ - - - -

S2 - - - √ √ - - - -

Instruction Description (LD & LiteST)

-284-

Function and Instruction Description

The MIDR instruction extracts [S2+1] characters from the position specified by [S2] (starting from the
left of the character string, that is, from the start) of the character string data stored in elements
starting from [S1] and stores the extraction result to elements starting from [D].

● When the number of extracted characters specified in [S2+1] is odd, "00H" is stored in the high-
order byte of the element that stores the last character.

● When the number of extracted characters specified in [S2+1] is even, "0000H" is stored in the
element after the one that stores the last character.

The character string specified in [S1] indicates data stored in elements starting from [S1] and ending
with the element that stores the first "00H".

When the value in [S2+1] is 0, the instruction is not executed.

When the value in [S2+1] is –1, all data within the range from the character specified by [S2] to the last
character stored in elements starting from [S1] is stored to elements starting from [D].

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from [S1].
● The value specified in [S2] is greater than the number of characters of the character string stored in

elements starting from [S1].
● The number of elements starting from [D] is smaller than the number of elements required to store

the extracted [S2+1] characters.
● The value specified in [S2] is negative.
● The value specified in [S2+1] is –2 or less.
● The value specified in [S2+1] exceeds the number of characters stored in elements starting from

[S1].

Instruction Example

Instruction Description (LD & LiteST)

-285-

3.8.14 $MOV

The $MOV instruction transfers character string data.
$MOV – Character string transfer

16-bit Instruction $MOV: Continuous execution/$MOVP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S Source address
Character string (a maximum of 32 characters)
directly specified in the transfer source, or start
number of elements that store the character string

-
INT,
array*indeterminate

D
Destination
address

Start number of elements that store the transferred
character string -

INT,
array*indeterminate

Table 3–166 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

The $MOV instruction copies the character string data in elements starting from [S] to elements
starting from [D]. The character string data stored in elements starting from [S] and ending with the
element that stores the first "00H" is transferred at a time, together with the terminator "00H" or
"0000H".

Errors

An error is returned in the following conditions:

● "00H" is not found within the corresponding element range starting from [S].
● The number of elements starting from [D] is smaller than the number of elements required to store

the transferred character string data.

Instruction Description (LD & LiteST)

-286-

Instruction Example

3.9 Clock Instructions

3.9.1 Instruction List

The following table lists the clock instructions.

Instruction Category Instruction Function

Clock instruction

TCMP Clock data comparison

TZCP Clock data zone comparison

TADD Clock data addition
TSUB Clock data subtraction
HTOS Conversion from hour-minute-second into second
STOH Conversion from second into hour-minute-second
TRD Clock data read
TWR Clock data write
HOUR Hour meter

3.9.2 TCMP

The TCMP instruction compares the specified time (hour, minute, and second) with the time of an inter-
nal real-time clock and outputs the comparison result.
TCMP – Clock data comparison

16-bit Instruction TCMP: Continuous execution/TCMPP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Hour Hour of the comparison time, ranging from 0 to
23

- INT

S2 Minute Minute of the comparison time, ranging from 0
to 59

- INT

S3 Second
Second of the comparison time, ranging from 0
to 59

- INT

Instruction Description (LD & LiteST)

-287-

S PLC time data start
address

Start address of time registers that store the
current time value of a real-time clock, which is
usually the data read by the TRD or MOV
instruction

- INT, array*3

D Comparison result
Start address of three consecutive variable units
that store the comparison result - BOOL, array*3

Table 3–167 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - √ - -

S3 - - - √ √ - √ - -

S - - - √ √ - - - -

D √[1] √ √ - - - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The TCMP instruction compares the specified time (hour, minute, and second) with the time of an
internal real-time clock and outputs the comparison result. Where,

● S1 is the hour of the comparison time, which ranges from 0 to 23.
● S2 is the minute of the comparison time, which ranges from 0 to 59.
● S3 is the second of the comparison time, which ranges from 0 to 59.
● S is the start address of time registers that store the current time value of a real-time clock, which

is usually the data read by the TRD or MOV instruction.
● D is the start address of three consecutive variable units that store the comparison result.

Instruction Description (LD & LiteST)

-288-

Instruction Example

3.9.3 TZCP

比较结果的存放变量启始地址，占用后续共3个变量单元。
TZCP – Clock data zone comparison

16-bit Instruction TZCP: Continuous execution/TZCPP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Lower limit
Lower limit (hour, minute, and second) of the
comparison time zone, which occupies three
consecutive variable units

- INT, array*3

S2 Upper limit
Upper limit (hour, minute, and second) of the
comparison time zone, which occupies three
consecutive variable units

- INT, array*3

S PLC time data head
address

Start address of time registers that store the
current time value of a real-time clock, which is
usually the data read by the TRD or MOV
instruction

- INT, array*3

D Comparison result
Start address of three consecutive variable units
that store the comparison result - BOOL, array*3

Table 3–168 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - √ - -

S2 - - - √ √ - √ - -

S - - - √ √ - - - -

D √[1] √ √ - - - - - -

Instruction Description (LD & LiteST)

-289-

Note
[1] The X element is not supported.

Function and Instruction Description

The TZCP instruction compares the time data of the internal real-time clock with two specified sets of
preset values, including hour (0 to 23), minute (0 to 59), and second (0 to 59), and outputs the
comparison result.

Instruction Example

3.9.4 TADD

The TADD instruction adds two time values (hour, minute, and second) together and stores the result
in the specified variables.
TADD – Clock data addition

16-bit Instruction TADD: Continuous execution/TADDP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Time augend Time augend, which occupies three consecutive
variable units to store the hour, minute, and
second data respectively

- INT, array*3

S2 Time addend Time addend, which occupies three consecutive
variable units to store the hour, minute, and
second data respectively

- INT, array*3

D Sum of two time
values

Sum of two time values, which occupies three
consecutive variable units to store the hour,
minute, and second data respectively

- INT, array*3

Instruction Description (LD & LiteST)

-290-

Table 3–169 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

The TADD instruction adds two time values (hour, minute, and second) together and stores the result
in the specified variables. Where,

If the operation result exceeds 24 hours, the carry flag M8022 turns ON, and the value simply acquired
by addition subtracted by 24 hours is stored as the operation result.

If the operation result is 00:00:00, the zero flag M8020 turns ON.

Instruction Example

The operation is performed as follows:

If the addition result is greater than 24 hours, the carry flag M8022 turns ON.

3.9.5 TSUB

The TSUB instruction subtracts one time value (hour, minute, and second) from another and stores the
result in the specified variables.
TSUB – Clock data subtraction

16-bit Instruction TSUB: Continuous execution/TSUBP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Time subtrahend
Time subtrahend, which occupies three
consecutive variable units to store the hour,
minute, and second data respectively

- INT, array*3

Instruction Description (LD & LiteST)

-291-

S2 Time minuend
Time minuend, which occupies three
consecutive variable units to store the hour,
minute, and second data respectively

- INT, array*3

D Time difference

Difference between two time values, which
occupies three consecutive variable units to
store the hour, minute, and second data
respectively

- INT, array*3

Table 3–170 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

S2 - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

The TSUB instruction subtracts one time value (hour, minute, and second) from another and stores the
result in the specified variables.

If the operation result is a negative value, the borrow flag M8021 turns ON, and the value simply
acquired by subtraction added by 24 hours is stored as the operation result.

If the subtraction result is 00:00:00, the zero flag M8020 turns ON.

Instruction Example

The operation is performed as follows:

If the subtraction result is a negative value, the borrow flag M8021 turns ON.

3.9.6 HTOS

The HTOS instruction converts the time data in the unit of hour-minute-second into data in the unit of
second.
HTOS – Conversion from hour-minute-second into second

Instruction Description (LD & LiteST)

-292-

16-bit
Instruction

HTOS: Continuous execution/HTOSP: Pulse execution

32-bit
Instruction

DHTOS: Continuous execution/DHTOSP: Pulse execution

Operand Name Description Range Data Type

S Source data
Start number of elements that store the time data
(in the unit of hour-minute-second) to be
converted

-
INT, array*3 (3
registers)

D Result
Number of the element that stores the time data
(in the unit of second) after conversion - INT/DINT

Table 3–171 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The HTOS instruction converts the time data in the unit of hour-minute-second stored in [S, S+1, S
+2] into data in the unit of second and stores the result in D.

■ The hour value ranges from 0 to 9.
■ The minute value ranges from 0 to 59.
■ The second value ranges from 0 to 59.

● 32-bit instruction
The HTOS instruction converts the time data in the unit of hour-minute-second stored in [S, S+1, S
+2] into data in the unit of second and stores the result in [D, D+1].

■ The hour value ranges from 0 to 32767.
■ The minute value ranges from 0 to 59.
■ The second value ranges from 0 to 59.

Errors

An error is returned and the instruction is not executed in the following conditions:

● The operands of the 16-bit or 32-bit instruction are out of range.
● The conversion result obtained by the 16-bit instruction is greater than 32,767.
● The time data in [S, S+1, S+2] is out of range.

Instruction Example

The time data in the unit of hour-minute-second stored in D100, D101, and D102 is converted into data
in the unit of second. The conversion result is stored in R100.

Instruction Description (LD & LiteST)

-293-

3.9.7 STOH

The STOH instruction converts the time data in the unit of second into data in the unit of hour-minute-
second.
STOH – Conversion from second into hour-minute-second

16-bit Instruction STOH: Continuous execution/STOHP: Pulse execution

32-bit Instruction DSTOH: Continuous execution/DSTOHP: Pulse execution
Operand Name Description Range Data Type

S Source data
Number of the element that stores time data (in
the unit of second) to be converted - INT/DINT

D Result
Start number of elements that store the time data
(in the unit of hour-minute-second) after
conversion

-
INT

Array*3 (3 registers)

Table 3–172 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D - - - √ √ - - - -

Function and Instruction Description

● 16-bit instruction
The STOH instruction converts the time data in the unit of second stored in [S] into data in the unit
of hour-minute-second and stores the result in [D, D+1, D+2].

The value in [S] ranges from 0 to 32,767.

● 32-bit instruction
The STOH instruction converts the time data in the unit of second stored in [S, S+1] into data in the
unit of hour-minute-second and stores the result in [D, D+1, D+2].

The value in [S, S+1] ranges from 0 to 117,964,799.

Errors

An error is returned and the instruction is not executed in the following conditions:

● The operands of the 16-bit or 32-bit instruction are out of range.
● The time data (in the unit of second) to be converted in the 16-bit or 32-bit instruction is out of

range.

Instruction Description (LD & LiteST)

-294-

Instruction Example

The time data in the unit of second stored in D100 is converted into data in the unit of hour-minute-
second. The conversion result is stored in R100, R101, and R102.

3.9.8 TRD

The TRD instruction reads the data (year, month, day, hour, minute, second, day of week, and millisec-
ond) of the internal real-time clock of the PLC and stores the read data in specified registers.
TRD – Clock data read

16-bit Instruction TRD: Continuous execution/TRDP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

D
Time storage start
address

Start address of eight consecutive variable units
that store the year, month, day, hour, minute,
second, day of week, and millisecond in turn
(from low to high)

- INT, array*8

Table 3–173 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - √ √ - - - -

Function and Instruction Description

The TRD instruction reads the data (year, month, day, hour, minute, second, day of week, and
millisecond) of the internal real-time clock of the PLC and stores the read data in specified registers.

The instruction of the pulse execution type (TRDP) is recommended.

D is the start address of the eight consecutive variable units that store the year, month, day, hour,
minute, second, day of week, and millisecond data in turn (from low address to high address).

Instruction Description (LD & LiteST)

-295-

Instruction Example

Table 3–174 Conversion process

Item → Target Value

Year (2000 to 2038) → D0

Month (1 to 12) → D1

Day (1 to 31) → D2

Hour (0 to 23) → D3

Minute (0 to 59) → D4

Second (0 to 59) → D5

Day (0 to 6: Sunday to Saturday) → D6

Millisecond (0 to 999) → D7

Note
Generally, to use the clock of the PLC, you need to run the TDR instruction to read the clock data into the D
registers.

3.9.9 TWR

The TWR instruction writes the clock data (year, month, day, hour, minute, second, and day of week)
specified in S to the internal real-time clock of the PLC.
TWR – Clock data write

16-bit Instruction TWR: Continuous execution/TWRP: Pulse execution
32-bit Instruction -
Operand Name Description Range Data Type

S
Start address for
time data to be
written

Start address of seven consecutive variable units that
store the year, month, day, hour, minute, second, and
day of week data to be written in turn (from low to
high)

- INT, array*7

Table 3–175 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

Function and Instruction Description

The TWR instruction writes the clock data (year, month, day, hour, minute, second, and day of week)
specified in S to the internal real-time clock of the PLC.

Instruction Description (LD & LiteST)

-296-

The instruction of the pulse execution type (TWRP) is recommended.

S is the start address of the seven consecutive variable units that store the year, month, day, hour,
minute, second, and day of week data to be written in turn (from low address to high address).

Instruction Example

Table 3–176 Conversion process

Data source → Item
D0 → Year (2000 to 2038)
D1 → Month (1 to 12)
D2 → Day (1 to 31)

D3 → Hour (0 to 23)
D4 → Minute (0 to 59)
D5 → Second (0 to 59)
D6 → Day (0 to 6: Sunday to Saturday)

Note
All of the seven data entries will be written to the clock. Therefore, each of the seven variables needs to be specified.
For example, if the week is not set, the default value 0 is used, which indicates Sunday. If the month is not set, the
default value 0 is considered an error by the PLC which makes the modification on the clock data invalid.

3.9.10 HOUR

When the driving conditions are met, the HOUR instruction records time cumulatively. When the cumu-
lative time reaches the preset value, a specified output becomes active.
HOUR – Hour meter

16-bit Instruction HOUR: Continuous execution
32-bit Instruction DHOUR: Continuous execution
Operand Name Description Range Data Type

S Preset time
Preset time in the unit of hour. When the
cumulative time reaches the preset time,
the specified output becomes active.

- INT/DINT

D1
Cumulative time
storage start unit

Start number of units that store the
cumulative time

- INT/DINT, array*2

D2 Time reach flag
Variable unit that outputs a time reach
alarm. When the cumulative time reaches
the preset value, this unit becomes active.

- BOOL

Instruction Description (LD & LiteST)

-297-

Table 3–177 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - √ √ - - - -

D1 - - - √ √ - - - -

D2 √[1] √ √ - - - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the driving conditions are met, the HOUR instruction records time cumulatively. When the
cumulative time reaches the preset value, a specified output becomes active. Where,

● S is the preset time in the unit of hour. When the cumulative time reaches the preset value, the
specified output becomes active.

● D1 is the start number of units that store the cumulative time.
● D2 is the variable unit that outputs a time reach alarm. When the cumulative time reaches the

preset value, this unit becomes active.
● In 16-bit operation, the value in D1 ranges from K0 to K32,767, in the unit of hour. D1+1 stores the

current time value less than 1 hour. The value ranges from K0 to K3599, in the unit of second. D1
occupies two units.

● In 32-bit operation, the value stored in D1+1 and D1 ranges from K0 to K2,147,483,647, in the unit of
hour. D1+3 and D1+2 store the current time value less than 1 hour. The value ranges from K0 to
K3599, in the unit of second. D1 occupies four units.

The time value in D1 cannot be negative. If D1 is specified as a register that is not retentive upon power
failure, the value in D1 is cleared when the PLC mode switches from STOP to RUN or when a power
failure occurs. If you need to retain the current data in the case of a power failure, specify D1 as a
register that is retentive upon power failure.

Instruction Example

When M200 is ON, the time during which M200 remains ON is recorded cumulatively and stored in
D300. If the time value is less than 1 hour, the equivalent value in the unit of second is recorded in
D301. When the cumulative time in D300 reaches 2000 hours, Y10 turns ON.

After the cumulative time counted from when the timing condition is met reaches the preset value in S,
the cumulative time value continues to increase. Timing stops when the current time value in D300
reaches 32,767 hours or the value in D301 reaches 3599s. To restart timing, clear the values in D300
and D301.

Instruction Description (LD & LiteST)

-298-

3.10 MC Axis Control Instructions (EtherCAT&Pulse Output)

3.10.1 Basic Instructions

3.10.1.1 Instruction List

The following table lists the motion control axis instructions.

Table 3–178 Motion control axis instructions
Instruction Name

MC_Power Enable control
MC_Reset Fault reset
MC_ReadStatus Axis state read
MC_ReadAxisError Axis error read
MC_ReadDigitalInput Digital input read

MC_ReadActualPosition Current position read

MC_ReadActualVelocity Current velocity read

MC_ReadActualTorque Current torque read

MC_SetPosition Current position setting

MC_TouchProbe Probe
MC_MoveRelative Relative positioning

MC_MoveAbsolute Absolute positioning

MC_MoveVelocity Speed reference

MC_Jog Jogging

MC_TorqueControl Torque control

MC_Home Homing

MC_Stop Stop

MC_Halt Halt
MC_ImmediateStop Immediate stop

MC_MoveFeed Interrupt positioning

MC_MoveBuffer Multi-position positioning

MC_MoveSuperImposed Motion superimposition

MC_MoveVelocityCSV CSV-based velocity control with adjustable pulse width

MC_SyncMoveVelocity CSV-based synchronous velocity control with adjustable pulse width

MC_FollowVelocity CSP-based synchronous velocity control

MC_SyncTorqueControl Synchronous torque control

MC_SetAxisConfigPara Axis parameter configuration

3.10.1.2 MC Axis State Machine

The MC axis state machine manages the states and motions of axes based on the PLCOpen state
machine.

Instruction Description (LD & LiteST)

-299-

The state machine is described as follows:

Table 3–179 State definitions
Status Value Status Function Description

0 Disabled Disabled
1 ErrorStop Fault reaction
2 Stopping Stopping

3 StandStill Enabled
4 DiscreteMotion Discrete motion
5 ContinuousMotion Continuous motion
7 Homing Homing

8 SynchronizedMotion Synchronized motion

Table 3–180 State transition conditions
Transition Transition Condition

1 The fault detection logic of the axis has detected a fault.

2 The axis has no fault and MC_Power.Enable is OFF.
3 MC_Reset is executed to reset the axis fault and MC_Power.Status is OFF.
4 MC_Reset is executed to reset the axis fault and MC_Power.Status is ON.
5 Both MC_Power.Enable and MC_Power.Status are ON.
6 MC_Stop(MC_ImmediateStop).Done is ON and MC_Stop(MC_ImmediateStop).Execute is OFF.

Precision of Instruction Parameters

The floating-point numbers such as the target position and target velocity in the instructions are
single-precision floating-point data. Therefore, the values in the instructions must meet the
requirements of the range and precision of single-precision floating-point data when being processed
in the PLC program. That is, a value should fall between –3.4E38 and +3.4E38, with a maximum of 7
significant digits. If a value has more than 7 significant digits, the excess part will be automatically
rounded.

Instruction Description (LD & LiteST)

-300-

3.10.1.3 MC_Power

MC_Power – Enable control

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Power Enable control

MC_Power(Enable := ???,

Axis := ???,

Status => ,

Busy => ,

Error => ,

ErrorID =>);

Table 3–181 Instruction format
16-bit
Instruction

MC_Power: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

_sMCAXIS_INFO

D1 Status Axis enable flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL
D4 ErrorID Fault code*1 Yes 0 - INT

Note
*1: See “3.10.1.30 Axis Fault Codes” on page 404.

Table 3–182 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - -

D2 √[1] √ √ - - √ - -

D3 √[1] √ √ - - √ - -

D4 - - - √ √ √ - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-301-

Function and Instruction Description

Applicable to the EtherCAT bus axis and the local axis, the MC_Power instruction is used to set the
enable state of the axes and is active high.

● Specifying axis
The axis specified by Axis is latched at the rising edge of Enable.

If you access an axis by using the axis number and modify Axis when Enable is ON, an instruction
error occurs and the previously controlled axis is disabled.

When you access an axis by using the axis number and modify Axis when Enable is OFF, if the axis
specified by Axis is enabled and the instruction is the last Power instruction executed in a PLC scan
cycle, the axis specified by Axis will be disabled and become inoperable.

● Function description
When Enable is set to ON, the axis is enabled, and the Status signal of the instruction is active.

The PLCOpen state machine of the axis transitions from the Disabled state to the StandStill state.

After the axis is enabled, it can execute motion instructions such as MC_MoveRelative.

When Enable is set to OFF, the enable state of the axis is cleared and the execution of motion
instructions (such as MC_MoveAbsolute) is interrupted. You cannot control the axis because it does
not acknowledge motion instructions. However, you can still execute non-motion instructions such
as MC_Power, MC_Reset, and MC_SetPosition.

When the axis enters the ErrorStop state upon a fault, re-enabling MC_Power cannot switch the axis
to the StandStill state. You must call the MC_Reset instruction to reset the axis fault first.

● Multi-execution
When multiple MC_Power instructions are executed, the control flow of the last MC_Power
instruction executed in a cycle shall prevail.

Errors

An error is returned in the following conditions: The axis number does not exist.

The axis type is incorrect.

Axis initialization fails.

The control word, status word, target position, and current position are not configured in the PDO of
the axis.

Timing Diagram

● When an MC_Power instruction is executed to enable an axis properly

Instruction Description (LD & LiteST)

-302-

● When two MC_Power instructions are executed to enable an axis properly

3.10.1.4 MC_Reset

MC_Reset – Fault reset

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Reset Reset fault

 MC_Reset

MC_Reset(Execute := ???,

Axis := ???,

Done => ,

Busy => ,

Error => ,

ErrorID =>);

Table 3–183 Instruction format
16-Bit
Instruction

MC_Reset: Continuous execution

32-Bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

Instruction Description (LD & LiteST)

-303-

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

D1 Done
Reset completion
flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL
D4 ErrorID Fault code*1 Yes 0 - INT

Note
*1: See “3.10.1.30 Axis Fault Codes” on page 404.

Table 3–184 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √ [1] √ √ - - √ - -

D2 √[1] √ √ - - √ - -

D3 √ [1] √ √ - - √ - -

D4 - - - √ √ √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

Applicable to the EtherCAT bus axis and the local axis, the MC_Reset instruction is used to reset faults
of the axes and is triggered on the rising edge.

The MC_Reset instruction attempts to reset the fault of the axis on the rising edge of the Execute
signal. If the reset is successful, the Done output is active; otherwise, the Error signal is active, and
ErrorID specifies the reason for the reset failure.

After the reset is successful, the PLCOpen state machine of the axis transitions into the StandStill state
if the drive is enabled or the Disabled state if the drive is not enabled.

Abortion

This instruction has no abortion output signal and cannot be aborted during execution.

If there are two reset instructions in one scan cycle, the program will start to execute the reset logic as
long as one reset instruction is active. If the reset is successful, the Done signal output of the triggered
instruction becomes active.

Instruction Description (LD & LiteST)

-304-

Errors

An error is returned in the following conditions: The axis number does not exist.

The axis type is incorrect.

Axis initialization fails.

This instruction is executed when the axis has no fault.

The axis cannot be reset.

Timing Diagram

● A fault occurs on the axis, and the MC_Reset instruction is executed to reset the axis fault
successfully.

● A non-resettable fault occurs on the drive.

3.10.1.5 MC_ReadStatus

MC_ReadStatus – Axis state read

Instruction Description (LD & LiteST)

-305-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_ReadStatus Read the Axis
state

MC_ReadStatus(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

Disabled => ,

ErrorStop => ,

Stopping => ,

Standstill => ,

DiscreteMotion => ,

ContinuousMotion => ,

SynchronizedMotion => ,

Homing => ,

ConstantVelocity => ,

Accelerating => ,

Decelerating => ,

Error => ,

ErrorID =>);

Table 3–185 Instruction format
16-bit
Instruction

MC_ReadStatus: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Disabled
PLCOpen state machine,
disabled

Yes OFF ON/OFF BOOL

D4 ErrorStop PLCOpen state machine,
stopping upon a fault Yes OFF ON/OFF BOOL

D5 Stopping
PLCOpen state machine,
stopping Yes OFF ON/OFF BOOL

D6 StandStill
PLCOpen state machine,
enabled and not running Yes OFF ON/OFF BOOL

D7 DiscreteMotion PLCOpen state machine,
discreate motion mode

Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-306-

D8
ContinuousMo-
tion

PLCOpen state machine,
continuous motion mode

Yes OFF ON/OFF BOOL

D9 Synchronized-
Motion

PLCOpen state machine,
synchronized motion mode Yes OFF ON/OFF BOOL

D10 Homing
PLCOpen state machine,
homing Yes OFF ON/OFF BOOL

D11 ConstantVelocity The axis velocity is 0.

The axis is moving at a
constant speed.

Invalid in torque mode

Yes OFF ON/OFF BOOL

D12 Accelerating The axis is accelerating (the
absolute value of the
velocity is increasing).

Invalid in torque mode

Yes OFF ON/OFF BOOL

D13 Decelerating The axis is decelerating (the
absolute value of the
velocity is decreasing).

Invalid in torque mode

Yes OFF ON/OFF BOOL

D14 Error Error flag Yes OFF ON/OFF BOOL
D15 ErrorID Fault Code Yes 0 *1 INT

Note
*1: See “3.10.1.30 Axis Fault Codes” on page 404.

Table 3–186 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 √[1] √ √ - - √ - - -

D5 √[1] √ √ - - √ - - -

D6 √[1] √ √ - - √ - - -

D7 √[1] √ √ - - √ - - -

D8 √[1] √ √ - - √ - - -

D9 √[1] √ √ - - √ - - -

D10 √[1] √ √ - - √ - - -

D11 √[1] √ √ - - √ - - -

D12 √[1] √ √ - - √ - - -

D13 √[1] √ √ - - √ - - -

D14 √[1] √ √ - - √ - -

D15 - - - √ √ √ - -

Instruction Description (LD & LiteST)

-307-

Note
[1] The X element is not supported.

Function and Instruction Description

When Enable is ON, this instruction reads the acceleration/deceleration state and state of the PLCOpen
state machine of the axis.

In torque mode, ConstantVelocity, Acceleration, and Deceleration are always OFF.

The priority of a EtherCAT task is higher than that of a PLC master task. If the state of the axis exists
only for one EtherCAT cycle in the EtherCAT task, the state cannot be obtained in the PLC master task.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

Axis initialization fails.

The axis type is incorrect.

Timing Diagram

Omitted.

3.10.1.6 MC_ReadAxisError

MC_ReadAxisError – Read axis errors

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_ReadAxisError Read axis errors.

MC_ReadAxisError(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

ServoErrorID => ,

AxisErrorID => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-308-

Table 3–187 Instruction format
16-bit
Instruction

MC_ReadAxisError: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 ServoErrorID

If 0x603F is configured in the
PDO, the value of 0x603F of
the EtherCAT bus driver
displayed; otherwise, 0 is
displayed.

Yes 0 *2 INT

D4 AxisErrorID Axis fault code Yes 0 *1 INT
D5 Error Error flag Yes OFF ON/OFF BOOL
D6 ErrorID Fault code Yes 0 *1 INT

Note
*1: See “3.10.1.30 Axis Fault Codes” on page 404

*2: For a local pulse axis, see the list of local pulse axis fault codes; for an EtherCAT bus drive, see the relevant man-
ual of the EtherCAT bus drive.

Table 3–188 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 - - - √ √ √ - - -

D5 √[1] √ √ - - √ - - -

D6 - - - √ √ √ - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to read the fault of the EtherCAT bus axis or the local axis.

When Enable is ON, the Valid signal becomes active if the requested axis exists and no configuration
failure occurs. AxisErrorID displays the fault code of the axis in real time. When no fault occurs, it is 0;

Instruction Description (LD & LiteST)

-309-

when an axis fault occurs, it displays the fault code. If 0x603F is configured in the PDO of the bus driver,
ServoErrorID displays the value of 0x603F in real time; otherwise, it displays 0.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

Axis initialization fails.

The axis type is incorrect.

Timing Diagram

Omitted.

3.10.1.7 MC_ReadDigitalInput

MC_ReadDigitalInput – Digital input read

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
ReadDigitalInput

Read the
digital input
(DI) status

 ReadDigitalInput

MC_ReadDigitalInput(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

DIStatus => ,

Error => ,

ErrorID =>);

Table 3–189 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadDigitalInput: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-310-

D3 DIStatus

DI terminal state. The standard
format compliant with CiA402 is
defined as follows:

Bit0: Reverse limit signal; Bit1:
Forward limit signal

Bit2: Home signal; Bit3 to bit31:
Customized

Yes 0 - DINT

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Note*1: See “3.10.1.30 Axis Fault Codes” on page 404.

Table 3–190 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

Applicable to the EtherCAT bus axis and the local pulse axis, the MC_ReadDigitalInput instruction is
used to read the DI terminal state of the axis. It does not support the imaginary axis mode.

When Enable is ON, if 0x60fd is configured in the PDO of the requested EtherCAT bus axis or any of the
left and right limit and home signals of the local pulse axis is not empty, the Valid signal is active.

For the EtherCAT bus axis, DIStatus displays the digital input 0x60fd of the EtherCAT bus driver in real
time. For details, see the relevant driver manual.

For the local pulse axis, DIStatus displays the input states of the limit and home signals or 0.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

Axis initialization fails.

Instruction Description (LD & LiteST)

-311-

The axis type is incorrect.

0x60fd is not configured in the PDO of the EtherCAT bus axis.

Timing Diagram

Omitted.

3.10.1.8 MC_ReadActualPosition

MC_ReadActualPosition – Current position read

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
ReadActualPosition

Current
position
read

MC_ReadActualPosition(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

Position => ,

Error => ,

ErrorID =>);

Table 3–191 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadActualPosition: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Axis Axis name/Axis
ID

No - 0 to 32767
INT

_sMCAXIS_INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Position Current position Yes 0 - REAL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault code Yes 0 *1 INT

Table 3–192 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ - - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ - - - -

Instruction Description (LD & LiteST)

-312-

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to read the feedback position of the EtherCAT bus axis or the local pulse axis. It
is active high.

When Enable is ON, if 0x6064 is configured in the PDO of the EtherCAT bus axis, the Valid signal is
active, and Position displays the feedback position of the axis.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

Axis initialization fails.

The axis type is incorrect.

0x6064 is not configured in the PDO of the EtherCAT bus axis.

Timing Diagram

Omitted.

3.10.1.9 MC_ReadActualTorque

MC_ReadActualTorque – Current torque read

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_ReadActualTorque

Read
the
current
torque

MC_ReadActualTorque(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

Torque => ,

Error => ,

ErrorID =>);

Table 3–193 Instruction format
16-bit
Instruction
32-bit
Instruction

MC_ReadActualTorque: Continuous execution

Instruction Description (LD & LiteST)

-313-

Operand Name Description Empty Allowed Default Range Data Type

S1 Axis Axis name/Axis
ID

No - 0 to 32767
INT

_sMCAXIS_INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Torque Current torque
(unit: % 1) Yes 0

Positive
number,
negative
number, or 0

REAL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault code Yes 0 *1 INT

Table 3–194 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ - - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction reads the feedback torque of the EtherCAT bus axis. It is active high. It does not
support the imaginary axis mode.

When Enable is ON, if 0x6077 is configured in the PDO of the EtherCAT bus axis, the Valid signal is
active, and Torque displays the feedback torque of the axis.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

The axis type is incorrect.

Axis initialization fails.

0x6077 is not configured in the PDO of the EtherCAT bus axis.

Instruction Description (LD & LiteST)

-314-

Timing Diagram

Omitted.

3.10.1.10 MC_ReadActualVelocity

MC_ReadActualVelocity – Current velocity read

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
ReadActualVelocity

Read
the
cur-
rent
veloci-
ty

MC_ReadActualVelocity(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

Velocity => ,

Error => ,

ErrorID =>);

Table 3–195 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadActualVelocity: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Axis Axis name/Axis
ID

No - 0 to 32767
INT

_sMCAXIS_INFO

D1 Valid Active Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Velocity Current velocity Yes 0 - REAL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Table 3–196 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ - - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ - - - -

Instruction Description (LD & LiteST)

-315-

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction calculates the actual velocity based on the feedback velocity of the EtherCAT bus axis
or the local pulse axis. It is active high.

When Enable is ON, if 0x6064 is configured in the PDO of the EtherCAT bus axis, the Valid signal is
active, and Velocity displays the calculated velocity of the axis.

Abortion

This instruction has no abortion flag, and multiple instructions can be executed at the same time.

Errors

An error is returned in the following conditions: The axis number does not exist.

Axis initialization fails.

The axis type is incorrect.

0x6064 is not configured in the PDO of the EtherCAT bus axis.

Timing Diagram

Omitted.

3.10.1.11 MC_SetPosition

MC_SetPosition – Current position setting

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_SetPosition
Set the current
position

MC_SetPosition(Execute := ???,

Axis := ???,

Position := ???,

Mode := ,

Done => ,

Busy => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-316-

Table 3–197 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_SetPosition: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Position Target position No -

Positive
number,
negative
number, or 0

REAL

S3 Mode

Control mode selection

0: Absolute mode (Write the
value of Position as the current
position.)

1: Relative mode (Add the value
of Position based on the
current position.)

Yes 0 0 to 1 INT

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL
D4 ErrorID Fault code Yes 0 *1 INT

Table 3–198 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ - √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used set the current position of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

This instruction can be executed only when the PLCOpen state of the axis is Disabled, StandStill, or
ErrorStop; otherwise, an error occurs.

Instruction Description (LD & LiteST)

-317-

● When Mode is set to 0 (absolute mode), this instruction writes the value of Position as the current
position of the axis on the rising edge of the Execute signal.

● When Mode is set to 1 (relative mode), this instruction adds the value of Position based on the
current position of the axis on the rising edge of the Execute signal.

Abortion

This instruction does not support abortion. If there are several MC_SetPosition instructions in one scan
cycle at the same time, the first active instruction will be executed; if other SetPosition instructions are
executed during the period when the Busy signal of this instruction is valid, other instructions will
report an error.

Errors

An error is returned in the following conditions: The axis number does not exist.

The axis type is incorrect.

Axis initialization fails.

The MC_SetPosition instruction takes effect only when the axis has stopped operation, and it reports
an error if the axis is in another state.

Timing Diagram

● The MC_SetPosition instruction (relative mode) is executed when the axis is in StandStill state.

● The MC_SetPosition instruction is executed during execution of the MC_Jog instruction.

Instruction Description (LD & LiteST)

-318-

3.10.1.12 MC_TouchProbe

MC_TouchProbe – Probe

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_TouchProbe Probe

MC_TouchProbe(Enable := ???,

Axis := ???,

ProbeID := ???,

TriggerEdge := ???,

TerminalSource := ,

TriggerMode := ,

WindowOnly := ,

Table 3–199 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_TouchProbe: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 ProbeID

Probe ID

0: Probe 1

1: Probe 2

No - 0 to 1 INT

S3 TriggerEdge

Trigger edge

0: Only rising edge

1: Only falling edge

2: Both rising edge and falling edge

No - 0 to 2 INT

Instruction Description (LD & LiteST)

-319-

S4 Terminal-
Source

Probe signal source (only for
setting bus servo drive)

0: DI terminal

1: Encoder Z signal

Yes 0 0 to 1 INT

S5 TriggerMode

Trigger mode

0: Single trigger

1: Continuous trigger

Yes 0 0 to 1 INT

S6 WindowOnly

Probe window enable

0: Disabled. Probe signals are
detected at all positions.

1: Enabled. Probe signals are
detected only when the current
position is between FirstPosition
and LastPosition (included).

Yes OFF ON/OFF BOOL

S7 FirstPosition Probe window start position Yes 0

Positive
number,
negative
number, or
0

REAL

S8 LastPosition Probe window end position Yes 0
>

Position
REAL

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CmdAborted Abortion Yes OFF ON/OFF BOOL

D4 PosPosition Position latched on the rising edge Yes 0

Positive
number,
negative
number, or
0

REAL

D5 NegPosition Position latched on the falling edge Yes 0

Positive
number,
negative
number, or
0

REAL

D6 Error Error flag Yes OFF ON/OFF BOOL
D7 ErrorID Fault code Yes 0 *1 INT

Table 3–200 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ √ √ - -

S6 √ √ √ - - √ - - -

S7 - - - √ √ √ - √ -

S8 - - - √ √ √ - √ -

Instruction Description (LD & LiteST)

-320-

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

D6 - - - √ √ - - - -

D7 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the probe function of the EtherCAT bus axis or the local pulse axis. It is
active high. It does not support the imaginary axis mode.

In EtherCAT bus axis mode, the probe function (0x60b8), probe state (0x60b9), and latched position
(0x60ba/0x60bb/0x60bc/0x60bd) need to be configured for the drive.

In the local pulse axis mode, the probe signal source needs to be configured.

● On the rising edge, the instruction latches the input parameters on the left, such as ProbeID and
TriggerEdge, and other state update parameters are invalid.

● When Enable is ON, the function block latches the current position of the axis when the instruction
detects that the input of the probe specified by ProbeID is active and meets the probe detection
conditions.

● When WindowOnly is OFF, the window detection function is disabled. The axis position can be
latched as long as the probe input signal is active.

● When WindowOnly is ON, the window detection function is enabled.
● In linear mode, the instruction detects the probe signal only when the current position of the axis

falls within the range specified by FirstPosition and LastPosition.
● In ring mode, the instruction first uses FirstPosition and LastPosition to mod the cycle to obtain

FirstPosition_p and LastPosition_p in a cycle.

■ When FirstPosition_p is less than LastPosition_p, the valid window range is as follows:

■ When FirstPosition_p is greater than LastPosition_p, the valid window range is as follows:

Instruction Description (LD & LiteST)

-321-

This instruction can detect the rising edge or falling edge of the probe signal separately or both
the rising edge and the falling edge at the same time.

When detecting only the rising edge (falling edge), the instruction writes the value detected on
the rising edge (falling edge) into PosPosition (NegPosition). At this time, the Done signal is set
to ON when a detection cycle is completed.

If the rising edge and falling edge are detected at the same time, after the Enable signal is active,
the instruction immediately writes the position into PosPosition upon detecting the rising edge
and writes the position into NegPosition upon detecting the falling edge. After that, the
detection cycle is completed and the Done signal is output. There is no requirement on the input
sequence of the rising edge and falling edge.

● For the EtherCAT bus driver, the input TerminalSource of this instruction can be used to set the
terminal type to DI or Z signal of the motor (driver support required). No error is reported if the
driver does not support the Z signal.

● This instruction supports the single trigger and continuous trigger modes. If the single trigger mode
is used, instruction execution ends when the Done signal output is active. If the continuous trigger
mode is used, the Done output active signal is reset after one PLC scan cycle, and the instruction
automatically starts to detect new probe input signals.

Note
When the window function is enabled, probe signal loss or detection out-of-range may occur near the window area.
The following is an example:

● In linear mode, the window range is 10 to 100, the EtherCAT cycle is set to 8 ms, and the velocity is 100. Then the
axis moves 0.8 per EtherCAT cycle. If the current position at the moment when an EtherCAT cycle starts is 9.9,
the probe signal is not detected within this EtherCAT cycle. The current position changes to 10.7 upon start of
the next EtherCAT cycle. Therefore, the probe signals between 10 and 10.7 are lost. If the current position at the
moment when an EtherCAT cycle starts is 99.9, the probe signal is detected within this EtherCAT cycle. The
current position changes to 100.7 upon start of the next EtherCAT cycle. Therefore, the probe signals between
100 and 100.7 are responded.

● In continuous mode, if the input frequency of the probe signal is greater than the frequency of the PLC scan
cycle, some probe signals are lost.

Abortion

The MC_TouchProbe instruction supports the detection probe 1 and probe 2. If two probe instructions
are defined in the program and the probe IDs of the two instructions are different, the two probe
instructions will work independently. If the probe IDs are the same, the probe instruction executed
later will abort the previous probe instruction.

The MC_MoveFeed instruction also uses the probe signal. The execution rules of these two instructions
are as follows:

Instruction Description (LD & LiteST)

-322-

● When an MC_TouchProbe instruction and an MC_MoveFeed coexist in a program, if their probe IDs
are different, the two instructions work independently.

● If their probe IDs are the same, the situation is as follows: If the MC_TouchProbe instruction is
enabled first, and the Mc_MoveFeed instruction is enabled while the Busy signal of the MC_
TouchProbe instruction is still active, the MC_TouchProbe instruction is aborted. If the Mc_
MoveFeed instruction is enabled first, and the MC_TouchProbe instruction is triggered while the
Busy signal of the Mc_MoveFeed instruction is active but the InFeed signal is inactive, the MC_
TouchProbe instruction reports an error.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9133 is reported when the imaginary axis mode is enabled.

A fault is reported when the corresponding PDO instruction is not configured.

A fault is reported when the parameters on the left of the instruction are out of range or improper on
the rising edge of the Enable input.

Timing Diagram

● Probe 1, active on the rising edge, DI signal trigger source, single trigger mode, window function
enabled

● Probe 1, active on the falling edge, DI signal trigger source, single trigger mode, window function
disabled

Instruction Description (LD & LiteST)

-323-

● Probe 1, active on both the rising edge and falling edge, DI signal trigger source, single trigger
mode, window function disabled

● Probe 1, active on the rising edge, DI signal trigger source, continuous trigger mode, window
function disabled

Instruction Description (LD & LiteST)

-324-

● Probe 1, active on both the rising edge and falling edge, DI signal trigger source, continuous trigger
mode (the Done signal is active for a cycle after the DI signal is active on both the rising and falling
edges), window function disabled

● Probe 1, aborted by another probe-related instruction, window function disabled

Instruction Description (LD & LiteST)

-325-

● Probe 1 instruction error

3.10.1.13 MC_MoveRelative

MC_MoveRelative – Relative positioning

Instruction Description (LD & LiteST)

-326-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveRelative
Relative
positioning

MC_MoveRelative(Execute := ???,

Axis := ???,

Distance := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–201 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveRelative: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

_sMCAXIS_INFO

S2 Distance Target position No -

Positive
number,
negative
number, or 0

REAL

S3 Velocity Target velocity No -

Positive
number, less
than the
maximum
velocity

REAL

S4 Acceleration Acceleration No -

Positive
number, less
than the
maximum
acceleration

REAL

S5 Deceleration Deceleration Yes Acceleration

Positive
number, less
than the
maximum
acceleration

REAL

S6 CurveType

Curve type

0: T-shaped velocity
curve

1: 5-segment S-curve

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-327-

D1 Done Target position reached Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CmdAborted Abortion of execution Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault code Yes 0 *1 INT

Table 3–202 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ - √ -

S6 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements relative positioning of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the Execute input, the instruction latches the input parameters on the left,
such as Distance and Velocity, triggers the relative positioning function, and switches the PLCOpen
state machine of the axis to the DiscreteMotion state.

■ Distance specifies the distance for relative positioning. No matter in linear mode or ring mode, if
Distance is positive, the axis travels the distance specified by Distance in the forward direction; if
Distance is negative, the axis travels in the reverse direction by the distance specified by |
Distance|.

Instruction Description (LD & LiteST)

-328-

■ CurveType specifies the type of the velocity curve. If CurveType is set to 0, the T-shaped curve is
used. In this case, the axis accelerates or decelerates based on the value of Acceleration or
Deceleration.

Target position: Final position of the axis in the relative positioning instruction; unit: Unit (user
unit)

Target velocity: Maximum allowable velocity of the axis during running; unit: Unit/s

Target acceleration: Change in velocity per second during acceleration; unit: Unit/s2

Target deceleration: Change in velocity per second during deceleration; unit: Unit/s2

During acceleration, assume that the initial velocity of the axis is Vs, the target velocity is Vt, and
the target acceleration is Acc. Then the acceleration time is calculated as follows:

“Tacc = (Vt – Vs)/Acc”
During deceleration, assume that the initial velocity of the axis is Vs, the target velocity is Ve, and
the target deceleration is Dec. Then the deceleration time is calculated as follows:

“Tdec = (Vs – Ve)/Dec”
■ If CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and

Deceleration indicate the maximum acceleration and minimum deceleration of the axis during
acceleration and deceleration.

Instruction Description (LD & LiteST)

-329-

The 5-segment S-curve is divided into five segments based on the acceleration state: increasing-
acceleration, decreasing-acceleration, constant velocity, increasing-deceleration, and
decreasing-deceleration. Constant acceleration or deceleration does not exist. The actual jerk
during the variable-acceleration phase (such as increasing-acceleration and increasing-
deceleration) is calculated internally by the PLC and cannot be set by the user.

Target position: Final position of the axis in the relative positioning instruction; unit: Unit (user
unit)

Target velocity: Maximum allowable velocity of the axis during running; unit: Unit/s

Target acceleration: Maximum change in velocity per second during variable-acceleration
operation; unit: Unit/s2. The acceleration at the moment (t2) when the velocity changes from the
increasing-acceleration segment to the decreasing-acceleration segment in the velocity curve
must be the target acceleration.

Target deceleration: Maximum change in velocity per second during variable-deceleration
operation; unit: Unit/s2. The deceleration at the moment (t5) when the velocity changes from the
decreasing-acceleration segment to the decreasing-deceleration segment in the velocity curve
must be the target deceleration.

During acceleration, assume that the initial velocity of the axis is V1, the target velocity is V3, and
the target acceleration is Acc. Then the acceleration time is calculated as follows:

“Tacc = 2 x (V3 – V1)/Acc”
During deceleration, assume that the initial velocity of the axis is V4, the target velocity is V6,
and the target deceleration is Dec. Then the deceleration time is calculated as follows:

Instruction Description (LD & LiteST)

-330-

“Tdec = 2 x (V4 – V6)/Dec”

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The MC_MoveRelative instruction is executed to implement relative positioning based on the T-
shaped curve when the axis is in StandStill state.

● Another relative positioning instruction is triggered during relative positioning.

Instruction Description (LD & LiteST)

-331-

● Relative positioning of the axis is aborted by the Mc_Stop instruction.

● The drive fails during motion of the axis.

Instruction Description (LD & LiteST)

-332-

3.10.1.14 MC_MoveVelocity

MC_MoveVelocity – Velocity control

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveVelocity Speed
reference

MC_MoveVelocity(Execute := ???,

Axis := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

InVelocity => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–203 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveVelocity: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

Instruction Description (LD & LiteST)

-333-

S2 Velocity Target velocity No -

Positive number/
number/0, absolute
value less than the
maximum velocity

REAL

S3 Acceleration Acceleration No -
Positive number, less
than the maximum
acceleration

REAL

S4 Deceleration Deceleration Yes Acceleration
Positive number, less
than the maximum
acceleration

REAL

S5 CurveType

Velocity curve
type

0: T-shaped
velocity curve

1: 5-segment S-
curve

Yes 0 0 to 1 INT

D1 InVelocity Velocity reached Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CmdAborted
Abortion of
execution

Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Table 3–204 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements absolute positioning of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

● Specifying axis

Instruction Description (LD & LiteST)

-334-

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the Execute input, the instruction latches the input parameters on the left,
such as Velocity and Acceleration, triggers the axis to run at the velocity specified by Velocity, and
switches the PLCOpen state machine of the axis to the ContinuousMotion state.

CurveType specifies the type of the velocity curve.

■ If CurveType is set to 0, the T-shaped curve is used. In this case, the axis accelerates or
decelerates based on the value of Acceleration or Deceleration.

■ If CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and
Deceleration indicate the maximum acceleration and minimum deceleration of the axis during
acceleration and deceleration.

During execution of this instruction, you can call MC_Stop, Mc_Halt, or MC_ImmediateStop (supported
by the drive) to stop the motion of the axis.

Abortion

When this instruction is active, the axis is in ContinuousMotion state in PLCOpen. This instruction can
be aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Enable is ON and the Busy signal is active, if the MC_Power instruction is inactive, which causes
the axis to be disabled, CommandAborted is active.

When Enable is ON and the Busy signal is active, if deceleration to stop needs to be performed upon a
limit signal, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Instruction Description (LD & LiteST)

-335-

Timing Diagram

● The MC_MoveVelocity instruction is executed to implement continuous motion based on the T-
shaped curve when the axis is in StandStill state.

● Axis motion is aborted by the MC_Stop instruction.

● The drive fails during acceleration of the axis.

Instruction Description (LD & LiteST)

-336-

3.10.1.15 MC_MoveAbsolute

MC_MoveAbsolute – Absolute positioning

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveAbsolute
Absolute
positioning

MC_MoveAbsolute(Execute := ???,

Axis := ???,

Position := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

Direction := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–205 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveAbsolute: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

Instruction Description (LD & LiteST)

-337-

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Position Target position No -

Positive
number,
negative
number, or 0

REAL

S3 Velocity Target velocity No -

Positive
number, less
than the
maximum
velocity

REAL

S4 Acceleration Acceleration No -

Positive
number, less
than the
maximum
acceleration

REAL

S5 Deceleration Deceleration Yes Acceleration

Positive
number, less
than the
maximum
acceleration

REAL

S6 CurveType

Velocity curve type

0: T-shaped velocity curve

1: 5-segment S-curve

Yes 0 0 to 1 INT

S7 Direction

Direction (applicable to
only the ring mode)

0: Forward (velocity > 0)

1: Reverse (velocity < 0)

2: Minimum distance

3: Current direction

Yes 0 0 to 3 INT

D1 Done Target position reached Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CmdAborted Abortion of execution Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Table 3–206 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ - √ -

S6 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

Instruction Description (LD & LiteST)

-338-

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements absolute positioning of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the Execute input, the instruction latches the input parameters on left, such as
Position and Velocity, triggers the absolute positioning function, and switches the PLCOpen state
machine of the axis to the DiscreteMotion state.

■ In linear mode, Position specifies the target position for absolution positioning. If the current
position is less than the target position, the axis moves forward to reach the position specified
by Position. If the current position is greater than the target position, the axis moves in the
reverse direction to reach the position specified by Position.

■ CurveType specifies the type of the velocity curve. If CurveType is set to 0, the T-shaped curve is
used. In this case, the axis accelerates or decelerates based on the value of Acceleration or
Deceleration.

Instruction Description (LD & LiteST)

-339-

For details about the T-shaped curve, see the relative positioning instruction section.

■ If CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and
Deceleration indicate the maximum acceleration and minimum deceleration of the axis during
acceleration and deceleration.

For details about the S-curve, see the relative positioning instruction section.

In ring mode, the instruction first uses Position to mod the revolution cycle to obtain the absolute
position Position_p in a revolution cycle. The actual direction of the axis is determined based on the
following four conditions:

Instruction Description (LD & LiteST)

-340-

1. Direction = 0 (Forward, target velocity > 0). If the current velocity is greater than 0, the axis continues
to run in the current direction and stops at the position specified by Position_p; if the current
velocity is less than 0, the axis decelerates to 0 and then starts to move at reserve velocity until it
reaches the position specified by Position_p; if the current position is just the position specified by
Position_p*1, the axis does not move.

2. Direction = 1 (Reverse, target velocity < 0). If the current velocity is less than 0, the axis continues to
run in the current direction and stops at the position specified by Position_p; if the current velocity is
greater than 0, the axis decelerates to 0 and then starts to move at reserve velocity until it reaches
the position specified by Position_p; if the current position is just the position specified by Position_
p*1, the axis does not move.

3. Direction = 2 (Minimum distance). The current position of the axis is recorded on the rising edge of
the Execute signal. Assume that the current velocity is 0. Distance indicates the distance that the axis
moves forward from 0 velocity to the position specified by Position_p. If Distance is less than or
equal to 0.5*revolution cycle, the axis moves forward; if it is greater than 0.5*revolution cycle, the
axis moves in the reverse direction; if the current position is just the position specified by Position_
p*1, the axis does not move.

4. Direction = 3 (Current direction). On the rising edge of the Execute signal, the axis moves in the
direction same as that before the rising edge of the Execute signal until it reaches the position
specified by Position_p. If the machine is powered on for the first time, the axis moves in the forward
direction (target velocity > 0). If the current position is just the position specified by Position_p*1,
the axis does not move.

Instruction Description (LD & LiteST)

-341-

Note
*1: In ring mode, if the target position is greater than the ring cycle, the instruction uses the target position to mod
the ring period to obtain a new target position. If the absolute value of the difference between the new target posi-
tion and the set position of the axis is less than 0.001, the two values are considered equal.

Abortion

When this instruction is active, the axis is in DiscreteMotion state in PLCOpen. This instruction can be
aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Enable is ON and the Busy signal is active, if the MC_Power instruction is inactive, which causes
the axis to be disabled, CommandAborted is active.

When Enable is ON and the Busy signal is active, if deceleration to stop needs to be performed upon a
limit signal, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The MC_MoveAbsolute instruction is executed to implement absolute positioning based on the T-
shaped curve when the axis is in StandStill state.

Instruction Description (LD & LiteST)

-342-

● Another absolute positioning instruction is triggered during absolute positioning.

● Absolute positioning of the axis is aborted by the MC_Stop instruction.

Instruction Description (LD & LiteST)

-343-

● The drive fails during motion of the axis.

3.10.1.16 MC_Jog

MC_Jog – Jogging

Instruction Description (LD & LiteST)

-344-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Jog Jog

MC_Jog(Enable := ???,

Axis := ???,

JogForward := ???,

JogBackward := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–207 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Jog: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 JogForward
Jogging in forward
direction, triggered on
the rising edge

No - - BOOL

S3 JogBackward
Jogging in reverse
direction, triggered on
the rising edge

No - - BOOL

S4 Velocity Target velocity No -

Positive number, less
than the maximum
velocity, less than the
maximum jogging
velocity

REAL

S5 Acceleration Acceleration No -
Positive number, less
than the maximum
acceleration

REAL

S6 Deceleration Deceleration Yes Acceleration
Positive number, less
than the maximum
acceleration

REAL

S7 CurveType

Curve type

0: T-shaped velocity
curve

1: 5-segment S-curve

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-345-

D1 Busy Busy flag Yes OFF - BOOL

D2 CommandA-
borted

Abortion of execution Yes OFF - BOOL

D3 Error Error flag Yes OFF - BOOL
D4 ErrorID Fault code Yes 0 *1 INT

Table 3–208 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ √ √ - - - - - -

S3 √ √ √ - - - - - -

S4 - - - √ √ - - √ -

S5 - - - √ √ - - √ -

S6 - - - √ √ - - √ -

S7 - - - √ √ - √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the jogging function of the EtherCAT bus axis or the local pulse axis. It is
active high.

● Specifying axis

■ Axis is latched on the rising edge of the Enable input.
■ If Axis specifies the axis number, when it is modified while Enable is ON, the previously

controlled axis enters the ErrorStop state.
■ If Axis specifies the axis number, modification on Axis is valid when Enable is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the instruction, the function block latches the input parameters, such as
Velocity, Acceleration, Deceleration, and CurveType, and switches the state machine of the axis to
the ContinuousMotion state to start jogging.

■ When Enable is ON, if instructions such as MC_Stop and MC_MoveRelative are called, the MC_
Jog will be aborted, and the CommandAborted output of MC_Jog instruction becomes active.

■ When JogForward is active, the axis moves forward at the velocity specified by Velocity; when
JogBackward is active, the axis moves in reverse direction at the velocity specified by Velocity.

Instruction Description (LD & LiteST)

-346-

When both JogForward and JogBackward are active, the axis stops but does not enter the
ErrorStop state, and the instruction reports a fault.

■ When Enable is ON, if the axis reaches the limit when moving toward one direction, the
instruction reports a fault, and the axis stops but does not enter the ErrorStop state. When the
MC_Jog instruction is triggered again, the axis will move toward the opposite direction.

■ CurveType specifies the type of the velocity curve. If CurveType is set to 0, the T-shaped curve is
used. In this case, the axis accelerates or decelerates based on the value of Acceleration or
Deceleration. If CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration
and Deceleration indicate the maximum acceleration and minimum deceleration of the axis
during acceleration and deceleration.

Abortion

When this instruction is active, the axis is in ContinuousMotion state in PLCOpen. This instruction can
be aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Enable is ON and the Busy signal is active, if the MC_Power instruction is inactive, which causes
the axis to be disabled, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Enable
input.

● Error 9106 is reported if the axis is decelerating upon a fault on the rising edge of the Enable input.
● A fault is reported when the parameters on the left of the instruction are out of range or improper

on the rising edge of the Enable input.
● Error 9116 is reported if the axis enters the commissioning state when Enable is ON and the Done

signal is inactive.
● If the axis fails and enters the ErrorStop state when Enable is ON, the instruction displays the fault

code of the axis in the ErrorStop state.

Timing Diagram

● The instruction has no action when only then Enable input is active.

Instruction Description (LD & LiteST)

-347-

● The Enable and JogForward inputs are active.

● The Enable and JogForward inputs are active, and JogBackward is set to ON.

Instruction Description (LD & LiteST)

-348-

● Instruction execution is aborted by the MC_Stop instruction.

● The axis reports an error.

Instruction Description (LD & LiteST)

-349-

Routines

The following are some routines.

1. After M1 is set to ON, Axis_0 is enabled.
2. After M10 is set to ON, Axis_0 runs in forward direction at 5 unit/s.
3. After M10 is set to OFF, Axis_0 stops running.
4. After M11 is set to ON, Axis_0 runs in reverse direction at 5 unit/s.
5. After M11 is set to OFF, Axis_0 stops running.

Instruction Description (LD & LiteST)

-350-

3.10.1.17 MC_TorqueControl

MC_TorqueControl – Torque control

Instruction Description (LD & LiteST)

-351-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_TorqueControl Torque
control

MC_TorqueControl(Execute := ???,

Axis := ???,

TarTorque := ???,

TorqueSlope := ???,

Velocity := ,

InTorque => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–209 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_TorqueControl: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 TarTorque Target torque (unit: 1%) No -

Positive
number,
negative
number, or 0

REAL

S3 TorqueSlope Torque slope (unit: 1%) No - Positive
number

REAL

S4 Velocity Velocity limit No - Positive
number or 0

REAL

D1 InTorque

Torque reached

The output is active
when the set torque
reaches the target
torque and the absolute
value of the difference
between the feedback
torque and the target
torque is less than 5%.

Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Instruction Description (LD & LiteST)

-352-

Table 3–210 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to implement the torque control function only for the EtherCAT bus axis. It is
active on the rising edge and does not support the imaginary axis mode.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

The torque instruction can be used only when the following PDOs are configured: 0x6040, 0x6041,
0x6060, 0x6061, 0x6071, and 0x6077. Otherwise, a fault is reported.

This instruction adopts the synchronous torque mode of the drive to implement the torque control
function.

The function block latches the input parameters TarTorque, TorqueSlope, and Velocity on the rising
edge of the instruction. The axis enters the ContinuousMotion state and performs torque motion.

■ TarTorque: Target torque, in the unit of 1%. Only one decimal place after the decimal point is
valid in the program, and the subsequent ones are directly discarded. The actual torque of the
drive is limited by the maximum positive and negative torque specified in the configuration
parameters.

■ TorqueSlope: Torque slope, in the unit of 1%. Only one decimal place after the decimal point is
valid in the program, and the subsequent ones are directly discarded.

● Velocity control in torque mode
For servo drives of Inovance, if 0x607f is mapped, this instruction limits the maximum velocity of the
servo motor through 0x607f. If 0x607f is not mapped, the velocity limit is invalid.

Instruction Description (LD & LiteST)

-353-

On the rising edge of Execute, the instruction converts the velocity limit specified by Velocity into
pulse unit and writes it into 0x607f through PDO.

If the torque instruction is aborted by another instruction, the maximum velocity of the axis can be
limited by specifying Max. Velocity on the configuration interface.

For third-party drives, Velocity can be used as the velocity limit only when the following conditions
are met:

■ The maximum velocity of the servo motor can be limited by using 0x607F.
■ 0x607F can be configured in the PDO.
■ The unit of 0x607F is a pulse unit, not a rotation velocity unit.

● Stop Control in Torque Mode
In torque mode, the MC_Stop instruction can be executed to stop the drive. Upon receiving the stop
instruction, the drive switches to the synchronous position mode and decelerates according to the
deceleration specified in the stop instruction.

Abortion

When this instruction is active, the axis is in ContinuousMotion state in PLCOpen. This instruction can
be aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Execute is ON and the Done signal is inactive, if deceleration needs to be performed upon a limit
signal, CommandAborted is active.

When Execute is ON and the Done signal is inactive, if the axis is disabled, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9113 is reported when the MC_TorqueControl instruction is called after the imaginary axis mode
is enabled.

A PDO configuration fault is reported when the required PDO is not configured.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Instruction Description (LD & LiteST)

-354-

Timing Diagram

● The instruction is triggered after the target torque is specified, and the actual output torque can
reach the target torque.

● The instruction is triggered after the target torque is specified, and the actual output torque cannot
reach the target torque.

Instruction Description (LD & LiteST)

-355-

● The MC_Stop instruction aborts the instruction execution during torque operation.

● The drive reports an error during torque operation.

Instruction Description (LD & LiteST)

-356-

3.10.1.18 MC_Home

MC_Home – Homing

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Home Homing

MC_Home(Execute := ???,

Axis := ???,

Position := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–211 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Home: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Position Home offset Yes 0

Positive
number,
negative
number, or 0

REAL

D1 Done Homing completed Yes OFF OFF/ON BOOL

D2 Busy Busy flag Yes OFF OFF/ON BOOL

Instruction Description (LD & LiteST)

-357-

D3 CommandA-
borted

Abortion of execution Yes OFF OFF/ON BOOL

D4 Error Error flag Yes OFF OFF/ON BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Table 3–212 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the homing function of the EtherCAT bus axis and the local pulse axis. It is
active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

The function block latches the input parameter Position on the rising edge of the instruction. The
axis enters the Homing state and performs homing.

Position specifies the home offset.

When this instruction is called in imaginary axis mode, homing is performed according to method
35 in CiA402.

● Multi-execution
The homing instruction does not support multi-execution. After an MC_Home instruction is
executed to perform homing, if another MC_Home instruction is called, the instruction called later
reports an error.

Instruction Description (LD & LiteST)

-358-

Note
The MC_Home instruction does not support the synchronous motion mode. When the master axis is homing, the po-
sition type of the synchronization instruction is set to the instruction position, and the slave axis does not perform
synchronous motion.

Abortion

When this instruction is active, the axis is in Homing state in PLCOpen. This instruction can be aborted
by MC_Stop and MC_ImmediateStop, which can make the axis enter Stopping state. CommandAborted
is active when this instruction is aborted.

If the MC_Power instruction is inactive when Enable is ON and the Done signal is active, the axis is
disabled and CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is not in StandStill state.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The drive performs homing properly.

Instruction Description (LD & LiteST)

-359-

● Homing is aborted by the MC_Stop instruction.

● The drive fails during the homing process.

Instruction Description (LD & LiteST)

-360-

3.10.1.19 MC_Stop

MC_Stop – Stop

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Stop Stop

MC_Stop(Execute := ???,

Axis := ???,

Deceleration := ???,

CurveType := ,

Done => ,

Busy => ,

Error => ,

ErrorID =>);

Table 3–213 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Stop: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Deceleration Deceleration No -

Positive number,
less than the
maximum
acceleration

REAL

S3 CurveType

Curve type

0: T-shaped velocity
curve

1: 5-segment S-curve

Yes 0 0 to 1 INT

D1 Done Stop completed Yes OFF OFF/ON BOOL

D2 Busy Busy flag Yes OFF OFF/ON BOOL

D3 Error Error flag Yes OFF OFF/ON BOOL
D4 ErrorID Fault Code Yes 0 *1 INT

Table 3–214 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ - - √ -

S3 - - - √ √ - √ - -

D1 √[1] √ √ - - - - - -

Instruction Description (LD & LiteST)

-361-

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the stop function of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

The function block latches the input parameters such as Deceleration and CurveType on the rising
edge of the Execute input. The axis enters the Stopping state and performs deceleration.

After deceleration is completed, the Done signal becomes active, and the axis remains in the
Stopping state when Execute is ON.

When Execute turns OFF and Done is ON, the axis switches from the Stopping state to the StandStill
state.

The stop mode varies according to the running state of the axis when this instruction is executed.

1. If the axis is executing the positioning instruction or running continuously when this instruction is
called, CurveType specifies the type of the velocity curve. If CurveType is set to 0, the T-shaped
curve is used. In this case, the axis decelerates based on the value of Deceleration. If CurveType is
set to 1, the 5-segment S-curve is used. In this case, Deceleration indicates the maximum
deceleration of the axis during deceleration.

2. When the axis is in Homing state, this instruction triggers the Halt flag of the control word of the
drive, and the drive decelerates according to the preset parameters. CurveType and Deceleration
are invalid.

Re-execution

The same stop instruction can be executed repeatedly. If the same stop instruction is re-triggered
during deceleration, the drive decelerates to stop according to the deceleration specified by the
instruction triggered last.

Instruction Description (LD & LiteST)

-362-

Multi-execution

The MC_Stop instruction does not support multi-execution. If a stop instruction is called while another
stop instruction is still active, it reports a fault.

Abortion

When this instruction is active, the axis is in Stopping state, and the instruction cannot be aborted by
other motion instructions. When this instruction becomes inactive, the axis switches from the Stopping
state to the StandStill state, and other motion control instructions can run.

This instruction can be aborted by the MC_ImmediateStop instruction. If the MC_ImmediateStop
instruction is called while MC_Stop is active, the MC_Stop instruction reports an error.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in Disabled or ErrorStop state.

Error 9142 is reported if this instruction is executed after the MC_ImmediateStop instruction is
executed to put the axis in Stopping state.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The MC_Stop instruction is executed after the MC_MoveVelocity instruction.

● The drive fails during instruction execution.

Instruction Description (LD & LiteST)

-363-

3.10.1.20 MC_Halt

MC_Halt – Halt

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Halt Halt (Not recoverable)

MC_Halt(Execute := ???,

Axis := ???,

Deceleration := ???,

CurveType := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–215 Instruction format
16-bit
Instruction

-

32-Bit
Instruction

MC_Halt: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Deceleration Deceleration No -

Positive
number, less
than the
maximum
acceleration

REAL

Instruction Description (LD & LiteST)

-364-

S3 CurveType

Curve type

0: T-shaped velocity
curve

1: 5-segment S-curve

Yes 0 0 to 1 INT

D1 Done Stop completed Yes OFF OFF/ON BOOL

D2 Busy Busy flag Yes OFF OFF/ON BOOL

D3 CmdAborted Abortion of execution Yes OFF OFF/ON BOOL

D4 Error Error flag Yes OFF
OFF

ON
BOOL

D5 ErrorID Fault code Yes 0 *1 INT

Table 3–216 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the halt function of the EtherCAT bus axis or the local pulse axis. It is
active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the instruction, the function block latches input parameters such as
Deceleration and CurveType, and the axis performs deceleration. This instruction can be aborted by
other instructions.

CurveType specifies the type of the velocity curve.

1. If CurveType is set to 0, the T-shaped curve is used. In this case, the axis accelerates or
decelerates based on the value of Acceleration or Deceleration.

Instruction Description (LD & LiteST)

-365-

2. If CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and Deceleration
indicate the maximum acceleration and minimum deceleration of the axis during acceleration
and deceleration.

Abortion

When this instruction is active, the axis is in DiscreteMotion state in PLCOpen. This instruction can be
aborted by any other instruction that can make the axis enter DiscreteMotion or ContinuousMotion
state or conform to PLCOpen state machine switching. CommandAborted is active when this
instruction is aborted.

● When Execute is ON and the Done signal is inactive, if deceleration needs to be performed upon a
limit signal, CommandAborted is active.

● When Execute is ON and the Done signal is inactive, if the MC_Power instruction is inactive, which
causes the axis to be disabled, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in Disabled, ErrorStop, or Homing
state.

Error 9115 is reported if this instruction is executed after the MC_Stop instruction is executed to put
the axis in Stopping state.

Error 9142 is reported if this instruction is executed after the MC_ImmediateStop instruction is
executed to put the axis in Stopping state.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● After the positioning instruction is called, the MC_Halt instruction is triggered.

Instruction Description (LD & LiteST)

-366-

● After the MC_Halt instruction is triggered, the velocity instruction is called to abort the execution of
the MC_Halt instruction.

● The drive stops upon a fault during execution of the MC_Halt instruction.

Instruction Description (LD & LiteST)

-367-

3.10.1.21 MC_MoveFeed

MC_MoveFeed – Interrupt positioning

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveFeed
Interrupt
positioning

MC_MoveFeed(Execute := ???,

Axis := ???,

Position := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

Direction := ,

Mode := ,

Interrupt := ,

FeedDistance := ???,

FeedVelocity := ,

WindowOnly := ,

FirstPosition := ,

LastPosition := ,

ErrorMode := ,

Done => ,

InFeed => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–217 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveFeed: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

_sMCAXIS_INFO

S2 Position Target position No -
Positive number,
negative
number, or 0

REAL

Instruction Description (LD & LiteST)

-368-

S3 Velocity Target velocity No -

Positive number,
less than the
maximum
velocity

REAL

S4 Acceleration Acceleration No -

Positive number,
less than the
maximum
acceleration

REAL

S5 Deceleration Deceleration Yes
Same as
acceleration

Positive number,
less than the
minimum
acceleration

REAL

S6 CurveType

Velocity curve type

0: T-shaped
velocity curve

1: 5-segment S-
curve

Yes 0 0 to 1 INT

S7 Direction

Motion direction of
absolute
positioning in ring
mode

0: Forward (Target
velocity > 0)

1: Reverse (Target
velocity < 0)

2: Minimum
distance

3: Current
direction

Yes 0 0 to 3 INT

S8 Mode

Mode

0: Absolute
positioning mode

1: Relative
positioning mode

2: Speed mode

Yes 0 0 to 2 INT

S9 Interrupt

Interrupt source

0: Probe 1

1: Probe 2

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-369-

S10 FeedDistance

Travel distance
after the interrupt
feed input

Positive: Feed in
the same direction
as the axis was
moving before the
interrupt input for
the distance
specified by
FeedDistance.

Negative: Feed in
the opposite
direction as the
axis was moving
before the
interrupt input for
the distance
specified by
FeedDistance.

No -
Positive number,
negative
number, or 0

REAL

S11 FeedVelocity
Target velocity
after the interrupt
feed input

Yes
Same as
Velocity

Positive number,
less than the
maximum
velocity

REAL

S12 WindowOnly

Interrupt source
window enable

0: Disabled

1: Enabled

Yes OFF OFF/ON BOOL

S13 FirstPosition
Start position of
the interrupt
source window

Yes 0
Positive number,
negative
number, or 0

REAL

S14 LastPosition
End position of the
interrupt source
window

Yes 0 > FirstPosition REAL

S15 ErrorMode

Fault mode

OFF: After the
position specified
by Position is
reached, if no
interrupt signal is
detected, the Done
signal is set to ON,
and the instruction
does not report a
fault.

ON: After the
position specified
by Position is
reached, if no
interrupt signal is
detected, the Error
signal is set to ON,
and the instruction
reports a fault.

Yes OFF OFF/ON BOOL

Instruction Description (LD & LiteST)

-370-

D1 Done
Target position
reached

Yes OFF - BOOL

D2 InFeed
Interrupt signal
active

Yes OFF - BOOL

D3 Busy Busy flag Yes OFF BOOL

D4 CmdAborted
Abortion of
execution

Yes OFF - BOOL

D5 Error Error flag Yes OFF - BOOL
D6 ErrorID Fault Code Yes 0 *1 INT

Table 3–218 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ - - √ -

S3 - - - √ √ - - √ -

S4 - - - √ √ - - √ -

S5 - - - √ √ - - √ -

S6 - - - √ √ - √ - -

S7 - - - √ √ - √ - -

S8 - - - √ √ - √ - -

S9 - - - √ √ - √ - -

S10 - - - √ √ - - √ -

S11 - - - √ √ - - √ -

S12 √ √ √ - - - - - -

S13 - - - √ √ - √ - -

S14 - - - √ √ - √ - -

S15 √ √ √ - - - - - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 √[1] √ √ - - - - - -

D6 - - - √ √ - - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the interrupt positioning function of the EtherCAT bus axis or the local
pulse axis. It is active on the rising edge, and it does not support the imaginary axis mode.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.

Instruction Description (LD & LiteST)

-371-

■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the instruction, the function block latches input parameters such as Position,
Velocity, Direction, Acceleration, and Deceleration.

Before the interrupt arrives, the axis performs absolute positioning (Mode = 0), relative positioning
(Mode = 1), or continuous motion (Mode = 2) based on parameters including Position, Velocity,
Direction, and Mode. After an interrupt signal is generated by the interrupt source specified by
Interrupt, the axis performs relative movement at the position where the interrupt arrives based on
FeedDistance and FeedVelocity.

■ Position: Target position of the axis before the interrupt arrives when Mode is set to 0 (absolute
positioning) or 1 (relative positioning).

■ Velocity: Target velocity of the axis before the interrupt arrives.
■ CurveType: Type of the velocity curve. If CurveType is set to 0, the T-shaped curve is used. In this

case, the axis accelerates or decelerates based on the value of Acceleration or Deceleration. If
CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and Deceleration
indicate the maximum acceleration and minimum deceleration of the axis during acceleration
and deceleration.

■ Direction: Direction of rotation, which is the same as Direction of the MC_MoveAbsolute
instruction. It specifies the axis rotation direction in ring mode when Mode is set to 0 (absolute
positioning). The value 0 indicates forward, 1 indicates reverse, 2 indicates the shortest path,
and 3 indicates the current direction.

■ Mode: Movement mode before the interrupt arrives. When Mode is set to 0, the axis performs
absolute positioning before the interrupt feed input; when Mode is set to 1, the axis performs
relative positioning before the interrupt feed input; when Mode is set to 2, the axis performs
continuous motion before the interrupt feed input.

■ Interrupt: Interrupt source. When it is set to 0, the interrupt source is probe 1, and the interrupt
is active on the rising edge of probe 1. When it is set to 1, the interrupt source is probe 2, and the
interrupt is active on the rising edge of probe 2.

■ FeedDistance: Target travel distance after the interrupt feed input. If the value is positive, the
axis runs in the current direction for the distance specified by FeedDistance when the interrupt
signal arrives. If the value is negative, the axis runs in the opposite direction for the distance
specified by FeedDistance when the interrupt signal arrives.

■ FeedVelocity: Target velocity after the interrupt feed input.
■ ErrorMode: Fault handling mode when there is no interrupt. In absolute or relative positioning

mode, when no interrupt signal is detected after the position (travel distance) specified by
Position is reached, the instruction reports a fault if ErrorMode is set to ON and does not report a
fault if ErrorMode is set to OFF.

■ InFeed: The InFeed output becomes active after the interrupt signal arrives.

Instruction Description (LD & LiteST)

-372-

Abortion

When this instruction is active, the axis is in DiscreteMotion state in PLCOpen. This instruction can be
aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Execute is ON and the Done signal is inactive, if deceleration needs to be performed upon a limit
signal, CommandAborted is active.

When Execute is ON and the Done signal is inactive, if the axis is disabled, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9133 is reported when the imaginary axis mode is enabled on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The relative or absolute positioning mode is selected, the interrupt signal is not triggered, and
ErrorMode is set to OFF.

Instruction Description (LD & LiteST)

-373-

● The relative or absolute positioning mode is selected, the interrupt signal is not triggered, and
ErrorMode is set to ON.

● The relative or absolute positioning mode is selected and the interrupt signal is triggered.

Instruction Description (LD & LiteST)

-374-

● The velocity mode is selected, the interrupt is not triggered, and the MC_Stop instruction is called
to abort this instruction after it is executed for a period of time.

● The velocity mode is selected and the interrupt is triggered.

Instruction Description (LD & LiteST)

-375-

● A fault occurs during instruction execution.

3.10.1.22 MC_MoveBuffer

MC_MoveBuffer – Multi-position positioning

Instruction Description (LD & LiteST)

-376-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveBuffer
Multi-
position

Axis

DoneDone
Busy

Error

Axis

ErrorID
ErrorError
Index

MC_MoveBuffer(Execute := ???,

Axis := ???,

Position := ???,

Velocity := ???,

Direction := ,

Number := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

VelocityMode := ,

AbsRelMode := ,

Done => ,

Busy => ,

CommandAborted => ,

Index => ,

Error => ,

ErrorID =>);

Table 3–219 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveBuffer: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

S2 Position
Start address of the
target position No -

Positive
number

Negative
number

0

FLT32,
array*16

S3 Velocity
Start address of the
target velocity No - Positive

number
FLT32,
array*16

Instruction Description (LD & LiteST)

-377-

S4 Direction

Start address of absolute
positioning direction in
ring mode

0: Forward (Target
velocity > 0)

1: Reverse (Target
velocity < 0)

2: Minimum distance

3: Current direction

Yes 0 0 to 3 INT, array*16

S5 Number Number of buffer pairs No - 1 to 16 INT
S6 Acceleration Acceleration No - - FLT32
S7 Deceleration Deceleration Yes Acceleration - FLT32

S8 CurveType

Velocity curve type

0: T-shaped velocity
curve

1: 5-segment S-curve

Others: T-shaped velocity
curve

Yes 0 - INT

S9 VelocityMode

Velocity switching mode

0: Decelerate to 0 and
start the next segment

1: Keep the current
velocity and start the
next segment

Yes 0 0 to 1 INT

S10 AbsRelMode

Positioning mode

0: Absolute positioning

1: Relative positioning

Yes 0 0 to 1 INT

D1 Done Stop completed Yes OFF - BOOL

D2 Busy Busy flag Yes OFF - BOOL

D3 CommandAbort-
ed

Abortion of execution Yes OFF - BOOL

D4 Index Current segment Yes 0 0 to 15 INT

D5 Error Error flag Yes OFF - BOOL
D6 ErrorID Fault Code Yes 0 *1 INT

Table 3–220 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ - - -

S4 - - - √ √ √ - - -

S5 - - - √ √ √ √ - -

S6 - - - √ √ √ - √ -

S7 - - - √ √ √ - √ -

S8 - - - √ √ √ - √ -

Instruction Description (LD & LiteST)

-378-

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S9 - - - √ √ √ √ - -

S10 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

D5 √[1] √ √ √ - - -

D6 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the multi-position positioning function of the EtherCAT bus axis or the
local pulse axis. It is active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the Execute input, the function block latches input parameters such as
Position, Velocity, Direction, Number, Acceleration, and Deceleration.

The axis performs absolute positioning (AbsRelMode = 0) or relative positioning (AbsRelMode = 1) in
buffer mode based on the value of AbsRelMode. This instruction supports up to 16-segment
positions.

■ Position: Target position, array type, up to 16 segments. It specifies the target absolute position
of the axis in absolute positioning mode or target travel distance of the axis in relative
positioning mode.

■ Velocity: Target velocity, array type, up to 16 segments.
■ Direction: Target direction of absolute positioning in ring mode, same as Direction of the MC_

MoveAbsolute instruction.
■ Number: Number of groups of target position, target velocity, and direction to be buffered. It

ranges from 1 to 16. A fault is reported if the value is out of range.
■ CurveType: Type of the velocity curve. If CurveType is set to 0, the T-shaped curve is used. In this

case, the axis accelerates or decelerates based on the value of Acceleration or Deceleration. If
CurveType is set to 1, the 5-segment S-curve is used. In this case, Acceleration and Deceleration
indicate the maximum acceleration and minimum deceleration of the axis during acceleration
and deceleration.

Instruction Description (LD & LiteST)

-379-

■ VelocityMode: Velocity switching mode. When it is set to 0, the axis decelerates to 0 before
reaching a target position and then starts to run from 0 velocity to the next target position; when
it is set to 1, the axis runs to a target position at the current target velocity and then switches to
a new velocity based on the acceleration (deceleration) to move to the next target position.

Note
A special situation may arise during absolute positioning when the velocity is retained. Assume that 3 position seg-
ments are set. The target position of segment 1 is 10, that of segment 2 is 10.1, and that of segment 3 is 10.2. The tar-
get velocity is 100, and the feedback velocity is also 100. The EtherCAT task cycle is 8 ms, and the increment of the
target travel distance per EtherCAT cycle is 0.8. During segment 1, if the current position is 9.9 when an EtherCAT
cycle starts, the current position changes to 10.7 when the next EtherCAT cycle starts, which has exceeded the target
position of segment 2. In this case, the axis needs to decelerate and run in the reverse direction, and this may pro-
duce the velocity curve as shown in the following figure:

Abortion

When this instruction is active, the axis is in DiscreteMotion state in PLCOpen. This instruction can be
aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Execute is ON and the Done signal is inactive, if deceleration needs to be performed upon a limit
signal, CommandAborted is active.

When Execute is ON and the Done signal is inactive, if the axis is disabled, CommandAborted is active.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

Error 9108 is reported if this instruction is executed when the axis is in a state other than StandStill,
DiscreteMotion, and ContinuousMotion.

● Error 9116 is reported if the axis is in online commissioning state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● A fault is reported when the parameters on the left of the instruction are out of range or improper
on the rising edge of the Execute input.

● Error 9116 is reported if the axis enters the commissioning state when Execute is ON and the Done
signal is inactive.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Instruction Description (LD & LiteST)

-380-

Timing Diagram

● In 3-segment buffer mode, VelocityMode is set to 0.

CommandAborted

● In 3-segment buffer mode, VelocityMode is set to 1.

● In 3-segment buffer mode, instruction execution is aborted by the MC_Stop instruction.

Instruction Description (LD & LiteST)

-381-

● In 3-segment buffer mode, an error occurs during instruction execution.

3.10.1.23 MC_ImmediateStop

MC_ImmediateStop – Immediate stop

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_ImmediateStop
Emergency
stop

MC_ImmediateStop(Execute := ???,

Axis := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-382-

Table 3–221 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ImmediateStop: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - 0 to 32767
INT

sMCAXIS
INFO

D1 Done Stop completed Yes OFF OFF/ON BOOL

D2 Busy Busy flag Yes OFF OFF/ON BOOL

D3 CommandAborted
Abortion of
execution

Yes OFF OFF/ON BOOL

D4 Error Error flag Yes OFF OFF/ON BOOL
D5 ErrorID Fault code Yes 0 *1 INT

Table 3–222 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - - - - -

D2 √[1] √ √ - - - - - -

D3 √[1] √ √ - - - - - -

D4 √[1] √ √ - - - - - -

D5 - - - √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the immediate stop function of the EtherCAT bus axis or the local pulse
axis. It is active on the rising edge.

● Specifying axis

■ Axis is latched on the rising edge of the Execute input.
■ If Axis specifies the axis name, modification on Axis is invalid when Execute is ON.
■ If Axis specifies the axis number, modification on Axis is valid when Execute is OFF.

● Function description
This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

On the rising edge of the instruction, the function block switches the PLCOpen state machine of the
axis to the Stopping state, and switches the CiA 402 state machine of the drive to quick stop state.
The drive stops running according to the stop mode specified in 0x605A. For the Inovance servo
IS620N, the stop mode is described as follows:

Instruction Description (LD & LiteST)

-383-

■ When the servo is in CSP mode:

Setpoint Stop Mode

0

Coast to stop, keeping de-energized status

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

1 Stop at the emergency stop torque in 2007-10h, keeping the free-run state

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

2

3

4 N/A
5

Stop at the emergency stop torque in 2007-10h, maintaining the locked position6
7

■ When the servo is in HM mode:

Setpoint Stop Mode

0

Coast to stop, keeping de-energized status

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

1

Stop according to ramp in 6084h (HM: 609Ah), keeping the free-run state

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

2

Stop according to ramp in 6085h, keeping the free-run state

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

3

Stop at the emergency stop torque, keeping the free-run state

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

4 N/A

5 Stop according to ramp in 6084h (HM: 609Ah), maintaining the locked position

6 Stop according to ramp in 6085h, maintaining the locked position

7 Stop at the emergency stop torque in 2007-10h, maintaining the locked position

■ When the servo is in CST mode:

Setpoint Stop Mode

0

Coast to stop, keeping de-energized status

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

1 Stop according to ramp in 6087h, keeping the free-run state

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

2

3

Coast to stop, keeping de-energized status

If this mode is selected, the feedback velocity of the servo is not necessarily 0
after the Done signal output of the instruction becomes active.

4 N/A
5 Stop according to ramp in 6087h, maintaining the locked position
6
7 Coast to stop, maintaining the locked position

Instruction Description (LD & LiteST)

-384-

● Re-execution
The same MC_ImmediateStop instruction can be executed repeatedly. If the same MC_
ImmediateStop instruction is re-triggered during deceleration, the drive stops according to the stop
mode specified by the instruction triggered last.

● Multi-execution
When multiple MC_ImmediateStop instructions are called, the instruction of which the rising edge
is triggered first shall prevail. Other instructions report fault 9143 (repeatedly calling the immediate
stop instruction).

When the axis is in the Stopping state, this instruction cannot be aborted by other motion instructions.

When the axis switches from the Stopping state to the StandStill state on the falling edge of the
instruction flow, other motion control instructions can run.

This instruction takes priority over the MC_Stop instruction. If this instruction is called while the MC_
Stop instruction is still active, the MC_Stop instruction reports an error.

Abortion

The axis disable interrupt signal output is active when Execute is ON.

Errors

Error 9101 is reported when the axis number does not exist or the axis type does not match.

Error 9102 is reported when axis initialization fails.

● Error 9108 is reported if the axis is in Disabled or ErrorStop state on the rising edge of the Execute
input.

● Error 9106 is reported if the axis is decelerating in ErrorStop state on the rising edge of the Execute
input.

● If the axis fails and enters the ErrorStop state when Execute is ON, the instruction displays the fault
code of the axis in the ErrorStop state.

Timing Diagram

● The MC_Stop instruction is executed after the MC_MoveVelocity instruction.

Instruction Description (LD & LiteST)

-385-

● The drive fails during instruction execution.

3.10.1.24 MC_MoveSuperImposed

MC_MoveSuperImposed – Motion superimposition

Instruction Description (LD & LiteST)

-386-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
MoveSuperImposed

Motion
super-
impo-
sition

MC_MoveSuperImposed(Execute := ???,

Axis := ???,

Distance := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–223 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveSuperImposed: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - _sMCAXIS_
INFO

S2 Distance Phase compensation No -

Positive
number

0

Negative
number

REAL

S3 Velocity Target velocity No - Positive
number

REAL

S4 Acceleration Acceleration No - Positive
number

REAL

S5 Deceleration Deceleration Yes Acc Positive
number

REAL

S6 Curvetype
Curve type

0: T-shaped velocity
curve

Yes 0 0 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-387-

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0
ON

OFF
INT

Function Description

On the rising edge of the Execute input, this instruction superimposes a phase positioning based on
the original control mode of the axis according to the input parameters. Distance specifies the travel
distance of the superimposed motion, and Velocity specifies the velocity.

Instruction Execution Under Different Control Modes

● Single-Axis Positioning Instructions
When called separately, this instruction controls the axis to perform relative positioning. The
PLCOpen state machine switches from the StandStill state to the DiscreteMotion state.

When called during execution of an instruction that can make the servo axis work in CSP mode, this
instruction implements motion superimposition.

If another instruction that can make the servo axis work in CSP mode, such as MC_MoveAbsolute, is
triggered during execution of this instruction, this instruction is aborted.

This instruction can be aborted by MC_Stop, MC_Halt, and MC_ImmediateStop.

The motion superimposition instruction cannot be executed while the MC_Halt instruction is active.

If a non-CSP motion instruction such as MC_TorqueControl and MC_Home is executed during
execution of this instruction, it reports an error.

● Axis Group Instructions

Instruction Description (LD & LiteST)

-388-

If this instruction is called during execution of an axis group instruction, it reports an error and does
not implement motion superimposition.

● Cam/Gear Instructions
For operations on the master axis, see the rules described in the single-axis and axis group
instruction sections.

● When this instruction is called by the slave axis during gear and cam following, it performs motion
superimposition.

Instruction Description (LD & LiteST)

-389-

This instruction is aborted if the gear instruction (MC_GearIn) is re-triggered during execution of this
instruction.

When the cam instruction (MC_CamIn) is re-triggered during execution of this instruction, if the
buffer mode is to switch immediately, this instruction is aborted; if the buffer mode is to wait for
the completion of execution of the previous cam, execution of this instruction continues.

MC_GearOut and MC_CamOut can abort execution of this instruction.

3.10.1.25 MC_MoveVelocityCSV

MC_MoveVelocityCSV – CSV-based velocity control with adjustable pulse width

Instruction Description (LD & LiteST)

-390-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
MoveVelocityCSV

CSV-based
velocity
control with
adjustable
pulse width

MC_MoveVelocityCSV(Execute := ???,

Axis := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

PulseWidth := ,

CurveType := ,

InVelocity => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–224 Instruction format
16-bit
Instruc-
tion

-

32-bit
Instruc-
tion

MC_MoveVelocityCSV: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - - _sMCAXIS_INFO

S2 Velocity Target velocity No -

Positive number/
number/0, absolute
value less than the
maximum velocity

REAL

S3 Accelera-
tion

Acceleration No -
Positive number, less
than the maximum
acceleration

REAL

S4 Decelera-
tion

Deceleration Yes Acceler-
ation

Positive number, less
than the maximum
acceleration

REAL

S5 Pulse-
Width

Pulse width (unit:
0.01%) Yes 5000 1 to 9999 INT

S6
Curve-
Type

Velocity curve type

0: T-shaped
velocity curve

1: 5-segment S-
curve

Others: T-shaped
velocity curve

Yes 0 0 to 1 INT

D1 InVelocity Velocity reached Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-391-

D3 CmdA-
borted

Abortion of
execution

Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Function Description

This instruction uses the Cyclic Synchronous Velocity (CSV) mode to control the bus servo axis or local
pulse axis to keep the PLCOpen state machine of the axis in ContinuousMotion state. It has similar
functions as MC_MoveVelocity.

When the bus servo axis is used, three object dictionaries need to be added to the PDO: 0x6060,
0x6061, and 0x60ff.

This instruction first write 9 into 0x6060 to switch the drive to CSV mode, then converts the target
velocity into Int32 data and writes it into 0x60FF. The target velocity increases or decreases based on
the specified acceleration or deceleration.

When the local pulse axis is used, no additional mapping parameters need to be configured. This
instruction implements PWM waveform output with acceleration and deceleration. PulseWidth
specifies the pulse width of the local pulse axis.

During execution of this instruction, you can call MC_Stop, Mc_Halt, or MC_ImmediateStop (supported
by the drive) to stop the motion of the axis.

Note that the MC_MoveSuperImposed instruction cannot be called to perform motion superimposition
during execution of this instruction.

3.10.1.26 MC_SyncMoveVelocity

MC_SyncMoveVelocity – CSV-based synchronous velocity control with adjustable pulse width

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
SyncMove-
Velocity

CSV-based
synchronous
velocity control of
the PWM waveform

MC_SyncMoveVelocity(Enable := ???,

Axis := ???,

Velocity := ???,

PulseWidth := ,

InVelocity => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-392-

Table 3–225 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_SyncMoveVelocity: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/
Axis ID

No - - _sMCAXIS_
INFO

S2 Velocity
Target
velocity No -

Positive
number/
number/0,
absolute value
less than the
maximum
velocity

REAL

S3 PulseWidth
Pulse width
(unit: 0.01%) Yes 5000 1 to 9999 INT

D1 InVelocity Velocity
reached

Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CmdAborted
Abortion of
execution

Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault code Yes 0 *1 INT

Function Description

This instruction uses the CSV mode to control the bus servo axis or local pulse axis to keep the axis in
ContinuousMotion state.

When the bus servo axis is used, three object dictionaries need to be added to the PDO: 0x6060,
0x6061, and 0x60ff.

This instruction first write 9 into 0x6060 to switch the drive to CSV mode, then converts the target
velocity into Int32 data and writes it into 0x60FF.

When the local pulse axis is used, no additional mapping parameters need to be configured. This
instruction can implement the PWM waveform output function. PulseWidth specifies the pulse width of
the local pulse axis.

This instruction can modify the axis velocity and PWM duty cycle in real time in the program without
re-triggering. The velocity after modification does not involve acceleration and deceleration and is
directly converted into pulse equivalent and then written into 0x60FF.

During execution of this instruction, you can call MC_Stop, Mc_Halt, or MC_ImmediateStop (supported
by the drive) to stop the motion of the axis.

Instruction Description (LD & LiteST)

-393-

Note that the MC_MoveSuperImposed instruction cannot be called to perform motion superimposition
during execution of this instruction.

3.10.1.27 MC_SyncTorqueControl

MC_SyncTorqueControl – Synchronous torque control

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
SyncTorqueControl

Syn-
chro-
nous
torque
con-
trol

MC_SyncTorqueControl(Enable := ???,

Axis := ???,

TarTorque := ???,

Velocity := ,

InTorque => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-394-

Table 3–226 Instruction format
16-bit
Instruc-
tion

-

32-bit
Instruc-
tion

MC_SyncTorqueControl: Continuous execution

Operand Name Description Empty
Allowed Default Range

Data
Type

S1 AxisID Axis ID No - 0 to 32767 INT

S2 TarTorque Target torque (unit: 1%) No -

Positive
number,
negative
number, or 0

REAL

S3 Velocity

Velocity limit (user unit)

This parameter is valid when
0x607f is mapped; otherwise, it is
invalid.

Yes 0 Positive
number or 0

REAL

D1 InTorque

Torque reached

The output is active when the set
torque reaches the target torque
and the absolute value of the
difference between the feedback
torque and the target torque is
less than 5%.

Yes OFF - BOOL

D2 Busy Busy flag Yes OFF - BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF - BOOL

D4 Error Error flag Yes OFF - BOOL
D5 ErrorID Fault Code Yes 0 *1 INT

Function description

This instruction is used to implement synchronous torque control only for the bus servo axis. It is
active on the rising edge and does not support the imaginary axis mode.

This instruction can be executed only after the MC_Power instruction is executed to enable the axis.

The torque instruction can be used only when the following PDOs are configured: 0x6040, 0x6041,
0x6060, 0x6061, 0x6071, and 0x6077. Otherwise, a fault is reported.

This instruction adopts the synchronous torque mode of the drive to implement the torque control
function. When Enable is ON, the function block converts the values specified by TarTorque and
Velocity from user unit to pulse unit and transfers the data to the servo drive in real time. The axis
remains in the ContinuousMotion state and performs synchronous torque motion.

TarTorque: Target torque, in the unit of 1%. Only one decimal place after the decimal point is valid in
the program, and the subsequent ones are directly discarded. The actual torque of the drive is limited
by the maximum positive and negative torque specified in the configuration parameters.

Specifying axis

Axis is latched on the rising edge of the Enable input.

Instruction Description (LD & LiteST)

-395-

Modification on Axis is invalid when Enable is ON.

Modification on Axis is valid when Enable is OFF.

Velocity control in torque mode

For servo drives of Inovance, if 0x607f is mapped, this instruction limits the maximum velocity of the
servo motor through 0x607f. If 0x607f is not mapped, the velocity limit is invalid.

On the rising edge of Execute, the instruction converts the velocity limit specified by Velocity into pulse
unit and writes it into 0x607f through PDO.

If the torque instruction is aborted by another instruction, the maximum velocity of the axis can be
limited by specifying Max. Velocity on the configuration interface.

For third-party drives, Velocity can be used as the velocity limit only when the following conditions are
met:

1. The maximum velocity of the servo motor can be limited by using 0x607F.
2. 0x607F can be configured in the PDO.
3. The unit of 0x607F is a pulse unit, not a rotation velocity unit.

Stop Control in Torque Mode

In torque mode, the MC_Stop instruction can be executed to stop the drive. Upon receiving the stop
instruction, the drive switches to the synchronous position mode and decelerates according to the
deceleration specified in the stop instruction.

Abortion

When this instruction is active, the axis is in ContinuousMotion state in PLCOpen. This instruction can
be aborted by any other instruction that can make the axis enter DiscreteMotion state or conform to
PLCOpen state machine switching. CommandAborted is active when this instruction is aborted.

When Execute is ON and the Done signal is inactive, if deceleration needs to be performed upon a limit
signal, CommandAborted is active.

When Execute is ON and the Done signal is inactive, if the axis is disabled, CommandAborted is active.

3.10.1.28 MC_SetAxisConfigPara

MC_SetAxisConfigPara – Axis configuration parameters

Instruction Description (LD & LiteST)

-396-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
SetAxisConfigPara

Axis
configu-
ration
parame-
ter

MC_SetAxisConfigPara(Execute := ???,

Axis := ???,

ParameterIndex := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–227 Instruction format
16-bit

Instruction
Consecutive execution of MC_SetAxisConfigPara

32-bit
Instruction

-

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Axis Axis name/Axis ID No - - _sMCAXIS_
INFO

S2
ParameterIn-
dex

Parameter index

–1: All valid

0: All invalid

100: Modify only the gear ratio

200: Modify only the positive
and negative software limits

300: Modify only the linearity or
rotation mode

400: Modify only the encoder
mode

500: Modify only the homing
mode

600: Modify only the hard limit
and home signal

700: Modify only the pulse
output mode

800: Modify only the reverse
settings

900: Modify only the virtual axis
mode

1000: Modify only the probe
signal

1100: Modify only the software
limit variable

Yes –1 - INT

Instruction Description (LD & LiteST)

-397-

16-bit
Instruction

Consecutive execution of MC_SetAxisConfigPara

32-bit
Instruction

-

Operand Name Description Empty
Allowed

Default Range Data Type

D1 Done Execution completed Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault code Yes 0 *1 INT16

Function and Instruction Description

This instruction is used to check and modify the configuration parameters of the axis. The axis
parameters are reconfigured if they meet requirements. After configuration is completed, the Done
signal output becomes active. If the configuration parameters do not meet requirements, the
instruction reports an error.

ParameterIndex specifies the range of parameters to be modified. The values are described as follows:

● Parameter index –1: All parameters are updated. Modification is allowed when the axis is in
Disabled state. After the modification is completed, the current position may change greatly and
homing needs to be performed.

● Parameter index 0: No parameter is updated.
● Parameter index 100: Only the gear ratio is modified. Modification is allowed when the axis is in

Disabled state. After the modification is completed, the current position may change greatly and
homing needs to be performed.

Variable Unit Parameter
dPlusePreCycle DINT Pulses per revolution of the motor/encoder

fDistancePreCycle REAL Distance per revolution of the rotary table

dNumerator DINT Gear ratio (numerator)

dDenominator DINT Gear ratio (denominator)

● Parameter index 200: Only the positive and negative software limits are modified. Modification is
allowed when the axis is in Disabled or StandStill state.

Variable Unit Parameter

bSoftLimitEnable BOOL

Software limit enable

OFF: Disabled

ON: Enabled
fPLimit REAL Positive limit in linear mode
fNLimit REAL Negative limit in linear mode

● Parameter index 300: Only the linear/rotary mode is modified. Modification is allowed when the axis
is in Disabled state. After the modification is completed, the current position may change greatly
and homing needs to be performed.

Instruction Description (LD & LiteST)

-398-

Variable Unit Parameter

iLineRotateMode INT

Linear/Rotary mode

0: Linear mode

1: Rotary mode

fRotation REAL Rotation period in rotary mode

● Parameter index 400: Only the encoder mode is modified. Modification is allowed when the axis is
in Disabled state. After the modification is completed, the current position may change greatly and
homing needs to be performed.

Variable Unit Parameter

iEncodeMode INT

Encoder mode (valid for the bus servo axis)

0: Absolute mode

1: Incremental mode

● Parameter index 500: Only the homing mode is modified. This index is valid for the local pulse axis.
Modification is allowed when the axis is in Disabled or StandStill state.

Variable Unit Parameter
fHomeMethod REAL Homing mode

fHomeVelocity REAL Homing velocity

fHomeApproachVelocity REAL Homing approach velocity

fHomeAcceleration REAL Homing acceleration

dHomeTimeOut DINT Homing timeout time

dHomePositionMode INT Homing position mode

● Parameter index 600: Only the hardware limit and home signal are modified. Modification is
allowed when the axis is in Disabled state. After the modification is completed, the current position
may change greatly and homing needs to be performed.

Variable Unit Parameter
bPLimitTerminalPolarity BOOL Positive limit polarity

OFF: Positive logic

ON: Negative logic

bNLimitTerminalPolarity BOOL Negative limit polarity

OFF: Positive logic

ON: Negative logic

bHomeTerminaPolarity BOOL Home signal polarity

OFF: Positive logic

ON: Negative logic

dPLimitTerminalID DINT ID of the positive limit signal (Modbus address)

dNLimitTerminalID DINT ID of the negative limit signal (Modbus address)

dHomeTerminalID DINT ID of the home signal (Modbus address)

● Parameter index 700: Only the pulse output mode is modified. Modification is allowed when the
axis is in Disabled state. After the modification is completed, the current position may change
greatly and homing needs to be performed.

Variable Unit Parameter
iPluseMethod INT Pulse output mode (valid for the local pulse axis)

Instruction Description (LD & LiteST)

-399-

● Parameter index 800: Only the reverse direction is modified. Modification is allowed when the axis is
in Disabled state. After the modification is completed, the current position may change greatly and
homing needs to be performed.

Variable Unit Parameter
bDirection BOOL Direction

OFF: Forward

ON: Reverse

● Parameter index 900: Only the imaginary axis mode is modified. Modification is allowed when the
axis is in Disabled state. After the modification is completed, the current position may change
greatly and homing needs to be performed.

Variable Unit Parameter
bVirtualMode BOOL Imaginary axis mode

OFF: Disabled

ON: Enabled

● Parameter index 1000: Only the probe signal is modified. Modification is allowed when the axis is in
Disabled state. After the modification is completed, the current position may change greatly and
homing needs to be performed.

Variable Unit Parameter
dTouchProbeID1 DINT ID of probe terminal 1

dTouchProbeID2 DINT ID of probe terminal 2

● Parameter index 1100: Only the software limit variables are modified. Modification is allowed when
the axis is in Disabled or StandStill state.

Variable Unit Parameter
fLimitDeceleraion REAL Limit deceleration
fErrorStopDeceleration REAL Deceleration upon axis fault

fFollowErrorWindow REAL Following error window

fInVelocityWindow REAL Speed reach threshold

fMaxVelocity REAL Maximum velocity

fMaxJogVelocity REAL Maximum jogging velocity

fMaxAcc REAL Max acceleration
fMaxPTorque REAL Maximum positive torque

fMaxNTorque REAL Maximum negative torque

bEnterErrorStop BOOL

Not entering ErrorStop state upon an axis fault

OFF: Disabled

ON: Enabled

Instruction Description (LD & LiteST)

-400-

Timing Diagram

This instruction reports a fault when the parameters are configured improperly.

Re-triggering

This instruction can be re-triggered while the Busy output is still active.

Instruction Description (LD & LiteST)

-401-

Multi-execution

It is not allowed to call a second MC_MetAxisConfigPara instruction while the Busy output of this
instruction is still active; otherwise, the second instruction reports an error.

Instruction Description (LD & LiteST)

-402-

3.10.1.29 MC_FollowVelocity

MC_FollowVelocity – CSP-based velocity following

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
FollowVelocity

CSP-based
velocity
following

MC_FollowVelocity(Enable := ???,

Axis := ???,

Velocity := ???,

InVelocity => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-403-

Table 3–228 Instruction format
16-bit

Instruction
-

32-bit
Instruction

MC_FollowVelocity: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Axis Axis name/
Axis ID

No - - _sMCAXIS_INFO

S2 Velocity
Target
velocity No -

Positive
number/
number/0,
absolute
value less
than the
maximum
velocity

REAL32

D1 InVelocity Velocity
reached

Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CommandAborted
Abortion of
execution

Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL
D5 ErrorID Fault Code Yes 0 *1 INT16

Function Description

This instruction works with the MC_MoveSuperImposed instruction to implement the motion
superimposition function. This instruction uses the CSP mode to control the bus servo or local pulse
axis to keep the axis in SynchronizedMotion state. It works with MC_MoveSuperImposed to implement
motion superimposition.

When Enable is ON, the velocity specified by Velocity takes effect immediately after modification,
avoiding the necessity to re-trigger the instruction. The velocity after modification does not involve
acceleration and deceleration. The way that the InVelocity signal is triggered is affected by the velocity
window in axis configuration. To stop the axis, you need to call the MC_Stop instruction.

Instruction Description (LD & LiteST)

-404-

This instruction can work with the MC_MoveSuperImposed instruction to implement the motion
superimposition function.

3.10.1.30 Axis Fault Codes

Axis fault codes are divided into local pulse axis fault codes and motion control axis fault codes. If an
axis instruction reports a fault, see the description of the corresponding fault code.

Local Pulse Axis Fault Codes

Fault Code Fault Information Troubleshooting
Stop

Triggered

9001

(0x2329)

Emergency stop

The emergency stop terminal input is
triggered.

Disable the emergency stop terminal
input and then call the MC_Reset
instruction to reset the fault.

Yes

9002

(0x232a)
The following error is too large.
(Reserved)

Adjust the target velocity of
acceleration (deceleration). Yes

9003

(0x232b)

Overspeed occurs.

The pulse output frequency exceeds
200 kHz.

Ensure that the pulse output
frequency does not exceed 200 kHz. Yes

9020

(0x233c)

A homing error occurs.

The negative limit is not mapped.
Map the negative limit on the
configuration interface. Yes

9021

(0x233d)

A homing error occurs.

The positive limit is not mapped.
Map the positive limit on the
configuration interface. Yes

9022

(0x233e)

A homing error occurs.

The home signal is not mapped.
Map the home switch on the
configuration interface. Yes

Instruction Description (LD & LiteST)

-405-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9023

(0x233f)

A homing error occurs.

The output frequency exceeds 200 kHz
when the axis runs at the homing
velocity.

The output frequency exceeds 200 kHz
when the axis runs at the homing
approach velocity.

Modify the unit conversion setting to
ensure that the homing velocity and
homing approach velocity do not
exceed 200 kHz.

Change the homing velocity to
ensure that the output frequency
does not exceed 200 kHz.

Change the homing approach
velocity to ensure that the output
frequency does not exceed 200 kHz.

Yes

9024

(0x2340)

A homing error occurs.

Homing timed out.

Check that the limit signal is
conductive.

Check whether the homing timeout
time is too short.

Yes

9025

(0x2341)

A homing error occurs.

The limit signal is disordered during
homing.

Check whether the limit signal that is
not applicable to the current homing
mode is triggered.

Yes

9030

(0x2342)
The limit is active.

Check whether the limit is reached
during normal running. No

9031

(0x2343)

A synchronization error occurs.

The target number of transmitted
pulses and the actual number of
transmitted pulses do not match.

Check whether the limit is reached
during normal positioning. No

NoteWhen a local pulse axis is faulty, please refer to the preceding fault code list for fault information.

Motion Control Axis Fault Codes

Fault Code Fault Information Troubleshooting
Stop

Triggered

9101

The type of the axis specified by
AxisID is incorrect.

The axis specified by AxisID does
not exist.

Check whether the instruction supports
the axis specified by AxisID.

Check whether the axis specified by AxisID
exists.

No

9102

The axis configuration data is lost.

The axis configuration parameters
are improper.

Check whether the parameters are
correct.

No

9103
The MC_Reset instruction is called
when the axis is not faulty.

Check whether the MC_Reset instruction
is called when the axis is not switched to
ErrorStop state.

No

9104
The axis is in unknown state when
the MC_ReadStatus instruction is
called.

Check whether the current state of the
axis is uncontrollable by using the online
monitoring function.

No

9105 Setting the current position is not
allowed.

Check whether the MC_SetPositon
instruction has been called.

No

9106 The axis is stopping upon a fault.
Execute the instruction after stop upon
fault is completed and the fault is
resolved.

No

Instruction Description (LD & LiteST)

-406-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9107 The parameters are improper.
Check whether the parameters on the left
of the instruction are set properly. Yes

9108
The PLCOpen state machine is
improper.

Check whether the current PLCOpen state
machine satisfies the execution
conditions for this instruction. If not, call
the relevant instruction to switch the axis
to the required state.

No

9109
The axis enters the Disabled state
during instruction execution.

Check whether the axis has entered the
Disabled state.

No

9110
The MC_Stop instruction is called
repeatedly during stop.

Check whether the MC_Stop instruction is
called repeatedly in the program. No

9111 The instruction linked list is lost.
Check whether the background version
and board version match.

No

9112
The axis number changes.

The axis number changes while the
instruction flow is active.

Do not change the axis number while the
flow is active for Enable instructions such
as MC_Power and MC_Jog.

Yes

9113 Reset by executing the MC_Reset
instruction timed out.

Check whether the drive fault can be
reset.

Check whether the fault type supports
reset.

No

9114 The axis fails to write to 0x6060.
Check for interference in network
communication.

No

9115
The MC_Halt instruction is called
when the axis is in Stopping state.

Do not call the MC_Halt instruction when
the axis is in Stopping state. No

9116
The current axis is in online
commissioning mode.

Check whether the current axis is in
online commissioning mode. No

9118
The acceleration (deceleration) of
the instruction exceeds the
maximum acceleration.

Check whether the acceleration
(deceleration) of the instruction exceeds
the maximum acceleration.

Yes

9119
The target velocity of the MC_Jog
instruction exceeds the maximum
jogging velocity.

Check whether the target velocity of the
MC_Jog instruction exceeds the
maximum jogging velocity.

Yes

9120
The target velocity exceeds the
maximum velocity.

Check whether the target velocity of the
instruction exceeds the maximum
velocity.

Yes

9121
The forward and reverse motion
signals of the jog instruction are
both active.

Ensure that the forward and reverse
motion signals of the jog instruction are
not active at the same time.

Yes

9122 The control word is not mapped to
the EtherCAT bus axis.

Add the control word in the PDO and map
it to the axis.

No

9123 The target position is not mapped
to the EtherCAT bus axis.

Add the target position in the PDO and
map it to the axis. No

9124 The target torque is not mapped to
the EtherCAT bus axis.

Add the target torque in the PDO and
map it to the axis. No

9125 The status word is not mapped to
the EtherCAT bus axis.

Add the status word in the PDO and map
it to the axis.

No

9126 The current position is not mapped
to the EtherCAT bus axis.

Add the feedback position in the PDO and
map it to the axis. No

9127 0x60fd is not mapped to the
EtherCAT bus axis.

Add 0x60fd in the PDO and map it to the
axis.

No

Instruction Description (LD & LiteST)

-407-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9128 The current torque is not mapped
to the EtherCAT bus axis.

Add the current torque in the PDO and
map it to the axis. No

9129
The probe control word is not
mapped to the EtherCAT bus axis.

Add the probe control word in the PDO
and map it to the axis.

Yes
(interrupt
positioning)

No (probe)

9130
The probe status word is not
mapped to the EtherCAT bus axis.

Add the probe status word in the PDO
and map it to the axis.

Yes
(interrupt
positioning)

No (probe)

9131 The probe position is not mapped
to the EtherCAT bus axis.

Add the probe position in the PDO and
map it to the axis.

Yes
(interrupt
positioning)

No (probe)

9132
An interrupt positioning instruction
is being executed and the probe
channel is occupied.

The probe instruction and interrupt
positioning instruction must not occupy
the same probe channel at the same time.
When the two instructions are called
simultaneously in the program, the
interrupt positioning instruction takes
priority.

No

9133 The imaginary axis mode is
enabled.

The current instruction does not support
the imaginary axis mode. No

9134 Reserved - -

9135
The interrupt signal is not triggered
in the interrupt positioning
instruction.

During execution of the interrupt
positioning instruction, no interrupt
signal is detected after positioning is
completed.

No

9136
The probe channel is occupied by
another instruction during the
interrupt positioning process.

Ensure that the probe channel is not
occupied during the interrupt positioning
process.

Yes

9137
The control mode 0x6060 is not
mapped to the bus driver.

Add 0x6060 in the PDO and map it to the
axis.

No

9138
The control mode 0x6061 is not
mapped to the bus driver.

Add 0x6061 in the PDO and map it to the
axis.

No

9139
The MC_Home instruction is called
repeatedly during homing.

Do not call the MC_Home instruction
repeatedly during homing. No

9140 The target torque of the instruction
exceeds the maximum value.

Check whether the target torque of the
instruction exceeds the positive and
negative torque limits.

Yes

9141
The maximum velocity is not
mapped to the bus driver.

Add 0x607f in the PDO and map it to the
axis.

No

9142 The immediate stop instruction is
active.

Check whether the immediate stop
instruction has been called.

No

9143
The immediate stop instruction is
called repeatedly.

Check whether the immediate stop
instruction is called repeatedly. No

9144 The limit is reached during jogging. Check whether the limit is active. No

Instruction Description (LD & LiteST)

-408-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9145 The target position exceeds
9999999.

The precision is reduced if a single-
precision floating-point number
exceeds 9999999. Therefore, the
target position must not exceed this
value.

Check whether the target position is
correct. Set the target position again.

Change the gear ratio to ensure that the
target position is not greater than
9999999.

Yes

9146 The target velocity exceeds
9999999.

The precision is reduced if a single-
precision floating-point number
exceeds 9999999. Therefore, the
target velocity must not exceed this
value.

Check whether the target velocity is
correct. Set the target velocity again.

Change the gear ratio to ensure that the
target velocity is not greater than
9999999.

Yes

9147 The target acceleration exceeds
9999999.

The precision is reduced if a single-
precision floating-point number
exceeds 9999999. Therefore, the
target acceleration must not exceed
this value.

Check whether the target acceleration is
correct. Set the target acceleration again.

Change the gear ratio to ensure that the
target acceleration is not greater than
9999999.

Yes

9148 The target deceleration exceeds
9999999.

The precision is reduced if a single-
precision floating-point number
exceeds 9999999. Therefore, the
target deceleration must not
exceed this value.

Check whether the target deceleration is
correct. Set the target deceleration again.

Change the gear ratio to ensure that the
target deceleration is not greater than
9999999.

Yes

9149 Execution of single-axis motion
instructions is not allowed because
the axis is in sync control mode.

Check whether the axis is executing the
interpolation instruction. Execution of
single-axis motion instructions is not
allowed during interpolation.

No

9501 The servo drive is faulty.

For the EtherCAT bus axis, check the slave
fault type by using 0x603f and then
eliminate the fault.

For the local axis, check the local axis
fault list to troubleshoot the fault.

Yes

9502 The drive is disabled.
Check whether the drive status word
0x6041 switches to the disabled state
during motion.

Yes

9503 The drive has reached the limit.
Check whether the limit is configured and
whether the limit signal is active. Yes

9504 Reserved - -

9505 Writing to 0x6060 failed. Check for interference in network
communication.

Yes

9506 Reserved - -
9507 Reserved - -

Instruction Description (LD & LiteST)

-409-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9508 Homing fault

Identify the cause of the drive homing
failure.

Check whether homing timed out.

Check whether the limit signal is
incorrect.

Yes

9509 Loss of precision occurs.
Check whether the floating-point data of
the instruction falls beyond the single-
precision floating-point number range.

Yes

9510

The following error is too large.

The difference between the set
position and the feedback position
exceeds the set threshold.

Check whether acceleration is too large.

Check whether the set following error is
too small.

Yes

9511 Reserved - -

9512
Drive communication failed during
operation.

Check whether the drive works properly.

Check whether the network cable is
properly connected.

Check for interference in communication.

Yes

9513 Homing failed due to a drive fault. Check the fault code of the drive to
eliminate the fault.

Yes

9514 Homing failed because the homing
offset exceeded 32 bits.

Check whether the homing offset
multiplied by the gear ratio exceeds 32
bits; if yes, change the gear ratio.

Yes

9515 Homing failed due to loss of the
slave.

Contact Inovance for technical support. Yes

9516 Homing failed because the SDO
failed to write to object dictionary
0x607C.

1. Check whether the drive supports
0x607C.

2. Check the network communication
quality.

Yes

9517 Homing failed because the SDO
failed to write 6 to object dictionary
0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication
quality.

Yes

9518 Homing failed because the SDO
failed to read object dictionary
0x6061.

1. Set 0x6061 in the PDO.

2. Check the network communication
quality.

Yes

9519 Homing failed because the SDO
failed to write 8 to object dictionary
0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication
quality.

Yes

9551 State switching failed. Check for interference in network
communication.

Yes

9552 The target velocity is less than 0. Check whether the target velocity of
position instructions is appropriate. Yes

9601
The axis stops due to an error of the
absolute positioning instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9602
The axis stops due to an error of the
relative positioning instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

Instruction Description (LD & LiteST)

-410-

Fault Code Fault Information Troubleshooting
Stop

Triggered

9603
The axis stops due to an error of the
velocity control instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9604
The axis stops due to an error of the
jogging instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9605 Reserved - -

9606 The axis stops due to an error of the
buffer control instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9607
The axis stops due to an error of the
interrupt positioning instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9608
The axis stops due to an error of the
stop instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9609
The axis stops due to an error of the
torque control instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9610 The axis stops due to an error of the
halt instruction.

Check the instruction that reports the
error, and further determine the fault
based on the fault code of the instruction.

Yes

9800 Failed to obtain the number of axes. Change the background version. Yes

9801 The number of axes is greater than
32.

Reduce the number of axes since the H5U
supports at most 32 axes. Yes

9802 Failed to request the memory. Check whether the memory runs out. Yes

9803 Failed to obtain parameters.
Check whether the board and the
background version match. Yes

9804 Failed to obtain the slave. None Yes

NoteWhen a motion control axis is faulty, please refer to the preceding fault code list for fault information.

3.10.2 Cam and Gear Instructions

3.10.2.1 Instruction List

The following table lists the electronic cam instructions.

Instruction Description (LD & LiteST)

-411-

Instruction Category Instruction Description

Electronic cam instruction

MC_CamIn Start cam operation
MC_CamOut End cam operation

MC_GetCamTablePhase Obtain cam table phase

MC_GetCamTableDistance Obtain cam table displacement

MC_DigitalCamSwitch Electronic cam tappet control

MC_GearIn Start gear operation

MC_GearOut End gear operation

MC_Phasing Master axis phase shifting

MC_SaveCamTable Save cam table
MC_GenerateCamTable Update cam table
MC_GearInPos Start the gear operation at the

specified position

3.10.2.2 MC_CamIn

MC_CamIn – Start cam operation

Instruction Description (LD & LiteST)

-412-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_CamIn Start cam operation

MC_CamIn(Execute := ???,

Master := ???,

Slave := ???,

CamTable := ???,

Periodic := ,

StartMode := ,

StartPosition := ,

MasterStartDistance := ,

MasterScaling := ,

SlaveScaling := ,

MasterOffset := ,

SlaveOffset := ,

ReferenceType := ,

Direction := ,

BufferMode := ,

CamInNode => ,

InCam => ,

InSync => ,

EndOfProfile => ,

Index => ,

Busy => ,

Active => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–229 Instruction format
16-bit
In-
struc-
tion

-

32-bit
In-
struc-
tion

MC_CamIn: Continuous execution

Oper-
and

Name Description Empty
Allowed Default Range

Data
Type

Instruction Description (LD & LiteST)

-413-

S1 Master

Master axis

Bus servo axis, local pulse axis, bus
encoder axis, or local encoder axis

No - -

_sMCAX-
IS_INFO

sENC
AXIS

sENC
EXT_AXIS

_sMas-
terAxis

S2 Slave
Slave axis

Bus servo axis or local pulse axis
No - -

_sMCAX-
IS_INFO

S3 CamTable Cam table No - -
sMC
CAMTA-
BLE

S4 Periodic

Periodic mode

0: Periodic

Others: Periodic for a specified number of
cycles

0 0 0 to 32767 INT

S5 StartMode

Mode for specifying MasterStartDistance

0: Absolute mode

1: Relative mode

2: Start immediately

Yes 0 0 to 2 INT

S6
StartPosi-
tion

Start position of the cam table Yes 0

Positive
number

0

Negative
number

REAL

S7
Master-
StartDis-
tance

Master following distance Yes 0

Positive
number

0

Negative
number

REAL

S8
Master-
Scaling Master coefficient Yes 1 Positive

number
REAL

S9
SlaveScal-
ing Slave coefficient Yes 1 Positive

number
REAL

S10 MasterOff-
set

Master offset Yes 0

Positive
number

0

Negative
number

REAL

S11 SlaveOffset Slave offset Yes 0

Positive
number

0

Negative
number

REAL

Instruction Description (LD & LiteST)

-414-

S12
Reference-
Type

Position type

0: Instruction position of the previous
cycle

1: Instruction position of the current cycle
[1]

2: Feedback position of the current cycle

Yes 0 0 to 2 INT

S13 Direction

Direction

0: Forward

1: Reverse

2: Not specified

Yes 0 0 to 2 INT

S14 Buffer-
Mode

Buffer mode

0: Wait until the previous one is completed

Others: Reserved

Yes 0 - INT

D1
CamIn-
Node

Cam engagement variable Yes - - _sMC_
CAMIN

D2 InCam Cam motion Yes OFF
ON

OFF
BOOL

D3 InSync Synchronizing Yes OFF
ON

OFF
BOOL

D4 EndOfPro-
file

End of cam cycle Yes OFF
ON

OFF
BOOL

D5 Index Index Yes 0 1 to 360 INT

D6 Busy Executing Yes OFF
ON

OFF
BOOL

D7 Active Controlling Yes OFF
ON

OFF
BOOL

D8
Comman-
dAborted Abortion of execution Yes OFF

ON

OFF
BOOL

D9 Error Error Yes OFF
ON

OFF
BOOL

D10 ErrorID Error code Yes 0 - INT

Note
[1]: When selecting the set position under the same task, make sure that the axis ID of the master axis is smaller than
that of the slave axis.

Relative Cam Table

The phase and displacement of the cam table are specified as relative quantities from a start point of
0.0. In each EtherCAT cycle, the cam calculation unit calculates the displacement of the slave axis
corresponding to the phase of the master axis according to the selected cam curve type.

Instruction Description (LD & LiteST)

-415-

Instruction Execution Condition

You can execute this instruction while the master axis is stopped, during position control, velocity
control, or synchronized control.

You can execute this instruction while the slave axis is in StandStill, DiscreteMotion, ContinuousMotion,
or SynchronizedMotion (non-axis-group motion) state.

Software Limits

If the slave axis exceeds the software limit during cam operation, an error occurs and the axis stops
running.

Starting Cam Operation

● StartMode = 2 (Start immediately)
After the instruction is executed, the cam operation is performed immediately. The current position
of the master axis is phase 0 of the cam, and that of the slave axis is displacement 0 of the cam.

● StartMode = 0 or 1 (Start from specified position)
After the instruction starts, the master axis has to reach the StartPosition (start position of the cam
table).

After the master axis passes the StartPosition (start position of the cam table), the start point in the
cam table is executed and the InCam output variable (cam motion) changes to ON.

Instruction Description (LD & LiteST)

-416-

The phases and displacements in the cam table are specified as relative quantities from zero. The
absolute position of each axis at each phase is the relative value from the absolute position of the
axis at the start point of the cam table. For example, if the count mode of the master axis is 0° to
360° in rotary mode and the cam table is as shown in the following figure, the StartPosition (start
position of the cam table) is 50. The absolute position of the master axis is the phase added to the
StartPosition, as shown in the following cam table. The absolute position of the slave axis is the
displacement from the cam table added to the absolute position of the slave axis at the start point
of the cam table.

When the MasterStartDistance (master following distance) is then passed, the cam operation of the
slave axis starts and the output variable InSync (synchronizing) changes to ON.

The MasterStartDistance (master following distance) is specified either as an absolute position
(StartMode = 0), or as a relative distance (StartMode = 1) from the StartPosition (start position of the
cam table).

The cam table settings are as follows:

Phase Displacement
0 0
80 120
120 80
360 140

The conditions for starting cam operation are as follows:

Input Variable Condition 1 Condition 2

Periodic (Periodic mode) 0 0

StartMode (Mode for specifying the
start position)

Relative position Relative position

StartPosition (Start position of the
cam table)

0 0

MasterStartDistance (Master
following distance)

0 80

For condition 1, the output variables InCam (cam motion) and InSync (synchronizing) both change
to ON and the slave axis starts cam operation when the master axis passes 0°.

For condition 2, the output variable InCam (cam motion) changes to ON when the master axis
passes 0°. Then, the output variable InSync (synchronizing) changes to ON and the slave axis starts
cam operation when the master axis passes 80°.

Note that for condition 2, cam operation starts in the middle of the cam table, so the slave axis will
accelerate rapidly.

Instruction Description (LD & LiteST)

-417-

The cam table settings are the same as in the previous example. The conditions for starting cam
operation are modified as follows:

Input Variable Condition 1 Condition 2 Condition 3

Periodic 0 0 0
StartMode Relative position Relative position Relative position

StartPosition 0 40 40
MasterStartDistance 0 0 80

For condition 1, the output variables InCam (cam motion) and InSync (synchronizing) both change
to ON and the slave axis starts cam operation when the master axis passes 0°.

For condition 2, the output variables InCam (cam motion) and InSync (synchronizing) both change
to ON and the slave axis starts cam operation when the master axis passes 40° specified by
StartPosition (start position of the cam table).

For condition 3, the output variable InCam (cam motion) changes to ON when the master axis
passes 40°. Then, the output variable InSync (synchronizing) changes to ON and the slave axis starts
cam operation when the master axis passes 120°.

Instruction Description (LD & LiteST)

-418-

You can use StartMode to specify whether the value specified by MasterStartDistance (master
following distance) is treated as an absolute position or a relative position.

The following describes the differences in starting cam operation of the slave axis based on
differences in StartMode. The cam table settings are the same as in the previous example.

The conditions for starting cam operation are as follows:

Input Variable Condition 1 Condition 2

Periodic 0 0
StartMode Absolute position Relative position

StartPosition 40 40
MasterStartDistance 80 80

For both conditions 1 and 2, the output variable InCam (cam motion) changes to ON when the
master axis passes 40°. For condition 1, StartMode is set to 0 (absolute position), so the output
variable InSync changes to ON and the slave axis starts cam operation when the master axis passes
80°.

For condition 2, StartMode is set to 1 (relative position), so the output variable InSync changes to
ON and the slave axis starts cam operation when the master axis passes 120° (= 40° + 80°).

Instruction Description (LD & LiteST)

-419-

Periodic Mode

When Periodic (periodic mode) is set to 0, the cam motion is repeated from the start to the end point
of the cam table. After each cam cycle ends, EndOfProfile is set to TRUE for one PLC scan cycle.

When Periodic (periodic mode) is set to N (N > 0), the cam motion is repeated N times and then ends.
After the last cycle, if the Execute input is ON, the EndOfProfile will always be TRUE; if the Execute
input is OFF, the EndOfProfile is set to TRUE for one PLC scan cycle.

If the stroke position of the slave axis is the same at the start and end points of the cam table during
the repeating process, the cam operates as a reciprocal cam. If the stroke position of the slave axis
differs at the start point and end point, the cam operates as a feeding cam.

● Reciprocal cam operation

● Feeding cam operation

Instruction Description (LD & LiteST)

-420-

End of Cam Cycle

You can use the MC_CamOut (end cam operation) instruction or MC_Stop instruction to stop cam
operation before it is completed.

Scaling Factor

You can specify a scaling factor to scale up or scale down the master axis phase and slave axis
displacement of a specified cam table.

You can apply separate factors to the master and slave axes.

Offset

You can shift the phase and displacement by an offset from the specified cam table.

You can specify separate offsets for the master axis phase and slave axis displacement.

● MasterOffset > 0

Instruction Description (LD & LiteST)

-421-

● MasterOffset < 0

● SlaveOffset > 0

● SlaveOffset < 0

Direction

You can start cam operation for the slave axis only if the travel direction of the master axis matches
that specified by Direction.

● No direction specified
Cam operation starts regardless of whether the master axis is traveling in the positive or negative
direction.

Instruction Description (LD & LiteST)

-422-

● Positive direction
Cam operation starts when the master axis is moving in the positive direction. In a cam cycle, if the
master axis is reversed, the slave axis remain stationary until the master axis returns to its original
position. Then the slave axis continues to follow the master axis.

● Negative direction
Cam operation starts when the master axis is moving in the negative direction. In a cam cycle, if the
master axis is reversed, the slave axis remain stationary until the master axis returns to its original
position. Then the slave axis continues to follow the master axis.

Instruction Description (LD & LiteST)

-423-

Position Type

ReferenceType specifies the data source of the master axis position.

When the master axis is a local encoder axis, this parameter is invalid, and the feedback position of the
current cycle is always used.

When the master axis is a bus servo axis or local pulse axis, you can use the instruction position of the
previous cycle or the current cycle, or the feedback position of the current cycle.

Buffer Mode

When BufferMode is 1, the cam motion enters the data buffer mode.

In data buffer mode, when changes of input parameter values such as StarPosition and
MasterStarDistance are received in a cam operation cycle, the changed parameter settings will take
effect in the next cam cycle.

Instruction Description (LD & LiteST)

-424-

Note
In data buffer mode, if the cam cycle is synchronized with the rotation cycle of the master axis, the cam motion will
be triggered at regular intervals.

Re-execution

If the MC_CamIn instruction is re-triggered while the Busy signal is still active, parameters including
Periodic, MasterScaling, SlaveScaling, RefrenceType, and Direction are buffered and take effect in the
next cam cycle.

Instruction Description (LD & LiteST)

-425-

Multi-execution

If a second MC_CamIn instruction is triggered while the Busy signal of the MC_CamIn instruction is still
active, the Busy signal of the second instruction becomes active but the Active signal is inactive. When
a cam cycle ends, the first instruction is aborted, the Active output of the second instruction becomes
active, and the parameters (Periodic, MasterScaling, SlaveScaling, RefrenceType, and Direction) of the
second instruction take effect.

3.10.2.3 MC_CamOut

MC_CamOut – End cam operation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_CamOut End cam operation

MC_CamOut(Execute := ???,

Slave := ???,

Deceleration := ???,

CurveType := ,

OutMode := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–230 Instruction format
16-bit
Instruc-
tion

-

32-bit
Instruc-
tion

MC_CamOut: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Slave
Slave axis

Bus servo axis or local output
axis

No - _sMCAXIS_
INFO

S2 Decelera-
tion

Deceleration

Positive number: Stop
according to deceleration

0: Stop immediately

No - Positive
number or 0

REAL

S3 Curvetype
Curve type

0: T-shaped velocity curve
Yes 0 INT

Instruction Description (LD & LiteST)

-426-

S4 OutMode

Sync end mode

0: Decelerate to stop

1: Stop immediately after
executing the current cycle

Yes 0 0 to 1 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3
Comman-
dAborted Abortion of execution Yes OFF

ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0
ON

OFF
INT

Function Description

This instruction ends cam operation of the slave axis.

When Execute is set to ON, the MC_CamIn instruction is aborted, and the abortion flag is active. If
OutMode is set to 0, the axis decelerates according to Deceleration. After it decelerates to 0, the Done
output is active. The slave axis stays in ContinuousMotion state before it stops moving. If OutMode is
set to 1, the axis stops immediately after the cam operation of the current cycle is completed. The
slave axis stays in SynchronizedMotion state before the cam operation ends.

An error occurs when this instruction is executed on an axis that is not in cam operation.

Re-triggering

When the MC_CamOut instruction is re-triggered, the axis stops according to the following rules:

Initial Stop Mode New Stop Mode Execution Result

Decelerate to stop Stop immediately after executing
the current cycle

The instruction reports an error, and
the axis decelerates to stop and
then enters the StandStill state.

Decelerate to stop Decelerate to stop The axis stops according to the new
deceleration.

Stop immediately after executing
the current cycle

Decelerate to stop The axis decelerates to stop.

Stop immediately after executing
the current cycle

Stop immediately after executing
the current cycle

The axis stops after executing the
current cycle.

Timing Diagram

● Decelerate to stop

Instruction Description (LD & LiteST)

-427-

● Stop immediately after executing the current cycle

3.10.2.4 MC_GetCamTablePhase

MC_GetCamTablePhase – Obtain cam table phase

Instruction Description (LD & LiteST)

-428-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
GetCamTablePhase

Obtain
cam
table
phase

MC_GetCamTablePhase(Execute := ???,

CamTable := ,

StartPoint := ???,

EndPoint := ???,

Distance := ???,

Done => ,

Number => ,

Phase => ,

Error => ,

ErrorID =>);

Table 3–231 Instruction format
16-bit
Instruc-
tion

-

32-bit
Instruc-
tion

MC_GetCamTablePhase: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 CamTable
Cam table

Reserved
Yes - - _sMC_CAMTABLE

S2 StartPoint Start point No - _sMC_CAM_NODE

S3 EndPoint End point No - _sMC_CAM_NODE

S4 Distance Displacement of the
slave axis

No -

Positive
number,
negative
number, or 0

REAL

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Number

Number of phases

–1: Infinite number of
identical solutions

0: None

> 0: Actual number of
phases

Yes 0 –1, 0 to 5 INT

D3 Phase Obtained phase Yes 0 Positive
number or 0

REAL[6]

D4 Error Error Yes
ON

OFF
BOOL

D5 ErrorID Error code Yes
ON

OFF
INT

Instruction Description (LD & LiteST)

-429-

Function Description

This instruction is used to obtain the phase (Phase) of the master axis according to the displacement
(Distance) of the slave axis between two cam key points.

If the cam curve is a straight line and is parallel to the X axis, the Distance specified in the instruction is
on the straight line, the instruction output parameter Number outputs –1, and Phase[0] outputs the
abscissa of the start point.

If the cam curve is a quintic curve, there may be multiple solutions. The instruction output parameter
Number indicates the number of solutions, and the Phase array stores the specific values obtained.

If there is no solution, the output parameter Number is 0.

3.10.2.5 MC_GetCamTableDistance

MC_GetCamTableDistance – Obtain cam table displacement

Graphic Block

Instruction Nam
e

LD Expression LiteST Expression

MC_
GetCamTable-
Distance

Ob-
tain
cam
table
dis-
plac-
eme-
nt

MC_GetCamTableDistance(Execute := ???,

CamTable := ,

StartPoint := ???,

EndPoint := ???,

Phase := ???,

Done => ,

Distance => ,

Error => ,

ErrorID =>);

Table 3–232 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_GetCamTablePhase: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 CamTable
Cam table

Reserved
Yes - - _sMC_CAMTABLE

S2 StartPoint Start point No - _sMC_CAM_NODE

S3 EndPoint End point No - _sMC_CAM_NODE

S4 Phase
Phase of the master
axis

No -

Positive
number,
negative
number, or 0

REAL

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-430-

D2 Distance
Obtained
displacement of the
slave axis

Yes 0

Positive
number,
negative
number, or 0

TRAL

D3 Error Error Yes
ON

OFF
BOOL

D4 ErrorID Error code Yes
ON

OFF
INT

Function Description

This instruction is used to obtain the displacement (Distance) of the slave axis according to the phase
(Phase) of the master axis between two cam key points.

3.10.2.6 MC_GearIn

MC_CamIn – Start cam operation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_GearIn
Start gear
operation

MC_GearIn(Execute := ???,

Master := ???,

Slave := ???,

RatioNumerator := ,

RatioDenominator := ,

ReferenceType := ,

Acceleration := ,

Deceleration := ,

CurveType := ,

InGear => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–233 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_GearIn: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

Instruction Description (LD & LiteST)

-431-

S1 Master

Master axis

Bus servo axis,
local pulse
axis, bus
encoder axis,
or local
encoder axis

No - -

sMCAXIS
INFO

_sENC_AXIS

_sENC_EXT_
AXIS

_sMasterAxis

S2 Slave

Slave axis

Bus servo axis
or local pulse
axis

No - - _sMCAXIS_
INFO

S3 RatioNumera-
tor

Gear ratio
(numerator) Yes 1

Positive
number

Negative
number

DINT

S4
RatioDenomi-
nator

Gear ratio
(denominator) Yes 1 Positive

number
DINT

S5
Reference-
Type

Position type

0: Instruction
position of the
previous task
cycle

1: Instruction
position of the
current task
cycle[1]

2: Feedback
position of the
current task
cycle

Yes 0 0 to 2 INT

S6 Acceleration
Acceleration

0: No
acceleration

No -
0

Positive
number

REAL

S7 Deceleration
Deceleration

0: No
deceleration

Yes Acceleration
0

Positive
number

REAL

S8 Curvetype

Curve type

0: T-shaped
acceleration
curve

Yes 0
ON

OFF
INT

D1 InGear
Gear ratio
reached

Yes -
ON

OFF
BOOL

D2 Busy Executing Yes -
ON

OFF
BOOL

D3 CommandA-
borted

Abortion of
execution

Yes -
ON

OFF
BOOL

D4 Error Error Yes -
ON

OFF
BOOL

D5 ErrorID Error code Yes -
ON

OFF
INT

Instruction Description (LD & LiteST)

-432-

Note
[1]: When selecting the set position under the same task, make sure that the axis ID of the master axis is smaller than
that of the slave axis.

After coming into action, the slave axis uses the velocity obtained by multiplying the master axis
velocity by the gear ratio as the target velocity to perform the acceleration and deceleration actions.

The phase is called Catching phase before the axis reaches the target position, and the InGear phase
after the axis reaches the target position.

If the gear ratio is positive, the slave axis moves in the same direction as the master axis.

If the gear ratio is negative, the slave axis moves in the opposite direction from the master axis.

Instruction Description (LD & LiteST)

-433-

Before reaching synchronization, the slave axis moves at the set acceleration (deceleration). When the
slave axis velocity is equal to the master axis velocity multiplied by the gear ratio, the gear is
considered to be engaged. After that, the slave axis completely follows the changes of the master axis.

Scenario 1: Before synchronization, the master axis maintains a uniformmotion (trigger-
ing the MC_GearIn instruction at the gear ratio of 1:1).

Scenario 2: Before synchronization, the master axis performs a variable motion (trigger-
ing the MC_GearIn instruction at the gear ratio of 1:1).

Filtering Function

During use, in order to reduce the velocity fluctuation of the master axis caused by the velocity
fluctuation of the slave axis, you can adjust the velocity filtering coefficient of the master axis by
setting the system variable fFilter parameter of the slave axis. The calculation formula is as follows:

MstVel = fFilter[0]*MstVel[0]+fFilter[1]*MstVel[1]+fFilter[2]*MstVel[2];

Where, MstVel is the synthetic velocity. fFilter is the filtering parameter, and the sum of three must be
equal to 1. MstVel indicates the actual master axis velocity in the current cycle, previous cycle, and
cycle before last, respectively.

Re-execution

When the MC_GearIn instruction is triggered again while the Busy signal of this instruction is still valid,
the master axis velocity will be recalculated based on the gear ratio numerator and denominator. The
slave axis will follow the calculation result and determine whether the InGear flag is set.

Multi-execution

When the MC_GearIn instruction is triggered again while the Busy signal of this instruction is still valid,
the Busy signal of the second instruction is valid, interrupting the first instruction. At the same time,

Instruction Description (LD & LiteST)

-434-

the master axis velocity will be recalculated based on the gear ratio numerator and denominator. The
slave axis will follow the calculation result and determine whether the InGear flag is set.

3.10.2.7 MC_GearOut

MC_GearOut – End gear operation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_GearOut
End gear
operation

MC_GearOut(Execute := ???,

Slave := ???,

Deceleration := ???,

CurveType := ,

OutMode := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–234 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Gearout: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Slave

Slave axis

Bus servo axis or local
pulse axis

No - - _sMCAXIS_
INFO

S2 Deceleration Deceleration No -
Positive
number or
0

REAL

S3 Curvetype
Curve type

0: T-shaped velocity curve
Yes 0 0 INT

S4 OutMode
Sync end mode

0: Decelerate to stop
Yes 0 0 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-435-

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 - INT

Function Description

The MC_GearOut instruction aborts execution of the MC_GearIn (start gear operation) instruction for
the operation axis specified by Slave at the deceleration specified by Deceleration.

This instruction does not affect the MC_GearIn (start gear operation) operation of the master axis.

Timing Diagram

Deceleration to stop

3.10.2.8 MC_Phasing

MC_Phasing – Master axis phase shifting

Instruction Description (LD & LiteST)

-436-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_Phasing
Master axis phase
shifting

MC_Phasing(Execute := ???,

Slave := ???,

PhaseShift := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

Mode := ,

Done => ,

Busy => ,

Active => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–235 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Phasing: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Slave Slave axis

Bus servo axis
or local pulse
axis

No - - _sMCAXIS_
INFO

S2 PhaseShift Phase
compensation

No - Positive
number

0

Negative
number

REAL

S3 Velocity Target
velocity

No - Positive
number

REAL

S4 Acceleration Acceleration No - Positive
number

REAL

S5 Deceleration Deceleration Yes Acceleration Positive
number

REAL

S6 Mode Mode

0: Reserved

1: Pause when
the velocity of
the master
axis is 0

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-437-

D1 Done Completion
flag

Yes OFF ON

OFF

BOOL

D2 Busy Executing Yes OFF ON

OFF

BOOL

D3 Active Executing
instruction

Yes OFF ON

OFF

BOOL

D4 CommandA-
borted

Abortion of
execution

Yes OFF ON

OFF

BOOL

D5 Error Error Yes OFF ON

OFF

BOOL

D6 ErrorID Error code Yes 0 ON

OFF

INT

Function Description

If the MC_Phasing instruction is executed when single-axis synchronized control is in progress, the
phase of the master axis is shifted according to the settings of PhaseShift (phase shift), Velocity (target
velocity), Acceleration (acceleration), and Deceleration (deceleration).

● When working with cam operation, this instruction can be called only after the MC_CamIn
instruction is called. When InSync of the MC_CamIn instruction is OFF, the MC_Phasing instruction
is in the buffered state, in which the Busy signal is active but the Active signal output is inactive.
When InSync of the MC_CamIn instruction becomes ON, the cam is fully engage. At this time, the
Active signal output of the MC_Phasing instruction becomes active, and phase shifting starts.

● When working with gear operation, this instruction can be called only after the MC_GearIn
instruction is called. The MC_GearIn instruction is triggered first to establish a gear relationship
between the master and slave axes. After the slave axis enters the SynchronizedMotion state, the
MC_Phasing instruction is triggered and starts to perform the corresponding shifting operation.

During execution, the set position (feedback position) of the master axis does not change, and the
relative shift compensated for the set position (feedback position) is taken as the phase of the master
axis. The slave axis is synchronized to the shifted master axis phase.

The Done signal changes to ON when the PhaseShift (phase shift) is reached.

Shifting ends when execution of the synchronized control instruction is completed. If a synchronized
control instruction is executed again, the previous amount of shift is not affected.

You can shift the phase of the master axis for the following synchronized control instructions: MC_
CamIn (start cam operation) and MC_GearIn (start gear operation).

Control Mode Selection

When Mode is set to 1, if the master axis stops running (the velocity of the master axis is 0), phase
shifting automatically stops. When the master axis starts running again, phase shifting continues from
the original position where it was suspended.

Instruction Description (LD & LiteST)

-438-

Timing Diagram

3.10.2.9 MC_SaveCamTable

MC_SaveCamTable – Save cam table

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_SaveCamTable Save cam
table

MC_SaveCamTable(Execute := ???,

CamTable := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–236 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_SaveCamTable: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 CamTable Cam table No - _sMC_
CAMTABLE

Instruction Description (LD & LiteST)

-439-

D1 Done Completion flag Yes -
ON

OFF
BOOL

D2 Busy Executing Yes
ON

OFF
BOOL

D3 CommandAborted
Abortion of
execution

Yes
ON

OFF
BOOL

D4 Error Error Yes
ON

OFF
BOOL

D5 ErrorID Error code Yes
ON

OFF
INT

Function Description

This instruction saves the cam table specified by CamTable to non-volatile memory on the rising edge
of the Execute input.

Do not turn off the power supply of the controller during execution of this instruction. Otherwise, data saving may
fail, which results in cam data loss.

Timing Diagram

3.10.2.10 MC_GenerateCamTable

MC_GenerateCamTable – Update cam table

Instruction Description (LD & LiteST)

-440-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_
Generate-
CamTable

Update
cam
table

MC_GenerateCamTable(Execute := ???,

CamTable := ???,

CamNode := ,

NodeNum := ,

Mode := ,

Done => ,

EndPointIndex => ,

ErrorNodePointIndex => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–237 Instruction format
16-bit
Instruc-
tion

-

32-bit
Instruc-
tion

MC_GenerateCamTable: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 CamTable Cam table No - _sMC_
CAMTABLE

S2 CamNode

Cam node array

If it is left empty, the
original cam node array is
used.

Yes - _sMC_CAM_
NODE

S3 NodeNum

Number of cam nodes

If it is left empty, the
original cam node
quantity is used.

Yes - 2 to 361 INT

S4 Mode

Effective mode

0: Effective upon the next
cam cycle

Others: Reserved

Yes 0 0 INT

D1 Done Completion flag Yes -
ON

OFF
BOOL

D2 EndPointIndex End point index Yes 0 0 to 360 INT

D3 ErrorNodePointIn-
dex

Error node number Yes 0 0 to 360 INT

D4 Busy Executing Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-441-

D5 CommandAborted Abortion of execution Yes OFF
ON

OFF
BOOL

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes OFF
ON

OFF
INT

Function Description

The MC_GenerateCamTable instruction calculates cam data based on input variables CamNode and
CamNum on the rising edge of Execute and updates the data to the cam table specified by CamTable.
The update takes effect upon the next cam cycle.

Function of CamNode

CamNode specifies whether to use a new cam node array. When it is empty, the original cam table
node array specified by CamTable is adopted. When it is not empty, the cam node array specified by
CamNode is adopted.

● CamNode is empty.
You can modify the value of the cam node array in the cam table by using the PLC program and
make the modification take effect in the next cam cycle by executing the MC_GenerateCamTable
instruction.

The program example is as follows:

Instruction Description (LD & LiteST)

-442-

● CamNode is specified.
You can create a new cam node array by using the PLC program and copy the value in this array to
the cam table by executing the MC_GenerateCamTable instruction so that the value is executed
upon the next cam cycle.

Instruction Description (LD & LiteST)

-443-

The program example is as follows:

Function of NodeNum

NodeNum specifies the number of nodes in the newly generated cam table. When it is empty, the
number of nodes in the cam table remains unchanged. When it is not empty, the node quantity
specified by NodeNum is adopted.

You can modify the number of key points in the cam table and make the modification take effect in the
next cam cycle by executing the MC_GenerateCamTable instruction.

The program example is as follows:

Instruction Description (LD & LiteST)

-444-

Parameter Check

This instruction first checks the cam table data when it is called.

● Both the phase and displacement of the first point must be 0; otherwise, the instruction reports an
error.

● The absolute values of the phase, displacement, and velocity ratio cannot be greater than 9999999;
otherwise, the instruction reports an error.

● The node quantity cannot be greater than 361; otherwise, the instruction reports an error.
● The node quantity cannot be less than 2; otherwise, the instruction reports an error.
● The phases must be sorted in ascending order; otherwise, the instruction reports an error.
● The difference between two adjacent master axis phases must be greater than 0.0001; otherwise,

the instruction reports an error.
● The node curve type is set to linear or quintic curve; otherwise, the instruction reports an error.

Instruction Description (LD & LiteST)

-445-

Velocity Ratio Adjustment Rules

If the velocity ratio of key points is improper, this instruction will automatically adjust the velocity ratio
of cam nodes based on the following rules:

● If the current segment is a straight line, the velocity ratio is automatically adjusted according to the
formula.
For example, if the curve between points A1 and A2 is a straight line, the calculated velocity ratio is
written to A2.

The coordinates of A1 are (x1, y1), the coordinates of A2 are (x2, y2), then the velocity ratio of
straight line A1-A2 is as follows: V2 = |y2 – y1|/|x2 – x1|.

● If a quintic curve is followed by a straight line, adjustment is required to ensure the continuity of the
velocity ratio at the link point between the quintic curve and the straight line and prevent jumping.
Assume that the curve between points A1 and A2 is a quintic curve, and that between points A2 and
A3 is a straight line.

The velocity ratio of the straight line segment is calculated and written to A3. Then the velocity ratio
of the end point of the quintic curve is adjusted and written to A2.

The coordinates of A2 are (x2, y2), the coordinates of A3 are (x3, y3), then the velocity ratio of
straight line A2-A3 is as follows: V3 = |y3 – y2|/|x3 – x2|.

The velocity ratio of point A2 is set to a value same as that of point A3.

● If a quintic curve is followed by a quintic curve, no adjustment is required.
● If a straight line is followed by a straight line, the link velocity of each segment needs to be

calculated separately. In this case, sudden change in the link velocity ratio is allowed.
For example, assume that A1-A2 is straight line segment 1, and A2-A3 is straight line segment 2. The
velocity ratio of segment 1 is calculated first and written to A2, and then the link velocity of
segment 2 is calculated and written to A3. In this case, there is a sudden change in velocity caused
by unequal link velocities between segment 1 and segment 2.

Re-execution

If this instruction is re-triggered while the Busy signal is still active, the cam table is modified according
to the new parameters.

Multi-execution

If a new MC_GenerateCamTable instruction is triggered while the Busy signal of the current MC_
GenerateCamTable instruction is still active, the current instruction is aborted, the CommandAborted
signal output becomes active, and the cam table is modified according to the parameters of the newly
triggered instruction.

3.10.2.11 MC_DigitalCamSwitch

MC_DigitalCamSwitch – Tappet control

Instruction Description (LD & LiteST)

-446-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_DigitalCamSwitch
Electronic
cam tappet
control

MC_DigitalCamSwitch(Enable := ???,

Axis := ???,

ReferenceType := ,

Switches := ???,

Number := ???,

Channel := ???,

InOperation => ,

Table 3–238 Instruction format
16-bit

Instruction
-

32-bit
Instruction

MC_DigitalCamSwitche: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Axis Axis name No - -
sMCAXIS
INFO

_sENC_AXIS

S2 ReferenceType

Position type

0: Set position of the
previous cycle

1: Set position of the
current cycle

2: Feedback position of the
current cycle

3: Phase of the master axis
when the axis specified by
Axis works as the cam
slave axis

Yes 0 0 to 3 INT

S3 Switches Switch No - -
sMC
DigitalSwitch
[1-32]

S4 Number Quantity No - 1 to 32 INT

S5 Channel

Tappet terminal

0–13 indicate actual
terminal.

1000–1007 indicate virtual
tappets.

No - - INT

D1 InOperation Executing tappet Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D4 OutStatus Output state Yes OFF ON/OFF BOOL

D5 Index
Index

Comparison point to be
executed

Yes 0 0 to 31 INT

Instruction Description (LD & LiteST)

-447-

16-bit
Instruction

-

32-bit
Instruction

MC_DigitalCamSwitche: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

D6 CommandA-
borted

Abortion of execution Yes OFF ON/OFF BOOL

D7 Error Error flag Yes OFF ON/OFF BOOL
D8 ErrorID Fault code Yes 0 - INT16

Function Description

This instruction works with the cam to implement the tappet function. Switches specifies the tappet
output points, and Channel specifies the tappet terminal. The instruction allows a DI terminal of the
body but not an expansion module to be used as a tappet terminal.

● The instruction latches the input parameters on the left on the rising edge of Enable to execute the
tappet output comparison function.

● When Enable is ON, modifications on the input parameters on the left do not take effect. The
Enable signal must remain ON during the entire tappet output process.

● The instruction stops comparison output on the falling edge of Enable and aborts the tappet
terminal that outputs ON.

Selecting tappet terminal source

The tappet terminal is specified by the variable Channel. 0–7 correspond to Y00–Y07, 8–13
corresponding to Y10–Y15, and 1000–1007 are virtual tappets, which are only counted as tappets but
not output to actual hardware terminals.

Setting tappet points

Tappet comparison points are specified by the variable Switches. This variable is a _sMC_DigitalSwitch
structure array.

Variable Data Type Description

fPosition REAL Absolute position for the output to turn ON

iMode INT

Switch mode

0: Disabled

1: Position type

2: Time type

iDirection INT

Direction of the master axis

0: Forward

1: Reverse

2: No direction

fParameter REAL

Position type: ON end position

Time type: ON output time (unit: ms). The decimal part after the
decimal point is ignored in time mode, and the value cannot be greater
than 10000 ms.

Instruction Description (LD & LiteST)

-448-

Note
The ON start point of the tappet point array in one direction must remain unique. For example, in the set of points
of which iDirection is 0/2, fPosition must be unique.

Start and end of tappet comparison output

After the tappet instruction is executed, it internally sorts the tappet point array, determines the tappet
point closest to the current position of the axis, and sets the tappet to ON immediately when the axis
moves to this point.

iMode specifies the comparison mode.

● When iMode is set to 0, the comparison point is disabled. When the axis passes this point, the
tappet has no output.

● When iMode is set to 1, fParameter specifies the position where the tappet output turns OFF.
● When iMode is set to 2, fParameter specifies the time duration (in ms) during which the tappet

output remains ON.

iDirection specifies the running direction of the master axis. It needs to work with iMode.

No. fPosition fParameter iMode iDirection
0 10 15 1 0
1 20 25 1 0
2 24 30 1 0
3 35 100 2 0
4 40 45 0 0
5 10 15 1 1
6 20 25 1 1
7 24 30 1 1
8 35 100 2 1

When the master axis runs in forward direction:

When the master axis runs in reverse direction:

Instruction Description (LD & LiteST)

-449-

Note
When the width of the tappet output ON is less than one EtherCAT cycle, the actual output terminal will last for one
EtherCAT cycle.

Tappet output status monitoring

OutStatus indicates the tappet output state. In the main task, this variable is used to monitor the
tappet output state. Assume that the tappet point is set to Y0.

Re-triggering

This instruction is an instruction controlled by Enable and does not involve re-triggering.

Multi-execution

If the values of Channel of two MC_DigitalCamSwitch instructions are the same, and the second
instruction is triggered while the Busy signal of the first instruction is still active, the first instruction is
aborted and the tappet point is output under the control of the second tappet instruction.

3.10.2.12 MC_GearInPos

MC_GearInPos – Start the gear operation at the specified position

Instruction Description (LD & LiteST)

-450-

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_GearInPos

Start the
gear
operation
at the
specified
position

MC_GearInPos(Execute := ??? ,

Master := ???,

Slave :=??? ,

RationNumberator := ,

RationDenominator := ,

ReferenceType := ,

MasterSyncPosition :=??? ,

SlaveSyncPosition :=??? ,

MasterStarDistance :=??? ,

Velocity := ,

Acceleration := ,

Deceleration := ,

AvoidReversal := ,

StartSync => ,

InSync =>,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–239 Instruction format
16-bit

Instruction
-

32-bit
Instruction

MC_GearInPos: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Master Master axis

Bus servo axis, local pulse
axis, bus encoder axis, or
local encoder axis

No - - _sMCAXIS_
INFO

_sENC_AXIS_
sENC_EXT_
AXIS

_sMasterAxis
S2 Slave Slave axis

Bus servo axis or local
pulse axis

No - - _sMCAXIS_
INFO

S3 RatioNumerator Gear ratio (numerator) Yes 1 Positive or
negative
number

DINT

Instruction Description (LD & LiteST)

-451-

16-bit
Instruction

-

32-bit
Instruction

MC_GearInPos: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S4 RatioDenomina-
tor

Gear ratio (denominator) Yes 1 Positive
number

DINT

S5 ReferenceType Position type

0: Set position of the
previous cycle

1: Set position of the
current cycle

2: Feedback position of the
current cycle

Yes 0 0 to 2 INT

S6 MasterSyncPo-
sition

Position of the master axis No - Positive
number,
negative
number, or
0

REAL

S7 SlaveSyncPosi-
tion

Sync position of the slave
axis

No - Positive
number,
negative
number, or
0

REAL

S8 MasterStarDis-
tance

Movement distance of the
master axis in the Catching
phase

No - Positive
number or
0

REAL

S9 Velocity Velocity (Reserved) Yes 1 Positive
number

REAL

S10 Acceleration Acceleration (Reserved) Yes 0 Positive
number or
0

REAL

S11 Deceleration Deceleration (Reserved) Yes Acceler-
ation

Positive
number or
0

REAL

S12 AvoidReversal Reversal prohibited
(Reserved)

Yes 0 0 INT

D1 InSync Synchronizing Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D4 CommandA-
borted

Abortion of execution Yes OFF ON/OFF BOOL

D5 Error Error Yes OFF ON/OFF BOOL
D6 ErrorID Error code Yes 0 - INT16

Function Description

This instruction specifies the axis of the operation object through Slave (slave axis). According to the
input parameters RatioNumerator, RatioDenominator, ReferenceType, MasterSyncPosition,
SlaveSyncPosition, MasterStarDistance, motion planning is performed on the slave axis to finally
implement gear operation.

Instruction Description (LD & LiteST)

-452-

The instruction allows you to select the master axis position (Master) through ReferenceType:

● _mcCommand: Instruction position (value calculated in the latest task cycle). For the current cycle,
use the master axis instruction position calculated during the previous task cycle. In the fixed-cycle
task before the master axis instruction position is calculated, use the calculated master axis
instruction position.

● _mcLatestCommand: Instruction position (value calculated under the same task cycle). Use the
master axis instruction position calculated in the same task cycle.

● _mcFeedback: Value obtained during the same task cycle. Use the master axis feedback position
obtained in the same task cycle.

The interval from the point that the slave axis starts catching up to the point that the axis reach the
sync position is called Catching phase. After the axis reaches the target position, the phase is called
InGear phase. After gear synchronization, the slave axis moves synchronously with the master axis at
any interval.

The nature of the motion process in the Catching phase is that the slave axis follows an electronic cam
of the master axis. At this time, based on the master axis range (MasterCatchPosition,
MasterSyncPosition) and the slave axis range (slave axis position when the Catching phase is triggered,
SlaveSyncPosition), the instruction will plan a quintic cam curve based on the set gear ratio, velocity
ratio of the master and slave axes when the Catching phase is triggered, and the above position
parameters, so that the slave axis follow the master axis to complete the cam movement in the
Catching phase.

The instruction determines the catch-up start position of the master axis (MasterCatchPosition) based
on the movement direction of the master axis at the instruction start time. When the master axis is a
linear axis:

The master axis movement direction is positive, and MasterCatchPosition = MasterSyncPosition –
MasterStartDistance.

The master axis movement direction is negative, and MasterCatchPosition = MasterSyncPosition +
MasterStartDistance.

If the instruction determines that the current position and movement direction of the master axis do
not allow the master axis to reach the catch-up start position to trigger the gear Catching phase, it
reports the fault code 9304.

When the master axis is in rotation mode, the calculation principle of its catch-up start position is
shown in the following figure.

Instruction Description (LD & LiteST)

-453-

When the master axis velocity is 0 at the instruction start time, the catch-up start position cannot be
determined, and the instruction reports the fault code 9301.

After gear synchronization, the slave axis multiplies the master axis velocity by the gear ratio
(RatioNumerator/RatioDenominator) to obtain the target velocity, and synchronizes the acceleration
and deceleration actions with the master axis.

When the gear ratio is positive, the slave axis moves in the same direction as the master axis after it
reaches the sync position.

When the gear ratio is negative, the slave axis moves in the opposite direction of the master axis after it
reaches the sync position.

Instruction Description (LD & LiteST)

-454-

In the catching process, if the master axis position deviates from the catching area due to vibration, the
instruction will exit the Catching phase and StarSync will be set to FALSE.

In addition, when the master axis velocity varies greatly in different cycles, the slave axis velocity is
also not fixed. Before InSync of gear synchronization is reached, the slave axis also tracks the master
axis position. The following figure shows the details.

Instruction Description (LD & LiteST)

-455-

If MasterStarDistance is set to 0, the instruction immediately enters the Catching phase while starting
Execute, StartSync is set to TRUE, and the slave axis starts the gear catching action.

Re-triggering

If the MC_GearInPos instruction is triggered again when the Busy signal of the previous MC_GearInPos
instruction is valid and StarSync is invalid, the slave axis motion from the Catching phase to the InSync
phase will be re-planned based on the input parameters, and the StarSync and InGear flag bits will be
reset. If the axis already enters the Catching phase and StarSync is ON, you need to call MC_GearOut to
restart the MC_GearInPos instruction, otherwise the instruction reports the fault code 9303.

Instruction Description (LD & LiteST)

-456-

Multi-execution

If the MC_GearInPos instruction is triggered again when the Busy signal of the previous MC_GearInPos
instruction is valid and StarSync is invalid, the Busy signal of the second MC_GearInPos instruction is
valid, the first MC_GearInPos instruction is interrupted, and the slave axis motion from the Catching
phase to the InSync phase will be re-planned based on the input parameters. If the first MC_GearInPos
instruction already enters the Catching phase and StarSync is ON, you need to call MC_GearOut and
then trigger the second MC_GearInPos instruction, otherwise the instruction reports the fault code
9303.

Abnormalities

When the instruction encounters an abnormality, the timing diagram is as follows:

StarSync

InSync

Busy

Execute

CommandAborted

Error

ErrorID 0

It is prohibited to execute the MC_SetPositionon instruction on the master and slave axes during
execution of the MC_GearInPos instruction. When the MC_SetPosition instruction is being executed on
the master axis, slave axis rapid tracking may occur, which is dangerous. Unbind the master axis from
the slave axis before executing the MC_SetPosition instruction on the master or slave axis.

3.10.2.13 Fault Codes

When a fault occurs during use of the electronic cam functions, refer to the fault codes listed in the fol-
lowing table for troubleshooting.

Table 3–240 Fault codes
Fault Code Fault Information Troubleshooting Stop Triggered

9200 Failed to obtain the cam table
configuration file.

1. Check whether the board software and
background software match.

2. Re-download the cam configuration table.

No

9201 Failed to obtain the master axis. 1. Check whether the master axis called in the
program exists.

2. Check whether the master axis has reported
an error.

Yes

9202 Failed to obtain the slave axis. 1. Check whether the slave axis called in the
program exists.

2. Check whether the slave axis has reported an
error.

No

9203 Failed to obtain the cam table. Check whether the cam table called exists. Yes

Instruction Description (LD & LiteST)

-457-

Fault Code Fault Information Troubleshooting Stop Triggered

9204 The number of cams executed
simultaneously in the PLC program
exceeds the maximum allowable value.

Check whether the number of cams executed
simultaneously in the program exceeds the
threshold.

Yes

9205 The corresponding cam node is not
found.

The specified slave axis is not a cam node. Set
the parameters again.

Yes

9206 The master axis is changed during cam
engagement.

Do not change the master axis during cam
engagement.

Yes

9207 StartMode of the MC_CamIn instruction
is out of range.

Ensure that the parameter value is within the
specified range.

Yes

9208 StartPosition of the MC_CamIn
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9209 MasterStartDistance of the MC_CamIn
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9210 MasterScaling of the MC_CamIn
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9211 SlaveScaling of the MC_CamIn
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9212 MasterOffset of the MC_CamIn
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9213 SlaveOffset of the MC_CamIn instruction
exceeds the maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9214 MasterScaling of the MC_CamIn
instruction is not a positive number.

Set this parameter to a positive number. Yes

9215 SlaveScaling of the MC_CamIn
instruction is not a positive number.

Set this parameter to a positive number. Yes

9216 ReferenceType of the MC_CamIn/MC_
GearIn instruction is out of range.

Ensure that the parameter value is within the
specified range.

Yes

9217 Direction of the MC_CamIn instruction is
out of range.

Ensure that the parameter value is within the
specified range.

Yes

9218 BufferMode of the MC_CamIn
instruction is out of range.

Ensure that the parameter value is within the
specified range.

Yes

9219 The master axis phases in the node
array of the cam table are not sorted in
ascending order.

Sort the master axis phases in ascending order
when customizing cam table nodes.

Yes

9220 The curve type setting of the node array
of the cam table is out of range.

Check whether the curve type of the cam node
array is set incorrectly.

Yes

9221 The target deceleration of the MC_
CamOut instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9222 The target deceleration of the MC_
CamOut instruction is out of range.

Ensure that the target deceleration is within
the specified range.

Yes

9223 The target acceleration of the MC_
Phasing instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9224 The target acceleration of the MC_
Phasing instruction is out of range.

Ensure that the target acceleration is within the
specified range.

Yes

Instruction Description (LD & LiteST)

-458-

Fault Code Fault Information Troubleshooting Stop Triggered

9225 The target velocity of the MC_Phasing
instruction exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9226 The target velocity of the MC_Phasing
instruction is out of range.

Ensure that the target velocity is within the
specified range.

Yes

9227 The curve type setting of the MC_
CamOut instruction is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

Yes

9228 OutMode of the MC_CamOut instruction
is out of range.

Ensure that OutMode is within the specified
range.

Yes

9229 The MC_GenerateCamTable instruction
detects that the cam node array is
empty.

Contact Inovance for technical support. No

9230 The node quantity specified by the MC_
GenerateCamTable instruction exceeds
the maximum allowable value.

Check whether the target node quantity
specified in the instruction is beyond the
specified range.

No

9231 Mode of the MC_GenerateCamTable
instruction is out of range.

Ensure that the parameter value is within the
specified range.

No

9232 The node quantity specified by the MC_
GenerateCamTable instruction is too
small.

Ensure that the node quantity is 2 or more. No

9233 RatioNumerator of the gear instruction
is 0.

Set this parameter to a non-zero integer. Yes

9234 RatioDenominator of the gear
instruction is not greater than 0.

Set this parameter to an integer greater than 0. Yes

9235 The MC_GenerateCamTable instruction
is being executed when the MC_
SaveCamTable instruction is called.

Do not call the MC_SaveCamTable instruction
before the cam table data update operation is
completed.

No

9236 The MC_SaveCamTable instruction is
being executed on the cam table when
the MC_GenerateCamTable instruction
is called.

Do not call the MC_GenerateCamTable
instruction before the cam table is saved.

No

9237 Failed to open the cam table file during
execution of the MC_SaveCamTable
instruction.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

No

9238 Failed to write the cam point quantity
when the cam table is being saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

No

9239 Failed to write data when the cam table
is being saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

No

9240 The phase of the first point is not 0. Ensure that the phase of the first point is 0. Yes

9241 The displacement of the first point is not
0.

Ensure that the displacement of the first point
is 0.

Yes

9242 Mode of the MC_GearOut instruction is
out of range.

Ensure that Mode is within the specified range. Yes

9243 The target deceleration of the MC_
Phasing instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9244 The target deceleration of the MC_
GearIn instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9245 Periodic of the MC_CamIn instruction is
out of range.

Ensure that the parameter value is within the
specified range.

Yes

Instruction Description (LD & LiteST)

-459-

Fault Code Fault Information Troubleshooting Stop Triggered

9246 The phase in the cam table exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number does not exceed 9999999.

Yes

9247 The absolute value of the displacement
in the cam table exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number does not exceed 9999999.

Yes

9248 The absolute value of the link velocity in
the cam table exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-
point number does not exceed 9999999.

Yes

9249 The gear node is empty. Contact Inovance for technical support. Yes

9250 The master axis and slave axis are the
same.

Do not use the same axis as both the master
axis and slave axis of the cam gear.

Yes

9251 The configuration address of the master
axis is greater than or equal to that of
the slave axis.

When ReferenceType is set to set position of
the current cycle, ensure that the configuration
address of the master axis is less than that of
the slave axis.

Yes

9252 The master axis filter coefficient fFilter
[0] corresponding to the slave axis is out
of range.

Ensure that the value of this variable is
between 0 and 1 (0 and 1 included).

Yes

9253 The master axis filter coefficient 2fFilter
[1] corresponding to the slave axis is out
of range.

Ensure that the value of this variable is
between 0 and 1 (0 and 1 included).

Yes

9254 The master axis filter coefficient 3fFilter
[2] corresponding to the slave axis is out
of range.

Ensure that the value of this variable is
between 0 and 1 (0 and 1 included).

Yes

9255 The sum of the master axis filter
coefficients corresponding to the slave
axis is not 1.

Ensure that the sum of the master axis filter
coefficients corresponding to the slave axis is 1.

Yes

9256 The start position and start distance of
the master axis in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and
Direction in the instruction is set to positive,
ensure that the cam synchronization point is
not less than the cam engagement point.

Yes

9257 The start position and start distance of
the master axis in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and
Direction in the instruction is set to negative,
ensure that the cam synchronization point is
not greater than the cam engagement point.

Yes

9258 The target deceleration of the MC_
GearOut instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9259 The target deceleration of the MC_
Phasing instruction is out of range.

Ensure that the target deceleration is within
the specified range.

Yes

9260 The target deceleration of the MC_
GearIn instruction is out of range.

Ensure that the target deceleration is within
the specified range.

Yes

9261 The target deceleration of the MC_
GearOut instruction is out of range.

Ensure that the target deceleration is within
the specified range.

Yes

9262 The target acceleration of the MC_
GearIn instruction exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-
point number in the motion control instruction
does not exceed 9999999.

Yes

9263 The target acceleration of the MC_
GearIn instruction is out of range.

Ensure that the target acceleration is within the
specified range.

Yes

9264 The curve type setting of the MC_
Phasing instruction is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

Yes

Instruction Description (LD & LiteST)

-460-

Fault Code Fault Information Troubleshooting Stop Triggered

9265 The curve type setting of the MC_GearIn
instruction is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

Yes

9266 The curve type setting of the MC_
GearOut instruction is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

Yes

9267 The slave axis is modified during the
cam operation.

Do not modify the slave axis during the cam
operation.

Yes

9268 Mode of the MC_Phasing instruction is
out of range.

Ensure that the parameter value is within the
specified range.

Yes

9269 The current axis is not in cam control
mode when the MC_CamOut instruction
is called.

Ensure that the axis works in cam control mode
when the MC_CamOut instruction is called.

No

9270 The current axis is not in gear control
mode when the MC_GearOut instruction
is called.

Ensure that the axis works in gear control mode
when the MC_GearOut instruction is called.

No

9271 The position change of the master axis
is too large within a single EtherCAT
cycle during cam/gear operation.

Ensure that the position change of the master
axis is not greater than half a cam cycle within
a single EtherCAT cycle.

Yes

9272 The point specified by Phase in the MC_
GetCamTableDistance instruction does
not fall between the start and end
points.

Ensure that the point specified by Phase is
within the specified curve.

No

9273 The slave axis is changed during
execution of the MC_GearIn instruction.

Do not change the slave axis during execution
of the MC_GearIn instruction.

Yes

9274 Channel of the MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

No

9275 The axis is not found. Ensure that the axis specified by Axis exists. No

9276 The number of tappets allowed to be
executed at the same time is out of
range.

Ensure that the number of tappets allowed to
be executed at the same time is within the
allowable range.

No

9277 ReferenceType of the MC_
DigitalCamSwitch instruction is out of
range.

Ensure that the parameter value is within the
specified range.

No

9278 Number of the MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

No

9279 The Switches array of the MC_
DigitalCamSwitch instruction is empty.

Check whether the length of the Switches array
meets requirements.

No

9280 fPosition of the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

No

9281 iMode of the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

No

9282 iDirection of the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

No

9283 fParameter of the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

No

9284 When the tappet comparison point is
set to time mode, the time setting is out
of range.

Ensure that the parameter value is within the
specified range.

No

9285 The selected axis is not under cam
control when ReferenceType of the MC_
DigitalCamSwitch instruction is set to 3.

Call the MC_DigitalCamSwitch instruction after
cam control takes effect.

No

Instruction Description (LD & LiteST)

-461-

Fault Code Fault Information Troubleshooting Stop Triggered

9286 Axis communication is interrupted
during tappet execution.

Ensure that axis communication is not
interrupted during tappet execution.

No

9287 The comparison position start points
are the same during tappet execution.

Ensure that the start points are not duplicate. No

9288 The comparison position start and end
point are the same during tappet
execution.

Ensure that the start and end points are not
duplicate.

No

9289 The selected tappet terminal is being
used by another function.

Check whether the terminal is set as the pulse
output axis.

No

9290 The MC_DigitalCamSwitch instruction
cannot be executed because the state of
the motion control axis is improper.

Do not execute the MC_DigitalCamSwitch
instruction in homing mode.

No

9291 The MasterSyncPosition setting in the
MC_GearInPos instruction is out of
range.

Ensure that the parameter value is within the
specified range.

Yes

9292 The SlaveSyncPosition setting in the
MC_GearInPos instruction is out of
range.

Ensure that the parameter value is within the
specified range.

Yes

9293 The MasterStarDistance setting in the
MC_GearInPos instruction is out of
range.

Ensure that the parameter value is within the
specified range.

Yes

9294 The Velocity setting in the MC_
GearInPos instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

Yes

9295 The Velocity setting in the MC_
GearInPos instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

Yes

9296 The Acceleration setting in the MC_
GearInPos instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

Yes

9297 The Acceleration setting in the MC_
GearInPos instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

Yes

9298 The Deceleration setting in the MC_
GearInPos instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

Yes

9299 The Deceleration setting in the MC_
GearInPos instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

Yes

9300 The AvoidReversal setting in the MC_
GearInPos instruction is out of range.

Ensure that the parameter value is within the
specified range.

Yes

9301 The master axis speed is zero when the
MC_GearInPos instruction is started.

Ensure that the master axis speed is not zero
when starting this instruction.

Yes

9302 The master axis did not move during the
catching phase of the MC_GearInPos
instruction.

When MasterStarDistance is set to 0, ensure
that the input MasterSyncPosition does not
overlap with the current position of the master
axis.

Yes

9303 When the MC_GearInPos instruction is
started, the speed of the slave axis is not
zero before entering the catching phase.

Ensure that the slave axis remains stationary
before entering the catching phase.

Yes

Instruction Description (LD & LiteST)

-462-

Fault Code Fault Information Troubleshooting Stop Triggered

9304 Failed to enter the catching phase when
the MC_GearInPos instruction is
executed.

Ensure that the master axis can enter the
catching phase under the current position and
motion direction conditions.

Yes

9305 The velocity of the slave axis exceeds
the limit during execution of the MC_
GearInPos instruction.

Ensure that the parameter value is within the
specified range.

Yes

3.10.3 Axis Group Control Instructions

3.10.3.1 Instruction List

The following table lists the axis group control instructions.

Instruction Category Instruction Function

Axis group control
instruction

MC_MoveLinear Linear interpolation

MC_MoveCircular Circular interpolation

MC_MoveEllipse Elliptical interpolation
MC_GroupStop Stop axis group operation

MC_GroupPause Pause axis group operation

3.10.3.2 MC_MoveLinear

MC_MoveLinear – Linear interpolation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveLinear
Linear
interpola-
tion

MC_MoveLinear(Execute := ???,

Group := ???,

Position := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

CurveType := ,

AbsRelMode := ,

BufferMode := ,

Done => ,

Busy => ,

Active => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-463-

Table 3–241 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveLinear: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Group Axis ID No - - Axis group, INT

S2 Position Target position No - Positive
number

Negative
number

0

REAL[0–3] or

sMCGROUP_
INFO

S3 Velocity Target velocity No - Positive
number

REAL

S4 Acceleration Acceleration No - Positive
number

REAL

S5 Deceleration Deceleration Yes Acceleration Positive
number

REAL

S6 CurveType Velocity curve type

0: T-shaped velocity curve

Others: T-shaped velocity
curve

Yes 0 0 INT

S7 AbsRelMode Absolute or relative
positioning mode

0: Absolute positioning

1: Relative positioning

Yes 0 0 to 1 INT

S8 BufferMode Buffer mode

0: Aborting+No transition

1: Buffered+No transition

2: Previous velocity+No
transition

3: Superimpose corners

Yes 0 0 to 3 INT

D1 Done Target position reached

ON after the target
position is reached

Yes OFF ON

OFF

BOOL

D2 Busy Busy flag Yes OFF ON

OFF

BOOL

D3 Active Controlling

ON when starting to
execute the current curve
segment

Yes OFF ON

OFF

BOOL

D4 CommandA-
borted

Abortion of execution Yes OFF ON

OFF

BOOL

D5 Error Error flag Yes OFF ON

OFF

BOOL

D6 ErrorID Fault Code Yes 0 *1 INT

Instruction Description (LD & LiteST)

-464-

Note
*1: See “3.10.3.7 Fault Codes” on page 487.

Function and Instruction Description

The MC_MoveLinear instruction performs linear interpolation on axis groups. It is active on the rising
edge.

● Specifying axis
Group is latched on the rising edge of the Execute input.

Modification on Group is invalid when Execute is ON.

Modification on Group is valid when Execute is OFF.

● Relationship with single-axis control instructions
This instruction can be triggered only after all axes in the axis group are switched to the StandStill
state by executing the MC_Power instruction.

This instruction is invalid if it is triggered during single-axis operations (such as jogging, torque
control, homing, and stop).

After this instruction is triggered, the single-axis PLCOpen state machine is in SynchronizedMotion
state. During operation, this instruction cannot be aborted by single-axis motion instructions. After
the interpolation curve is completed, the single-axis PLCOpen state machine enters the StandStill
state, and single-axis motion instructions can be executed at this time.

Velocity specifies the target velocity of the interpolator. The velocity of each coordinate axis is
resolved according to formulas (1), (2), and (3).

● Description
Position specifies the target position or displacement. Position[0] indicates the position
displacement component of the x-axis, Position[1] indicates the position displacement component
of the y-axis, Position[2] indicates the position displacement component of the z-axis, and Position
[3] indicates the position displacement component of the auxiliary axis.

Velocity specifies the target velocity of the interpolator. The velocity of each coordinate axis is
resolved according to formulas (1), (2), and (3).

Instruction Description (LD & LiteST)

-465-

The interpolation velocity of the auxiliary axis differs in the following two cases:

1. When the point on the coordinate axes does not move and the auxiliary axis moves
independently, the auxiliary axis moves according to the target velocity specified by Velocity.

2. When the point on the coordinate axes moves, the auxiliary axis will reach the target position at
the same time as the point on the coordinate axes. Assume that the linear interpolation length is
L1, the target displacement of the auxiliary axis is L2, and the linear interpolation rate at a certain
moment is V0. The velocity Va of the auxiliary axis is calculated as follows:

● Relative/Absolute mode election
When AbsRelMode is set to 0, the absolute positioning mode is used. After this instruction is
triggered, the three coordinate axes will finally move to the position specified by (Position[0],
Position[1], Position[2]), and the auxiliary axis will move to the position specified by Position[3].

When AbsRelMode is set to 1, the relative positioning mode is used. Set the position of the three
coordinate axes of the axis group to (Px, Py, Pz) and the current position of the auxiliary axis to Pa.
After this instruction is triggered, the three coordinate axes will finally move to (Px + Position[0], Py
+ Position[1], Pz + Position[2]), and the final position of the auxiliary axis is (Pa + Position[3]).

● Buffer and transition
There are four optional buffer and transition modes. For details, see the "Interpolation Function"
section in the "AutoShop Software Programming and Application Manual".

Instruction Description (LD & LiteST)

-466-

No. Buffer Mode Description
0 Aborting+No transition Immediately switch to the next function block. There is no

transition curve.
1 Buffered+No transition Execute the buffered function block after the first

segment of deceleration is completed. There is no
transition curve.

2 Previous velocity+No transition Move to the end of the first segment at the current
velocity and start the second segment at the rate of the
first segment.

3 Superimpose corners Add acceleration of the second segment when
deceleration starts in the first segment. There is a
transition curve.

When buffer mode 1, 2, or 3 is selected, the interpolation instruction allows up to 8 curves to be
buffered. When this instruction enters the buffer state, the Busy signal is active; when it is executed,
the Active output becomes active; when the execution is completed, the Done signal output
becomes active.

When mode 0 (Aborting+No transition) is selected for a newly added interpolation instruction, it will
abort all interpolation instructions that are being executed or buffered. The CommandAborted
output of the aborted interpolation instructions becomes active.

● Re-execution
This instruction cannot be re-executed.

If this instruction is triggered repeatedly when the Busy output is ON, the axis will report fault 9421
(instruction re-execution error), and all axes will stop operation immediately and enter the
ErrorStop state.

Timing Diagram

● A linear interpolation instruction is called to perform interpolation along the x-axis and y-axis.

Instruction Description (LD & LiteST)

-467-

● Two linear interpolation instructions are called, of which the second one is triggered during
execution of the first one to abort the first one.

Instruction Description (LD & LiteST)

-468-

● Two linear interpolation instructions are called, and the second instruction is executed in "buffer
+no transition" mode.

Instruction Description (LD & LiteST)

-469-

● Two linear interpolation instructions are called, and the second instruction is executed in "previous
velocity+no transition" mode.

Instruction Description (LD & LiteST)

-470-

Instruction Description (LD & LiteST)

-471-

● Two linear interpolation instructions are called, and the second instruction is executed in
"superimpose corners" mode.

Instruction Description (LD & LiteST)

-472-

3.10.3.3 MC_MoveCircular

MC_MoveCircular – Circular interpolation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveCircular
Circular
interpola-
tion

MC_MoveCircular(Execute := ???,

Group := ???,

CircAxes := ,

CircMode := ,

AuxPoint := ???,

EndPoint := ???,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

PathChoice := ,

CurveType := ,

AbsRelMode := ,

BufferMode := ,

Done => ,

Busy => ,

Active => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–242 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveCircular: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Group Axis ID No - - Axis group, INT

S2 CircAxes

Circular axis

0: x-y axis plane

1: y-z axis plane

2: x-z axis plane

Yes 0 0 to 2 INT

Instruction Description (LD & LiteST)

-473-

S3 CircMode

Circular interpolation
mode

0: Border point

1: Center

2: Radius

Yes 0 0 to 2 INT

S4 AuxPoint Auxiliary point No -

Positive
number

Negative
number

0

REAL[0–3]

S5 EndPoint End point No -

Positive
number

Negative
number

0

REAL[0–3] or

_sMC_GROUP_
POS

S6 Velocity Target velocity No - Positive
number

REAL

S7 Acceleration Acceleration No - Positive
number

REAL

S8 Deceleration Deceleration Yes Acceleration
Positive
number

REAL

S9 PathChoice

Path choice

0: CW

1: CCW

Yes 0 0 to 1 INT

S10 CurveType

Velocity curve type

0: T-shaped velocity curve

Others: T-shaped velocity
curve

Yes
0

0 INT

S11 AbsRelMode

Absolute or relative
positioning mode

0: Absolute positioning

1: Relative positioning

Yes 0 0 to 1 INT

S12 BufferMode

Buffer mode

0: Aborting+No transition

1: Buffered+No transition

2: Previous velocity+No
transition

3: Superimpose corners

Yes 0 0 to 3 INT

D1 Done

Target position reached

ON after the target
position is reached

Yes OFF
ON

OFF
BOOL

D2 Busy Busy flag Yes OFF
ON

OFF
BOOL

D3 Active

Controlling

ON when starting to
execute the current curve
segment

Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-474-

D4 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D5 Error Error flag Yes OFF
ON

OFF
BOOL

D6 ErrorID Fault Code Yes 0 *1 INT

Note
*1: See “3.10.3.7 Fault Codes” on page 487.

Function and Instruction Description

The MC_MoveCircular instruction performs circular interpolation on axis groups. It is active on the
rising edge.

● Specifying axis
Group is latched on the rising edge of the Execute input.

Modification on Group is invalid when Execute is ON.

Modification on Group is valid when Execute is OFF.

● Relationship with single-axis control instructions
This instruction can be triggered only after the axes are switched to the StandStill state by
executing the MC_Power instruction.

This instruction is invalid if it is triggered during single-axis operations (such as jogging, torque
control, homing, and stop).

After this instruction is triggered, the single-axis PLCOpen state machine is in SynchronizedMotion
state. During operation, this instruction cannot be aborted by single-axis motion instructions. After
the interpolation curve is completed, the single-axis PLCOpen state machine enters the StandStill
state, and single-axis motion instructions can be executed at this time.

● Specifying circular axes
CircAxes specifies the coordinate plane. To be specific:

When CircAxes is set to 0, the x-y coordinate plane is selected. The motion axes specified by AxisID_
x and AxisID_y perform circular interpolation, and the axes specified by AxisID_z and AxisID_a are
auxiliary axes and perform linear interpolation.

When CircAxes is set to 1, the y-z coordinate plane is selected. The motion axes specified by AxisID_
y and AxisID_z perform circular interpolation, and the axes specified by AxisID_x and AxisID_a are
auxiliary axes and perform linear interpolation.

When CircAxes is set to 2, the x-z coordinate plane is selected. The motion axes specified by AxisID_
x and AxisID_z perform circular interpolation, and the axes specified by AxisID_y and AxisID_a are
auxiliary axes and perform linear interpolation.

● Selecting interpolation mode

1. When CircMode is set to 0, circular interpolation is performed based on the border point.

Instruction Description (LD & LiteST)

-475-

When the x-y plane is selected, the border point is (AuxPoint[0], AuxPoint[1]), and the end
point is (EndPoint[0], EndPoint[1]); when the y-z plane is selected, the border point is
(AuxPoint[1], AuxPoint[2]), and the end point is (EndPoint[1], EndPoint[2]); when the x-z plane
is selected, the border point is (AuxPoint[0], AuxPoint[2]), and the end point is (EndPoint[0],
EndPoint[2]).

Take the x-y plane as an example. The start position of the x-axis is Px, and that of the y-axis is
Py. The instruction performs circular interpolation from the start point (Px, Py) through the
border point (AuxPoint[0], (AuxPoint[1]) to the end point (EndPoint[0], EndPoint[1]) after it is
triggered.

If the start point and the end point are the same point, a complete circle is drawn with the
straight line between the start point and the border point as the diameter. In this case,
PathChoice specifies the circular interpolation direction.

If the start point, border point, and end point are along the same line, they cannot form a
circle. In this case, an error occurs and execution of the interpolation instruction is aborted.

If the start point and the border point are the same point, or the end point and the border
point are the same point, an error occurs and execution of the interpolation instruction is
aborted.

2. When CircMode is set to 1, circular interpolation is performed based on the center.

When the x-y plane is selected, the center is (AuxPoint[0], AuxPoint[1]), and the end point is
(EndPoint[0], EndPoint[1]); when the y-z plane is selected, the center is (AuxPoint[1], AuxPoint

Instruction Description (LD & LiteST)

-476-

[2]), and the end point is (EndPoint[1], EndPoint[2]); when the x-z plane is selected, the center
is (AuxPoint[0], AuxPoint[2]), and the end point is (EndPoint[0], EndPoint[2]).

Take the x-z plane as an example. The start position of the x-axis is Px, and that of the z-axis is
Pz. The instruction performs circular interpolation from the start point (Px, Pz) to the end
point (EndPoint[0], EndPoint[2]) for the circle specified by the center point (AuxPoint[0],
(AuxPoint[2]) after it is triggered. PathChoice specifies the circular interpolation direction.

If the distance R1 from the specified center (AuxPoint[0], AuxPoint[2]) to the start point (Px,
Pz) differs from the distance R2 to the end point (EndPoint[0], EndPoint[2]) (the difference
between R1 and R2 is greater than 1), the average value R of R1 and R2 is calculated as the
radius, and the center (Cx, Cy) is calculated in the same way as specifying the radius. Circular
interpolation is performed using the calculated radius and center.

Note that when adjusting the center, if two centers are calculated, first calculate the distance
between each of the two calculated centers and the set center, and select the one closer to
the set center. This point must be located inside the circle with (AuxPoint[0], AuxPoint[2]) as
the center and AuxPoint[3] as the radius. As shown in the following figure, C1 is selected as the
new center.

3. When CircMode is set to 2, circular interpolation is performed based on the specified radius.

No matter which plane is selected, the radius is always determined by |AuxPoint[0]|. When the
x-y plane is selected, the end point is (EndPoint[0], EndPoint[1]); when the y-z plane is
selected, the end point is (EndPoint[1], EndPoint[2]); when the x-z plane is selected, the end
point is (EndPoint[0], EndPoint[2]).

Instruction Description (LD & LiteST)

-477-

Take the y-z plane as an example. The start position of the y-axis is Py, and that of the z-axis is
Pz. The instruction performs circular interpolation from the start point (Py, Pz) to the end
point (EndPoint[1], EndPoint[2]) for the circle specified by the radius |AuxPoint[0]|.

If the sign of the radius is negative, a circle with a long arc will be drawn. If the sign is positive,
a circle with a short arc will be drawn. PathChoice specifies the circular interpolation
direction.

● Selecting positioning mode

1. Absolute mode

When the border point is selected, the auxiliary point and end point are absolute points in the
coordinate system.

When the center is selected, the center point and end point are absolute points in the
coordinate system.

When the radius is selected, the end point is the absolute point in the coordinate system.
2. Relative mode

When the border point is selected, the auxiliary point and end point are relative points relative
to the start point.

When the center is selected, the center point and end point are relative points relative to the
start point.

When the radius is selected, the end point is the relative point relative to the start point.

● Buffer and transition
There are four optional buffer and transition modes. For details, see the "Interpolation Function"
section in the "AutoShop Software Programming and Application Manual".

When buffer mode 1, 2, or 3 is selected, the interpolation instruction allows up to 8 curves to be
buffered. When this instruction enters the buffer state, the Busy signal is active; when it is executed,
the Active output becomes active; when the execution is completed, the Done signal output
becomes active.

When mode 0 (Aborting+No transition) is selected for a newly added interpolation instruction, it will
abort all interpolation instructions that are being executed or buffered. The CommandAborted
output of the aborted interpolation instructions becomes active.

● Re-execution
This instruction cannot be re-executed.

If this instruction is triggered repeatedly when the Busy output is ON, the axis will report fault 9421
(instruction re-execution error), and all axes will stop operation immediately and enter the
ErrorStop state.

Timing Diagram

See the timing diagram of the linear interpolation instruction.

Instruction Description (LD & LiteST)

-478-

3.10.3.4 MC_MoveEllipse

MC_MoveEllipse – Elliptical interpolation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_MoveEllipse
Elliptical
interpola-
tion

MC_MoveEllipse(Execute := ???,

Group := ???,

CircAxes := ,

CircMode := ,

NumOfTurns := ,

AuxPoint := ???,

EndPoint := ???,

AddLength := ,

Velocity := ???,

Acceleration := ???,

Deceleration := ,

PathChoice := ,

CurveType := ,

BufferMode := ,

Done => ,

Busy => ,

Active => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–243 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveEllipse: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Group Axis group No - 0 to 32767 INT
S2

CircAxes

Ellipse axis

0: x-y axis plane

1: y-z axis plane

2: x-z axis plane

Yes 0 0 to 2 INT

Instruction Description (LD & LiteST)

-479-

S3

CircMode

Elliptical interpolation
mode

0: Complete ellipse

1: Specified arc length

Yes 0 0 to 2 INT

S4 NumOfTurns Number of turns Yes 1 1 to 100 INT
S5

AuxPoint Center point No -

Positive
number

Negative
number

0

REAL[0–3]

S6

EndPoint End point coordinates No -

Positive
number

Negative
number

0

REAL[0–3] or

_sGROUP-
POS_INFO

S7

AddLength
Arc length during
running when
CircMode is 1

No -

Negative
number

0

Positive
number

REAL

S8 Velocity Target velocity No - Positive
number

REAL

S9
Acceleration Acceleration No - Positive

number
REAL

S10
Deceleration Deceleration Yes Acceleration

Positive
number

REAL

S11

PathChoice

Path choice

0: CW

1: CCW

Yes 0 0 to 1 INT

S12

CurveType

Velocity curve type

0: T-shaped velocity
curve

Others: T-shaped
velocity curve

Yes
0

0 INT

S13

BufferMode

Buffer mode

0: Aborting+No
transition

1: Buffered+No
transition

2: Previous velocity+No
transition

3: Superimpose
corners

Yes 0 0 to 3 INT

D1

Done

Target position
reached

TRUE after the target
position is reached

Yes FALSE
TRUE

FALSE
BOOL

D2
Busy Busy flag Yes FALSE

TRUE

FALSE
BOOL

Instruction Description (LD & LiteST)

-480-

D3

Active

Controlling

TRUE when starting to
execute the current
curve segment

Yes FALSE
TRUE

FALSE
BOOL

D4 CommandA-
borted

Abortion of execution Yes FALSE
TRUE

FALSE
BOOL

D5
Error Error flag Yes FALSE

TRUE

FALSE
BOOL

D6 ErrorID Fault Code Yes 0 *1 INT

Function and Instruction Description

Determination of Elliptic Plane

By selecting the coordinate plane through CircAxes, you can draw an ellipse on the x-y plane, x-z plane,
or y-z plane. After selecting the plane, the other two axes are used as auxiliary axes and linear
interpolation is used.

Starting Point and Center Point of Ellipse

The starting point of the ellipse is the set position of the coordinate axis when the instruction is called,
and the center point is (AuxPoint [0], AuxPoint [1]) specified by the instruction.

If you select the x-y plane, AuxPoint [0] is the X-axis coordinate and AuxPoint [1] is the Y-axis
coordinate.

If you select the x-z plane, AuxPoint [0] is the X-axis coordinate and AuxPoint [1] is the Z-axis
coordinate.

If you select the Y-z plane, AuxPoint [0] is the Y-axis coordinate and AuxPoint [1] is the Z-axis
coordinate.

The line connecting the starting point and center point must be parallel to the coordinate axis. Taking
the xy plane as an example, set the starting point coordinates to (x0, y0) and the center point
coordinates to (x1, y1). When x0 = x1, the line connecting the two points is parallel to the Y-axis. If
y0>y1, the starting point is point C in the figure below. If y0<y1, the starting point is point A in the figure
below.

O

Determination of the Major Axis and Minor Axis

The parameters AuxPoint [2] and AuxPoint [3] in the instruction specify the lengths of the major and
minor axes of the ellipse. When AuxPoint [2] > AuxPoint [3], AuxPoint [2] is the major axis, otherwise
AuxPoint [3] is the major axis.

Instruction Description (LD & LiteST)

-481-

Assume that AuxPoint [2] = 12 and AuxPoint [3] = 5. If the distance of |AO| is equal to 12, the ellipse on
the left is finally selected. If the distance of |AO| is equal to 5, the ellipse on the right is finally selected.

When the major axis equals the minor axis, the ellipse will become a circle.

Running Direction of the Ellipse

PathChoice specifies the running direction of the ellipse. When PathChoice is set to 0, it indicates
clockwise running; When PathChoice is set to 1, it indicates counterclockwise running.

Determination of the End Point

CircMode determines the position of the end point.

When CircMode is 0, the running trajectory of the axis is a complete ellipse, where the end point is
equal to the starting point.

When CircMode is 1, it is necessary to specify the arc length that is run from the starting point. When
NumOfTurns is 0, PathChoice specifies the direction as CW (CCW). If AddLength is positive, the arc
length specified by AddLength is run clockwise (counterclockwise). If AddLength is negative, the arc
length specified by AddLength is run counterclockwise (clockwise). If NumOfTurns is greater than 0,
run for (NumOfTurns – 1) turns in the direction specified by PathChoice, and then run at the arc length
specified by AddLength on the last turn.

Processing of the Auxiliary Axis

When you select the x-y plane, the z-axis and a-axis are auxiliary axes. When you select the y-z plane,
the x-axis and a-axis are auxiliary axes. When you select the x-z plane, the y-axis and a-axis are auxiliary
axes.

In elliptical interpolation, the auxiliary axis will start running together with the elliptic coordinate axis
and end the action together. When the elliptic coordinate axis is running, the auxiliary axis performs
linear interpolation from the starting point to the end point, and the coordinates of the auxiliary axis at
the end point are specified by EndPoint. When you select the x-y plane, the end point coordinate of the
Z-axis is EndPoint[2], and the end point coordinate of the A-axis is EndPoint[3].

Fault Code Cause Solution Stop

9466
NumOfTurns in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9467
AddLength in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

Instruction Description (LD & LiteST)

-482-

Fault Code Cause Solution Stop

9468
The axis stops due to an error of the MC_
MoveEllipse instruction.

Check the fault code of the MC_
MoveEllipse instruction with an
exception to locate the fault.

Yes

9469
CircAxes in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9470
CircMode in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9471
PathChoice in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9472
Velocity in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9473
Acceleration in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9474
Deceleration in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9475
BufferMode in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value
is within the allowable range. Yes

9476
Failed to draw an ellipse because the
center and the lengths of the major and
minor axes are set incorrectly.

Ensure that the configured
values of these parameters can
form an ellipse.

Yes

3.10.3.5 MC_GroupStop

MC_GroupStop – Stop axis group operation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_GroupStop
Stop axis group
operation

MC_GroupStop(Execute := ???,

Group := ???,

StopMode := ,

Deceleration := ,

Done => ,

Busy => ,

Error => ,

ErrorID =>);

Table 3–244 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveStop: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Group Axis ID No - 0 to 32767 INT

Instruction Description (LD & LiteST)

-483-

S2 StopMode

Stop Modes

0: Decelerate to stop

1: Stop immediately

Yes 1 0 to 1 INT

S3 Deceleration Deceleration Yes 1000

Positive
number, less
than the
maximum
acceleration

REAL

D1 Done Stop completed Yes OFF
OFF

ON
BOOL

D2 Busy Busy flag Yes OFF
OFF

ON
BOOL

D3 Error Error flag Yes OFF
OFF

ON
BOOL

D4 ErrorID Fault Code Yes 0 *1 INT

Note
*1: For details, see the “3.10.3.7 Fault Codes” on page 487Fault Codes section.

Function and Instruction Description

The MC_GroupStop instruction stops all axes in an axis group. It is active on the rising edge.

● Specifying axis
Group is latched on the rising edge of the Execute input.

Modification on Group is invalid when Execute is ON.

Modification on Group is valid when Execute is OFF.

● Effective range
The MC_GroupStop instruction can only stop interpolation instructions (such as MC_MoveLinear)
but not single-axis motion instructions (such as MC_MoveAbsolute).

The MC_Stop instruction can only stop single-axis motion instructions but not interpolation
instructions.

● State transition
On the rising edge of Execute, the interpolator performs the stop operation according to the stop
mode specified by StopMode and aborts all buffered interpolation instructions. After the stop is
completed, the Done signal output is active, and the single-axis PLCOpen state machine is still in
the SynchronizedMotion state.

During the period when Execute remains ON, the interpolator is always in the stop state, and a new
interpolation instruction is invalid if it is triggered at this time.

On the falling edge of Execute, the interpolator switches to a non-stop state, and each axis enters
the StandStill state. At this time, a new interpolation instruction can be triggered.

● Stop
When StopMode is set to 0, the axes decelerate and stop according to the deceleration specified by
Deceleration.

Instruction Description (LD & LiteST)

-484-

When StopMode is set to 1, the axes stop immediately without deceleration.

● Re-execution
When this instruction is re-triggered during axis deceleration, the axes in the axis group will
decelerate according to the new deceleration.

● Multi-execution
This instruction does not support multi-execution. When an MC_GroupStop instruction is being
executed and the Execute input is ON, if another MC_GroupStop instruction is triggered, the newly
triggered instruction reports error 9441 (MC_GroupStop multi-execution error).

Timing Diagram

● The axes decelerate to stop and can stop normally.

● An axis fails during deceleration.

Instruction Description (LD & LiteST)

-485-

3.10.3.6 MC_GroupPause

MC_GroupPause – Pause axis group operation

Graphic Block

Instruction Name LD Expression LiteST Expression

MC_GroupPause
Pause axis group
operation

MC_GroupPause(Enable := ???,

Group := ???,

Deceleration := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–245 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveCircular: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Group Axis group No - 0 to 32767 INT

S2 Deceleration Deceleration Yes 1000

Positive
number, less
than the
maximum
acceleration

REAL

D1 Done Pause completed Yes OFF
OFF

ON
BOOL

D2 Busy Busy flag Yes OFF
OFF

ON
BOOL

D3 CommandA-
borted

Abortion flag Yes OFF
OFF

ON
BOOL

D3 Error Error flag Yes OFF
OFF

ON
BOOL

D4 ErrorID Fault Code Yes 0 *1 INT

Note
*1: See “3.10.3.7 Fault Codes” on page 487.

Function and Instruction Description

The MC_GroupPause pauses all axes in an axis groups. It is active on the rising edge.

● Specifying axis

Instruction Description (LD & LiteST)

-486-

Group is latched on the rising edge of the Execute input.

Modification on Group is invalid when Execute is ON.

Modification on Group is valid when Execute is OFF.

● Effective range
The MC_GroupPause instruction can only pause interpolation instructions (such as MC_MoveLinear)
but not single-axis motion instructions (such as MC_MoveAbsolute).

● State transition
All axes in an axis group are in StandStill state:

When Enable is set to ON, the axes in the axis group are still in the StandStill state. If a linear or
circular interpolation instruction is triggered at this time, all axes in the axis group will switch to the
SynchronizedMotion state but remain paused and do not perform the interpolation algorithm until
the Enable signal of the MC_GroupPause instruction becomes OFF.

All axes in an axis group are in SynchronizedMotion state:

On the rising edge of Enable, the interpolator performs deceleration according to the deceleration
specified by Deceleration. After deceleration is completed, the Done signal output becomes active,
the single-axis PLCOpen state machine is still in the SynchronizedMotion state, and the Busy signal
and Valid signal of the interpolation instruction being executed remain active during the pause
period.

During the period when the Enable signal is ON, the interpolator remains in paused state, and a
new interpolation instruction is buffered if it is triggered at this time.

On the falling edge of Enable, the interpolator resumes execution of the previously paused
interpolation instruction.

● Re-execution
When this instruction is re-triggered during axis deceleration, the axes in the axis group will
decelerate according to the new deceleration.

● Multi-execution
If an MC_GroupPause instruction is triggered during execution of another MC_GroupPause
instruction, the first executed pause instruction is aborted, and the interpolator starts to decelerate
according to the deceleration of the later triggered instruction.

Timing Diagram

● The axes decelerate to stop and can stop normally.

Instruction Description (LD & LiteST)

-487-

● An axis fails during deceleration.

3.10.3.7 Fault Codes

When a fault occurs during use of the interpolation functions, refer to the fault codes listed in the fol-
lowing table for troubleshooting.

Instruction Description (LD & LiteST)

-488-

Fault Code Fault Information Troubleshooting

9400 The number of axis groups exceeds the
maximum allowable value.

Check whether the number of axis groups is greater than 8.

9401 An axis in the axis group is faulty. Check whether an axis in the axis group has entered the ErrorStop
state.

Locate the fault based on the fault code of each axis.
9402 The number of buffered interpolation

instructions is greater than 8.
Check whether the number of buffered interpolation instructions is
greater than 8.

9403 The axis is reused. Locate the reused axis and replace it with an unused axis.
9404 Failed to create the axis group. The x-axis and y-axis cannot be empty.

Check whether the x-axis or y-axis does not exist or is not specified.

9405 The specified z-axis does not exist. Check whether the axis specified by AxisID_z exists.

9406 The specified auxiliary axis does not exist. Check whether the axis specified by AxisID_a exists.

9407 The axis group ID is duplicate. Check whether GroupID is duplicate.

9408 Failed to configure the axis. Check whether any axis in the axis group fails to be configured. If yes,
check whether the board software and the background match.

9409 The axis ID is less than 0. Check whether the ID of an axis in the axis group is less than 0.

9410 The axis group is not released because
the same MC_SetAxesGroup instruction is
triggered repeatedly in a short time
period.

Do not re-trigger the MC_SetAxesGroup instruction while its Busy
signal output is still active.

9411 The MC_GroupStop instruction is aborted. Check whether an instruction with higher priority is called while the
MC_GroupStop instruction is still active.

9412 The value of CircAxes of the circular
interpolation instruction is out of range.

Check whether the value of CircAxes of the circular interpolation
instruction is out of range.

9413 The value of CircMode of the circular
interpolation instruction is out of range.

Check whether the value of CircMode of the circular interpolation
instruction is out of range.

9414 The value of PathChoice of the circular
interpolation instruction is out of range.

Check whether the value of PathChoice of the circular interpolation
instruction is out of range.

9415 The value of StopMode of the MC_
GroupStop instruction is out of range.

Check whether the value of StopMode of the MC_GroupStop
instruction is out of range.

9416 The x-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9417 The y-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9418 The z-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9419 The auxiliary axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9420 The circular interpolation instruction is
triggered repeatedly.

Do not re-trigger the same circular interpolation instruction while its
Busy signal output is still active.

9421 The linear interpolation instruction is
triggered repeatedly.

Do not re-trigger the same linear interpolation instruction while its
Busy signal output is still active.

9422 Failed to obtain the axis group. Check whether the axis group specified by GroupID has been created
by calling MC_SetAxesGroup.

9423 Failed to configure the axis. Check whether an instruction is triggered when axis configuration is
not completed.

Check whether the communication state of all axes in the axis group
is Axis ready.

Instruction Description (LD & LiteST)

-489-

Fault Code Fault Information Troubleshooting

9424 An axis is disabled. Do not call the interpolation instruction when any axis is in Disabled
state.

9425 An axis is executing single-axis motion
instructions.

Do not call the interpolation instruction when any axis is executing
single-axis motion instructions and not in StandStill state.

9426 An axis is in Stopping state. Do not call the interpolation instruction when any axis is in Stopping
state after executing the MC_Stop instruction.

9427 The axis group is in Stopping state. Do not call the interpolation instruction while the MC_GroupStop
instruction is still active.

9428 An axis is in Homing state. Do not call the interpolation instruction when any axis is in Homing
state after executing the MC_Home instruction.

9429 An axis is executing the position setting
instruction.

Do not call the interpolation instruction when any axis is setting the
current position by executing the MC_SetPosition instruction.

9430 An axis is in commissioning state. Do not call the interpolation instruction when any axis is in
commissioning state.

9431 An axis enters the commissioning state
during interpolation, which aborts
instruction execution of other axes.

Check whether any axis enters the commissioning state during
interpolation.

9432 Failed to request the memory. Check whether the memory runs out.

Contact the manufacturer.
9433 The target velocity is 0 or less than 0. Ensure that the target velocity of the instruction is greater than 0.

9434 The target acceleration is 0 or less than 0. Ensure that the target acceleration of the instruction is greater than
0.

9435 The target deceleration is 0 or less than 0. Ensure that the target deceleration of the instruction is greater than
0.

9436 The curve type setting is out of range. Check whether the curve type is set to a value other than the T-
shaped curve for the interpolation instruction.

9437 AbsRelMode is set incorrectly. Check whether the parameter is set to a value other than the
absolute positioning and relative positioning modes.

9438 BufferMode is set incorrectly. Check whether the value of BufferMode is out of range.

9439 InsertMode is set incorrectly. Check whether the value of InsertMode is proper.

9440 An axis stops due to a fault. Locate the faulty axis and rectify the fault based on the fault code.

9441 The MC_GroupStop instruction is called
repeatedly.

Do not re-trigger an MC_GroupStop instruction or call other MC_
GroupStop instructions while an MC_GroupStop instruction is still
active.

9442 The data buffer area is not empty. Contact Inovance for technical support.

9443 No circle can be drawn. -
9444 The start, end, and border points in the

circular interpolation instruction are the
same point, and no circle can be drawn.

Check the input parameters of the circular interpolation instruction
and ensure that the start, end, and border points can form a circle.

9445 The instruction buffer area is full. Contact Inovance for technical support.

9446 The velocity of the x-axis exceeds the
maximum allowable velocity.

Ensure that the target velocity of the x-axis is not greater than the
maximum allowable velocity.

9447 The velocity of the y-axis exceeds the
maximum allowable velocity.

Ensure that the target velocity of the y-axis is not greater than the
maximum allowable velocity.

9448 The velocity of the z-axis exceeds the
maximum allowable velocity.

Ensure that the target velocity of the z-axis is not greater than the
maximum allowable velocity.

9449 The velocity of the auxiliary axis exceeds
the maximum allowable velocity.

Ensure that the target velocity of the auxiliary axis is not greater than
the maximum allowable velocity.

9450 Failed to obtain the number of axis
groups.

Update the background software to the latest version.

Instruction Description (LD & LiteST)

-490-

Fault Code Fault Information Troubleshooting

9451 Internal fault Contact the manufacturer.
9452 The instruction is called when the axis is

in StandStill state.
Do not call this instruction when the axis is StandStill state.

9453 The maximum allowable velocity is
exceeded.

Ensure that the target velocity of the instruction is not greater than
the maximum velocity specified on the axis group configuration
interface.

9454 The maximum allowable acceleration
(deceleration) is exceeded.

Ensure that the target acceleration (deceleration) of the instruction is
not greater than the maximum acceleration (deceleration) specified
on the axis group configuration interface.

9455 The axis group becomes faulty due to an
error reported by the linear interpolation
instruction.

Identify the first linear interpolation instruction that reports the error
and troubleshoot the fault based on the fault code.

9456 The axis group becomes faulty due to an
error reported by the circular
interpolation instruction.

Identify the first circular interpolation instruction that reports the
error and troubleshoot the fault based on the fault code.

9457 The axis group becomes faulty due to an
error reported by the axis group stop
instruction.

Identify the first axis group stop instruction that reports the error and
troubleshoot the fault based on the fault code.

9458 The axis group becomes faulty due to an
error reported by the axis group pause
instruction.

Identify the first axis group pause instruction that reports the error
and troubleshoot the fault based on the fault code.

9459
The x-axis in the axis group is performing
the interpolation algorithm for another
axis group.

An axis can be configured in different axis groups at the same time.
However, ensure that it executes the interpolation instruction of only
one axis group at the same time.

9460
The y-axis in the axis group is performing
the interpolation algorithm of another
axis group.

An axis can be configured in different axis groups at the same time.
However, ensure that it executes the interpolation instruction of only
one axis group at the same time.

9461
The z-axis in the axis group is performing
the interpolation algorithm of another
axis group.

An axis can be configured in different axis groups at the same time.
However, ensure that it executes the interpolation instruction of only
one axis group at the same time.

9462
The auxiliary axis in the axis group is
performing the interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at the same time.
However, ensure that it executes the interpolation instruction of only
one axis group at the same time.

9463

When the MC_GroupStop instruction is
called, the axes are in synchronous mode
but not under axis group control, such as
interpolation control or cam control.

Note that the MC_GroupStop instruction can be called only when the
axes in the axis group are in synchronous mode under axis group
control. Do not call the MC_GroupStop instruction when the axes
enter the synchronous mode due to other instructions.

9464

When the linear or circular interpolation
instruction is called, the axes are in
synchronous mode but not under axis
group control, such as interpolation
control or cam control.

Note that the linear or circular interpolation instruction can be called
only when the axes in the axis group are in synchronous mode under
axis group control. Do not call the linear or circular interpolation
instruction when the axes enter the synchronous mode due to other
non-axis-group instructions.

9465

When the MC_GroupHalt instruction is
called, the axes are in synchronous mode
but not under axis group control, such as
interpolation control or cam control.

Note that the MC_GroupHalt instruction can be called only when the
axes in the axis group are in synchronous mode under axis group
control. Do not call the MC_GroupHalt instruction when the axes
enter the synchronous mode due to other instructions.

9466 NumOfTurns in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9467 AddLength in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9468 The MC_MoveEllipse instruction fails and
causes shutdown.

Find the MC_MoveEllipse instruction that caused the failure and
check the fault code of the instruction to further confirm the fault.

Instruction Description (LD & LiteST)

-491-

Fault Code Fault Information Troubleshooting

9469 CircAxes in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9470 CircMode in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9471 PathChoice in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9472 Velocity in the MC_MoveEllipse instruction
is set incorrectly.

Ensure that the parameter value is within the allowable range.

9473 Acceleration in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9474 Deceleration in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9475 BufferMode in the MC_MoveEllipse
instruction is set incorrectly.

Ensure that the parameter value is within the allowable range.

9476 The set center point, long axis length, and
short axis length are improper and cannot
form an ellipse.

Ensure that the parameter value is within the allowable range.

9477 The property of the x-axis in the axis
group instruction does not support the
interpolation motion.

Ensure that the x-axis is not in single-axis mode.

9478 The property of the y-axis in the axis
group instruction does not support the
interpolation motion.

Ensure that the y-axis is not in single-axis mode.

9479 The property of the z-axis in the axis
group instruction does not support the
interpolation motion.

Ensure that the z-axis is not in single-axis mode.

9480 The property of the auxiliary axis in the
axis group instruction does not support
the interpolation motion.

Ensure that the auxiliary axis is not in single-axis mode.

3.11 MC Axis Control Instructions (CANopen)

3.11.1 Instruction List

The following table lists the CANopen axis control instructions.

Instruction Description (LD & LiteST)

-492-

Instruction Category Instruction Function

CANopen axis control
instruction

MC_Power_CO Enable servo axis through communication

MC_Reset_CO Reset servo axis fault through communication

MC_ReadActualPosition_CO Read current position of axis through
communication

MC_ReadActualVelocity_CO Read current velocity of axis through
communication

MC_Halt_CO Halt servo axis through communication

MC_Stop_CO Stop servo axis through communication

MC_MoveAbsolute_CO Control absolute positioning of axis through
communication

MC_MoveRelative_CO Control relative positioning of axis through
communication

MC_MoveVelocity_CO Control axis velocity through communication

MC_Jog_CO Control axis jogging through communication

MC_Home_CO Control axis homing through communication

MC_WriteParameter_CO Write axis parameters through communication

MC_ReadParameter_CO Read axis parameters through communication

MC_SetOverride Adjust target velocity during motion

3.11.2 MC_Power_CO

This instruction enables or disables a servo axis.
MC_Power_CO – Enable servo axis through communication

Graphic Block

Table 3–246 Instruction format
16-bit
Instruction

MC_Power_CO: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to
be operated No - 1 to 16 INT

D1 Status Axis state Yes OFF ON/OFF BOOL
D2 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Instruction Description (LD & LiteST)

-493-

Table 3–247 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - - √ - -

D1 √[1] - √ - √ √ - - -

D2 - - √ √ √ √ - - -

Note
● [1] The X element is not supported.
● The MC_Power_CO instruction can be executed only once for each axis.

Function and Instruction Description

"AxisID" specifies the ID of the controlled axis, which ranges from K1 to K16.

"Status" specifies the actual state output of the axis. "ON" indicates that the axis is enabled, and "OFF"
indicates that the axis is disabled.

"ErrorID" specifies the error code. For details, see the "Error Codes of CANopen Axis Control
Instructions".

The MC_Power_CO instruction writes to the corresponding control word (6040h) based on the read
status word (6041h) to enable the axis. The following table describes the correspondence between the
status word (6041h) and the control word (6040h).

Flow State Status Word (6041h) Control Word (6040h)

ON

Not ready to
switch on

xxxx xxxx x0xx 0000 b
Shutdown 0000 0000 0000 0110 b

Switch on disabled xxxx xxxx x1xx 0000 b

Ready to switch on xxxx xxxx x01x 0001 b Switch on 0000 0000 0000 0111 b

Switched on xxxx xxxx x01x 0011 b
Switch on + enable
operation 0000 0000 0000 1111 b

Fault reaction
active

xxxx xxxx x0xx 1111 b - xxxx xx00 xx00 xxxx b

Fault xxxx xxxx x0xx 1000 b

Others - xxxx xxxx xxxx xxxx b

OFF

Ready to switch on xxxx xxxx x01x 0001 b

Disable voltage 0000 0000 0000 0000 bSwitched on xxxx xxxx x01x 0011 b

Operation enabled xxxx xxxx x01x 0111 b

Others - xxxx xx00 xx00 xxxx b

In this table, x indicates any value (status word) or remains unchanged (control word).

3.11.3 MC_Reset_CO

This instruction resets errors of an axis and makes the axis enter the StandStill or Disabled state.
MC_Reset_CO – Reset servo axis fault through communication

Instruction Description (LD & LiteST)

-494-

Graphic Block

Table 3–248 Instruction format
16-bit
Instruction

MC_Reset_CO: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated No - 1 to 16 INT

D1 Done Completion flag Yes OFF ON/OFF BOOL
D2 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–249 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] - √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction resets faults of a CANopen bus axis and makes the axis enter the StandStill or Disabled
state.

"AxisID" specifies the ID of the controlled axis, which ranges from K1 to K16.

"Done" is output after the reset operation is completed.

"ErrorID" specifies the error code. For details, see the "Error Codes of CANopen Axis Control
Instructions".

The MC_Reset_CO instruction writes to the corresponding control word (6040h) based on the read
status word (6041h) to reset the axis fault. The following table describes the correspondence between
the status word (6041h) and the control word (6040h).

Instruction Description (LD & LiteST)

-495-

Flow State Status Word (6041h) Control Word (6040h, bit7)

ON

Switch on disabled xxxx xxxx x1xx 0000b 0
Operation enabled xxxx xxxx x01x 0111b -

Fault xxxx xxxx x0xx 1000b 1
- Others x

↑ - xxxx xxxx xxxx xxxxb 0
OFF - xxxx xxxx xxxx xxxxb x

In this table, x indicates any value (status word) or remains unchanged (control word).

3.11.4 MC_ReadActualVelocity_CO

This instruction reads the current velocity of an axis.
MC_ReadActualVelocity_CO – Read current velocity of axis through communication

Graphic Block

Table 3–250 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadActualVelocity_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated No - 1 to 16 INT

D1 Velocity Current velocity Yes 0 - REAL

Table 3–251 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 - - - √ √ √ - - -

Function and Instruction Description

This instruction reads the actual velocity of a CANopen bus axis.

"AxisID" specifies the ID of the axis to be read, which ranges from 1 to 16.

"Position" specifies the current position of the axis, which is a 32-bit floating-point number.

3.11.5 MC_ReadActualPosition_CO

This instruction reads the current position of an axis.

Instruction Description (LD & LiteST)

-496-

MC_ReadActualPosition_CO – Read current position of axis through communication

Graphic Block

Table 3–252 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadActualPosition_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated No - 1 to 16 INT

D1 Position Current position Yes 0 - REAL

Table 3–253 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 - - - √ √ √ - - -

Function and Instruction Description

This instruction reads the actual position of a CANopen bus axis.

"AxisID" specifies the ID of the axis to be read, which ranges from 1 to 16.

"Position" specifies the current position of the axis, which is a 32-bit floating-point number.

3.11.6 MC_Halt_CO

This instruction halts the current motion of an axis so that the axis can respond to other motion
instructions.
MC_Halt_CO – Halt servo axis through communication

Graphic Block

Table 3–254 Instruction format
16-bit
Instruction

MC_Halt_CO: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty Allowed Default Range Data Type

Instruction Description (LD & LiteST)

-497-

S1 Axis Axis ID No - - INT
D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Fault code Yes - - INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–255 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction halts the current motion of a CANopen bus axis so that the axis can respond to other
motion instructions.

The MC_Halt_CO instruction can be aborted by instructions including MC_MoveAbsolute_CO, MC_
MoveRelative_CO, MC_MoveVelocity_CO, and MC_Jog_CO.

Table 3–256 Operation procedure of the MC_Halt_CO instruction on a CANopen object

Step Operation/Condition Description

1

6040h.bit4 = 0
Trigger the motion halt operation using
the control word.

Write 0 to the target velocity.

6040h.bit5 = 0
6040h.bit6 = 0
6040h.bit8 = 1
60FFh = 0

2
606Ch = 0

Wait until the halt operation is
completed.6061h = 3 and 6041h.bit13 = 1

6061h != 3 and 6041h.bit10 = 1
3 6060h = 1 Switch to the position mode.

Instruction Description (LD & LiteST)

-498-

Timing Diagram

3.11.7 MC_Stop_CO

This instruction stops an axis and makes it enter the Stopping state so that the axis no longer responds
to any motion instruction.
MC_Stop_CO – Stop servo axis through communication

Graphic Block

Table 3–257 Instruction format
16-bit
Instruction

MC_Stop_CO: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis
to be operated No - 1 to 16 INT

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Instruction Description (LD & LiteST)

-499-

Table 3–258 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction stops a CANopen bus axis and makes it enter the Stopping state so that the axis no
longer responds to any motion instruction.

Table 3–259 Operation procedure of the MC_Stop_CO instruction on a CANopen object

Step Operation/Condition Description

1

6040h.bit4 = 0
Trigger the motion halt operation using
the control word.

Write 0 to the target velocity.

6040h.bit5 = 0
6040h.bit6 = 0
6040h.bit8 = 1
60FFh = 0

2
606Ch = 0

Wait until the halt operation is
completed.6061h = 3 and 6041h.bit13 = 1

6061h != 3 and 6041h.bit10 = 1
3 6060h = 1 Switch to the position mode.

Timing diagram

3.11.8 MC_MoveVelocity_CO

MC_MoveVelocity_CO – Control axis velocity through communication

Instruction Description (LD & LiteST)

-500-

Graphic Block

Table 3–260 Instruction format
16-bit
Instruction

-

32-bit
Instruction

C_MoveVelocity_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen
axis to be operated No - 1 to 16 INT

S2 Velocity Velocity No - - REAL
S3 Acceleration Acceleration No - - REAL
S4 Deceleration Deceleration Yes Acceleration - REAL
D1 InVelocity Velocity reached Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–261 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction controls a CANopen bus axis to move at the specified velocity. When the specified
velocity ("Velocity") is greater than 0, the axis moves in the forward direction; when it is less than 0, the

Instruction Description (LD & LiteST)

-501-

axis moves in the reverse direction. The velocity can be modified during execution of this instruction,
and the modification takes effect in real time.

If "Deceleration" is not specified, that is, it is left empty, the specified acceleration ("Acceleration") is
used as the deceleration by default.

Table 3–262 Operation procedure of the MC_MoveVelocity_CO instruction on a CANopen object

Step Operation/Condition Description

1 6040h.bit8 = 0 Reset the Halt bit of the control word.
2 6083h = Acceleration Write the acceleration.
3 6084h = Deceleration Write the deceleration.
4 6060h = 3 Switch to the velocity mode.

5 6061h = 3
Wait for the axis to switch to the velocity
mode.

6

60FFh = Target velocity Set the target velocity.

6041h.bit10 = 1 The target velocity is reached.

60FFh < 0, 6041h.bit11 = 1, and 60FDh.bit0
= 1

60FFh = 0

The negative limit is reached, and motion
ends.

607Ah > 0, 6041h.bit11 = 1, and 60FDh.bit1
= 1

60FFh = 0

The positive limit is reached, and motion
ends.

60FFh = 0
The instruction flow becomes inactive, and
motion ends.

Timing Diagram

3.11.9 MC_MoveRelative_CO

MC_MoveRelative_CO – Control relative positioning of axis through communication

Instruction Description (LD & LiteST)

-502-

Graphic Block

Table 3–263 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveRelative_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen
axis to be operated No - 1 to 16 INT

S2 Distance Target distance No - - REAL

S3 Velocity Maximum velocity No - - REAL
S4 Acceleration Acceleration No - - REAL

S5 Deceleration Deceleration Yes Accelera-
tion

- REAL

D1 Done

Completion flag,
indicating that the
target position is
reached

Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–264 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ - √ -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-503-

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the relative positioning function of a CANopen bus axis. It controls an axis
to move from the current position for a specified distance.

If "Deceleration" is not specified, that is, it is left empty, the specified acceleration ("Acceleration") is
used as the deceleration by default.

Table 3–265 Operation procedure of the MC_MoveRelative_CO instruction on a CANopen object

Step Operation/Condition Description

1 6060h = 1 Switch to the position mode.

2 6061h = 1 Wait for the axis to switch to the position mode.

3

6040h.bit5 = m Write the corresponding mode to the control
word.

m is 1 when the buffer mode (parameter number:
K1000) is set to 0; otherwise, m is 0.

6040h.bit6 = 1
6040h.bit8 = 0
6040h.bit9 = 0

4
607Ah = Position Write the (relative) target position and positioning

velocity.6081h = Velocity

5 6083h = Acceleration Write the acceleration.
6 6084h = Deceleration Write the deceleration.
7 6040h.bit4 = 1 Trigger positioning.

8 6041h.bit12 = 1 Wait for positioning to start.

9 6040h.bit4 = 0 Trigger positioning reset.

10

607Ah < 0, 6041h.bit11 = 1, and 60FDh.
bit0 = 1

The negative limit is reached, and positioning
ends.

607Ah > 0, 6041h.bit11 = 1, and 60FDh.
bit1 = 1

The positive limit is reached, and positioning
ends.

6041h.bit10 = 1 and 6041h.bit12 = 0 The target position is reached, and positioning is
completed.

Instruction Description (LD & LiteST)

-504-

Timing Diagram

3.11.10 MC_MoveAbsolute_CO

MC_MoveAbsolute_CO – Control absolute positioning of axis through communication

Graphic Block

Table 3–266 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_MoveAbsolute_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis
to be operated No - 1 to 16 INT

S2 Position Target position No - - REAL

S3 Velocity Maximum velocity No - - REAL
S4 Acceleration Acceleration No - - REAL
S5 Deceleration Deceleration Yes Acceleration - REAL

D1 Done

Completion flag,
indicating that the
target position is
reached

Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Fault code Yes 0 *1 INT

Instruction Description (LD & LiteST)

-505-

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–267 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

S3 - - - √ √ √ - √ -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ - √ -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction implements the absolute positioning function of a CANopen bus axis. It controls an
axis to move to the specified position.

If "Deceleration" is not specified, that is, it is left empty, the specified acceleration ("Acceleration") is
used as the deceleration by default.

Table 3–268 Operation procedure of the MC_MoveAbsolute_CO instruction on a CANopen object

Step Operation/Condition Description

1 6060h = 1 Switch to the position mode.

2 6061h = 1 Wait for the axis to switch to the position mode.

3

6040h.bit5 = m Write the corresponding mode to the control
word.

m is 1 when the buffer mode (parameter number:
K1000) is set to 0; otherwise, m is 0.

6040h.bit6 = 0
6040h.bit8 = 0
6040h.bit9 = 0

4
607Ah = Position Write the (absolute) target position and

positioning velocity.6081h = Velocity

5 6083h = Acceleration Write the acceleration.
6 6084h = Deceleration Write the deceleration.
7 6040h.bit4 = 1 Trigger positioning.

8 6041h.bit12 = 1 Wait for positioning to start.

9 6040h.bit4 = 0 Trigger positioning reset.

Instruction Description (LD & LiteST)

-506-

Step Operation/Condition Description

10

607Ah < 6064h, 6041h.bit11 = 1, and
60FDh.bit0 = 1

The negative limit is reached, and positioning
ends.

607Ah > 6064h, 6041h.bit11 = 1, and
60FDh.bit1 = 1

The positive limit is reached, and positioning
ends.

6041h.bit10 = 1 and 6041h.bit12 = 0
The target position is reached, and positioning is
completed.

Timing Diagram

3.11.11 MC_Home_CO

MC_Home_CO – Control axis homing through communication

Graphic Block

Table 3–269
16-bit
Instruction

-

32-bit
Instruction

MC_Home_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis
to be operated No - 1 to 16 INT

S2 Position
Target position after
homing Yes 0 - REAL

Instruction Description (LD & LiteST)

-507-

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL
D3 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–270 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - √ -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This function implements homing of a CANopen bus axis.

You need to set the homing mode and velocity on the CANopen configuration interface. For details
about the homing modes, see the relevant servo/motor drive manual.

Table 3–271 Operation procedure of the MC_Home_CO instruction on a CANopen object

Step Operation/Condition Description

1 6060h = 6 Switch to homing mode.

2 6061h = 6
Wait for the axis to switch to the homing
mode.

3 607Ch = Home offset Set the home offset.
4 6040h.bit4 = 1 Start homing.

5
6041h.bit10 = 1 and 6041h.bit13 = 1 Homing failed

6041h.bit10 = 1 and 6041h.bit12 = 1 Homing succeeded.

3.11.12 MC_Jog_CO

MC_Jog_CO – Control axis jogging through communication

Instruction Description (LD & LiteST)

-508-

Graphic Block

Table 3–272 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_Jog_CO: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated No - 1 to 16 INT

S2 JogForward
Jogging in forward
direction, triggered on the
rising edge

No - ON/OFF BOOL

S3 JogBackward
Jogging in reverse direction,
triggered on the rising edge No - ON/OFF BOOL

S4 Velocity Target velocity No - - REAL

S5 AccDec Acceleration/Deceleration No - - REAL

D1 Busy Busy flag Yes OFF ON/OFF BOOL
D2 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Table 3–273 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ - √ - - √ - - -

S3 √ - √ - - √ - - -

S4 - - - √ √ √ - √ -

S5 - - - √ √ √ - √ -

D1 √[1] - √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-509-

Function and Instruction Description

This instruction implements the jogging function of a CANopen bus axis. When JogForward is active,
the axis moves forward at the velocity specified by "Velocity"; when JogBackward is active,

the axis moves in reverse direction at the velocity specified by "Velocity". When both JogForward and
JogBackward are active, the axis stops motion.

Table 3–274 Operation procedure of the MC_Jog_CO instruction on a CANopen object

Step Operation/Condition Description

1 6040h.bit8 = 0 Reset the Halt bit of the control word.
2 6083h = Acceleration/Deceleration Write the acceleration.
3 6084h = Acceleration/Deceleration Write the deceleration.

4 6060h = 3 Switch to the velocity mode.

5 6061h = 3
Wait for the axis to switch to the velocity
mode.

6

Forward jogging: 60FFh = Target velocity

Reverse jogging: 60FFh = –Target velocity

Others: 60FFh = 0

Perform forward/reverse jogging.

60FFh < 0, 6041h.bit11 = 1, and 60FDh.bit0 =
1

60FFh = 0

The negative limit is reached, and jogging
ends.

607Ah > 6040h, 6041h.bit11 = 1, and 60FDh.
bit1 = 1

60FFh = 0

The positive limit is reached, and jogging
ends.

60FFh = 0
The instruction flow becomes inactive, and
jogging ends.

Timing Diagram

3.11.13 MC_WriteParameter_CO

MC_WriteParameter_CO – Write axis parameters through communication

Instruction Description (LD & LiteST)

-510-

Graphic Block

Table 3–275 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_WriteParameter_CO

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated No - 1 to 16 INT

S2 ParamIndex Parameter number No - *1 INT
S3 Value Parameter value No - - DINT

Note
*1: See the following parameter list.

Table 3–276 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

Function and Instruction Description

This instruction is used to set parameters for a CANopen bus axis. The following table lists the
parameters.

Instruction Description (LD & LiteST)

-511-

Table 3–277 Parameter list
Parameter
Number

Name Data Type Read/Write Description

K1000 Buffer mode UINT32 Read-write

Positioning buffer mode

0 (default): Trigger immediately without
buffering

1: Wait for the current positioning to
complete

Reference: Buffer mode timing diagram

K1001 DI state UINT32 Read

DI state

[31:16]: Customized by the
manufacturer

[15:3]: Reserved

[1]: Positive limit

0: Inactive; 1: Active

[0]: Negative limit

0: Inactive; 1: Active

K1010 Axis state INT32 Read

Current state of the axis

–1: Not configured

0: Disabled

1: Standstill

2: Stopping

3: Homing

4: ContinuousMotion

5: DiscreteMotion

15: ErrorStop

Timing Diagram

Instruction Description (LD & LiteST)

-512-

3.11.14 MC_ReadParameter_CO

MC_ReadParameter_CO – Read axis parameters through communication

Graphic Block

Table 3–278 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_ReadParameter_CO

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisID
ID of the CANOpen axis to be
operated

No - 1 to 16 INT

S2 ParamIndex Parameter number No - *1 INT
D1 Value Parameter value Yes - - DINT

Note
*1: See the following parameter list.

Table 3–279 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D1 - - - √ √ √ - - -

Function and Instruction Description

This instruction is used to read parameters of a CANopen bus axis. The following table lists the
parameters.

Instruction Description (LD & LiteST)

-513-

Table 3–280 Parameter list
Parameter
Number

Name Data Type Read/Write Description

K1000 Buffer mode UINT32 Read-write

Positioning buffer mode

0 (default): Trigger immediately without
buffering

1: Wait for the current positioning to
complete

Reference: Buffer mode timing diagram

K1001 DI state UINT32 Read

DI state

[31:16]: Customized by the
manufacturer

[15:3]: Reserved

[1]: Positive limit

0: Inactive; 1: Active

[0]: Negative limit

0: Inactive; 1: Active

K1010 Axis state INT32 Read

Current state of the axis

–1: Not configured

0: Disabled

1: Standstill

2: Stopping

3: Homing

4: ContinuousMotion

5: DiscreteMotion

15: ErrorStop

3.11.15 MC_SetOverride

This instruction adjusts the target velocity during motion.
MC_SetOverride Adjust target velocity during motion

Graphic Block

Instruction Description (LD & LiteST)

-514-

Table 3–281 Instruction format
16-bit
Instruction

-

32-bit
Instruction

MC_SetOverride: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name/Axis ID No - - _sMCAXIS_
INFO

S2 VelFacter VelFacter Yes 100 0 to 500 REAL32
S3 AccFacter

(Reserved)

Acceleration and
deceleration overshoot
(reserved)

Yes 100 0 to 500 REAL32

D1 Enabled Enable flag Yes FALSE TRUE/FALSE BOOL

D2 Busy Busy flag Yes FALSE TRUE/FALSE BOOL

D3 CommandA-
borted

Execution abortion flag Yes FALSE TRUE/FALSE BOOL

D4 Error Error flag Yes FALSE TRUE/FALSE BOOL

D5 ErrorID Fault code Yes 0 *1 INT16

Note
*1: For details, see the “3.11.16 Error Codes of CANopen Axis Control Instructions” on page 517Error Codes of
CANopen Axis Control Instructions section.

Function and Instruction Description

This instruction adjusts the target velocity during the motion of the controlled axis by setting the
velocity overshoot. This instruction applies only to the master axis. It cannot be used to set the velocity
of a slave axis, and it does not affect the status of axes involved in synchronized motion.

Target velocity after adjustment = Current target velocity of the executing instruction x Velocity
overshoot

The unit of the overshoot value is [%]. "100" indicates 100%. The overshoot ranges from 0 to 500, with
a default value of 100. It cannot be less than 0. If the velocity overshoot is set to 0, the axis decelerates
and moves at a velocity of 0. The axis maintains its original motion state. If the target velocity after
adjustment exceeds the system's maximum velocity, the target velocity will be limited to the system's
maximum velocity.

When the Enable signal transitions from TRUE to FALSE, the overshoot value returns to 100.

By executing the start from stop instruction, re-executing a motion instruction, or executing multiple
motion instructions, you can ensure that the overshoot value corresponds to the newly set target
velocity.

The following table lists the instructions for which the overshoot can be adjusted.

Table 3–282 Instructions with adjustable overshoot

Instructions with Adjustable Overshoot

MC_MoveAbsolute (Absolute positioning) MC_MoveRelative (Relative positioning)

MC_MoveVelocity (Velocity control) MC_Jog (Jogging)

Instruction Description (LD & LiteST)

-515-

Instructions with Adjustable Overshoot

MC_MoveVelocityCSV (Velocity control with adjustable
pulse width)

MC_SyncMoveVelocity (Synchronous velocity control
that supports PWM waveform)

MC_FollowVelocity (CSP-based synchronous velocity
control)

(Reserved)

Note
The MC_SetOverRide instruction has no effect on MC_MoveSuperImposed.

Timing Diagram

Executing MC_SetOverride in MC_MoveAbsolute (absolute positioning)

The following is a timing diagram illustrating the usage of the MC_SetOverride instruction in the MC_
MoveAbsolute (absolute positioning) instruction.

Executing MC_SetOverride in MC_MoveVelocity (velocity control)

After "InVelocity" becomes "TRUE" (indicating that the target velocity has been reached), it transitions
to "FALSE" when the velocity is changed, and it changes back to "TRUE" when the target velocity is
reached again.

Instruction Description (LD & LiteST)

-516-

Timing diagram illustrating an exception

When an exception occurs during execution of this instruction, the "Error" flag is set to "TRUE". In the
case of a minor fault, the axis stops its motion.

You can check the output of "ErrorID" to find the cause of the exception.

After the exception is resolved, the "Error" flag becomes "FALSE".

Instruction Description (LD & LiteST)

-517-

3.11.16 Error Codes of CANopen Axis Control Instructions

When an error occurs during use of CANopen axis control instructions, refer to the following error
codes.

Table 3–283 Error codes
Code Description

0 No error occurs.

1

The axis ID is incorrect.

a) The axis ID is out of range (1 to 16).

b) The axis ID does not exist in the CANopen configuration or a PDO configuration error occurs.

2

The parameters of the instruction are incorrect.

a) The acceleration/deceleration in the MC_MoveAbsolute_CO, MC_MoveRelative_CO, MC_MoveVelocity_
CO, or MC_Jog_CO instruction is less than or equal to 0.

b) The velocity in the MC_MoveAbsolute_CO or MC_MoveRelative_CO instruction is less than or equal to 0.

3 The value of the instruction parameter (position or home offset) is out of range. (Note 1)

4 The value of the instruction parameter (velocity) is out of range. (Note 1)

5 The value of the instruction parameter (acceleration) is out of range. (Note 1)

6 The value of the instruction parameter (deceleration) is out of range. (Note 1)

8 Execution of the current instruction is stopped due to abortion by another instruction, Enable loss, or
disconnection.

9 Execution of the current instruction is stopped due to forward overtravel. (Note 2)

10 Execution of the current instruction is stopped due to reverse overtravel. (Note 2)

11 Homing failed.

16 Failed to execute the current instruction because the axis is disabled.
17 Failed to execute the MC_Reset_CO instruction because the axis is not in ErrorStop state.

18 Failed to execute the current instruction because the axis is in Stopping state.

19 Failed to execute the current instruction because the axis is homing.

20 Failed to execute the current instruction because the axis is in ContinuousMotion state.
21 Failed to execute the current instruction because the axis is positioning.

31 Failed to execute the current instruction because the axis is in ErrorStop state.

250 Axis enabling timed out.

251 An error occurs on the servo/motor drive. (Note 3)

255 The servo/motor drive is disconnected. (Note 3)

Note
● Note 1: After conversion into the pulse unit, the value is beyond the range of a 32-bit integer.
● Note 2: The axis enters the ErrorStop state when overtravel occurs during motion. You need to reset the fault by

executing MC_Reset_CO before triggering the axis to move in the reverse direction.
● Note 3: This error code applies only to the MC_Power_CO instruction. If this fault occurs during the execution of

other instructions, an instruction abortion error is reported; if another instruction is triggered after this fault
occurs, an error indicating that the axis is disabled is reported.

Instruction Description (LD & LiteST)

-518-

3.12 HC Axis Control Instructions (Pulse Input)

3.12.1 Instruction List

The following table lists the high-speed counter instructions.

Instruction Category Instruction Function

Bus encoder axis
instruction (H5U)

ENC_Counter Encoder enable
ENC_Reset Encoder reset
ENC_Preset Encoder preset

ENC_TouchProbe Encoder probe

ENC_ArrayCompare Encoder one-dimensional array comparison

ENC_StepCompare Encoder one-dimensional step comparison
ENC_GroupArrayCompare Encoder two-dimensional array comparison

ENC_ReadStatus Encoder state read
ENC_DigitalOutput Encoder DO control

ENC_ResetCompare Encoder comparison output reset

High-speed counter
instruction (H5U)

HC_Counter High-speed counter enable

HC_Preset High-speed counter preset

HC_TouchProbe High-speed counter probe

HC_Compare High-speed counter comparison

HC_ArrayCompare High-speed counter array comparison

HC_StepCompare High-speed counter step comparison

Instruction Category Instruction Function

Encoder axis instruction
(Easy)

ENC_Counter Encoder enable
ENC_Reset Encoder reset
ENC_Preset Encoder preset

ENC_TouchProbe Encoder probe

ENC_ArrayCompare Encoder one-dimensional array comparison

ENC_StepCompare Encoder one-dimensional step comparison
ENC_Compare Single-point comparison output

ENC_GroupArrayCompare Encoder two-dimensional array comparison

ENC_ReadStatus Encoder state read
ENC_DigitalOutput Encoder DO control

ENC_ResetCompare Encoder comparison output reset

ENC_SetUnit Gear ratio setting

ENC_SetLineRotationMode Rotation mode setting

3.12.2 ENC_Counter

This instruction is used to enable counting of the encoder axis.
ENC_Counter – Encoder enable

Instruction Description (LD & LiteST)

-519-

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_Counter Encoder enable

ENC_Counter(Enable := ???,

Axis := ???,

Invert := ,

Valid => ,

Busy => ,

Position => ,

Velocity => ,

ActDirection => ,

PositiveLimit => ,

NegativeLimit => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–284 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_Counter: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Encoder axis No - - _sENC_EXT_
AXIS

S2 Direction(Invert)

Counting direction reversal
(local encoder axis)

0: Forward

1: Reverse

Yes 0 0 to 1 INT

D1 Valid Active state Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 Position Current position Yes 0

Positive
number

0

Negative
number

REAL

D4 Velocity Current velocity Yes 0

Positive
number

0

Negative
number

REAL

Instruction Description (LD & LiteST)

-520-

D5 Direction Counting direction Yes 0
ON

OFF
BOOL

D6 PositiveLimit Positive limit in linear mode Yes OFF
ON

OFF
BOOL

D7 NegativeLimit Negative limit in linear mode Yes OFF
ON

OFF
BOOL

D8 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D9 Error Error Yes OFF
ON

OFF
BOOL

D10 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

● If the gating function of the DI terminal is not used, when the instruction input Enable is ON, the
Busy signal and Valid signal are ON and the encoder axis starts counting; when the instruction input
Enable is OFF, the Busy signal and Valid signal are OFF and the encoder axis stops counting. For
example, when the GR10-2HCE module inputs 10 kHz pulses at constant speed:

Instruction Description (LD & LiteST)

-521-

● If the gating function of the DI terminal is used (for example, X02 is assigned with the gating
function), when the instruction input Enable is ON and X02 is OFF, the Busy signal is ON, the Valid
signal is OFF, and the bus encoder axis suspends counting; when the instruction input Enable is ON
and X02 is ON, the Busy signal and Valid signal are ON and the bus encoder axis starts counting;
when the instruction input Enable is OFF, the encoder axis stops counting.

The timing diagram is as follows:

● In linear mode, if software limiting is enabled, when the count value reaches the limit, the counter
stops counting and the limit signal output is active, when the pulse input is reversed, the limit
signal is reset and the counter counts backwards.

Instruction Description (LD & LiteST)

-522-

Multi-execution

When multiple ENC_Counter instructions are called to control the same axis, the instruction triggered
first will be aborted by the instruction triggered later.

Instruction Description (LD & LiteST)

-523-

Function Description (Local Encoder Axis)

When the instruction input Enable is ON, the Busy signal and Valid signal are ON and the encoder axis
starts counting; when the instruction input Enable is OFF, the Busy signal and Valid signal are OFF and
the encoder axis stops counting.

Instruction Description (LD & LiteST)

-524-

In linear mode, if software limiting is enabled, when the count value reaches the limit, the counter
stops counting and the limit signal output is active; when the pulse input is reversed, the limit signal is
reset and the counter counts backwards.

Instruction Description (LD & LiteST)

-525-

Multi-execution

When multiple ENC_Counter instructions are called to control the same axis, the instruction triggered
first will be aborted by the instruction triggered later.

Instruction Description (LD & LiteST)

-526-

3.12.3 ENC_Reset

This instruction resets faults of a bus encoder axis.
ENC_Reset – Encoder reset

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_Reset Encoder reset

ENC_Reset(Execute := ???,

Axis := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–285 Instruction format
16-bit
Instruction

ENC_Reset: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Encoder axis No - -
sENC
EXT_AXIS

Instruction Description (LD & LiteST)

-527-

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandAborted Abortion of execution Yes OFF
ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description

When the bus encoder axis fails and enters the ErrorStop state, this instruction can be used to reset the
fault of the axis.

The local encoder axis does not support this instruction.

Timing Diagram – Omitted

3.12.4 ENC_Preset

ENC_Preset – Encoder preset

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_Preset Encoder preset

ENC_Preset(Enable := ???,

Axis := ???,

TrigerMode := ,

Position := ???,

Done => ,

Busy => ,

CommandAborted => ,

Table 3–286 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_Preset: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Encoder axis No - - _sENC_EXT_
AXIS

Instruction Description (LD & LiteST)

-528-

S2 TrigerMode

0: Triggered on the rising edge
of the instruction

1: Triggered on the rising edge
of the external input X

2: Triggered on the falling
edge of the external input X
(local encoder axis)

3: Triggered on the rising or
falling edge of the external
input X (local encoder axis)

4: Triggered by the Z signal
(bus encoder axis)

Yes 0 0 to 4 INT

S3 Position Preset position Yes 0

Positive
number

0

Negative
number

REAL

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

This instruction can be used to set the current position of the encoder axis as the value of the input
parameter "Position".

● When "TrigerMode" is set to 0, the encoder position is set when the Enable input is active high.

Instruction Description (LD & LiteST)

-529-

● When "TrigerMode" is set to 1, the encoder position is set on the rising edge of the DI terminal. To
select this mode, you need to assign the DI terminal with the preset function. If multiple DI
terminals are assigned with the preset function at the same time, the preset function can be
implemented as long as one of the inputs is active.

The timing diagram is as follows:

● When "TrigerMode" is set to 4, the preset function is completed when the rising edge of the Z signal
is detected.

Instruction Description (LD & LiteST)

-530-

Multi-execution

When multiple preset instructions are called to set the position of the same axis, the instruction
triggered first will be aborted by the instruction triggered later.

Instruction Description (LD & LiteST)

-531-

Function Description (Local Encoder Axis)

When "TrigerMode" is set to 0, the encoder position is set on the rising edge of the Enable input.

When "TrigerMode" is set to 1, the encoder position is set on the rising edge of the DI terminal. To
select this mode, you need to assign the DI terminal with the preset function.

After the instruction is triggered, the position is preset on the rising edge of X02.

When "TrigerMode" is set to 2, the encoder position is set on the falling edge of the DI terminal.

Instruction Description (LD & LiteST)

-532-

When "TrigerMode" is set to 3, the encoder position is set on the rising or falling edge of the DI
terminal. As long as the instruction is active, the position is set on whichever edge that arrives first.

3.12.5 ENC_TouchProbe

ENC_TouchProbe – Encoder probe

Instruction Description (LD & LiteST)

-533-

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_TouchProbe Encoder probe

ENC_TouchProbe(Enable := ???,

Axis := ???,

ProbeID := ???,

TriggerEdge := ???,

TerminalSource := ,

TriggerMode := ,

WindowOnly := ,

FirstPosition := ,

LastPosition := ,

Done => ,

Busy => ,

CommandAborted => ,

PosPosition => ,

NegPosition => ,

Error => ,

ErrorID =>);

Table 3–287 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_TouchProbe: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name No - _sENC_EXT_
AXIS

S2 ProbeID

Probe ID

0: Probe 1

1: Probe 2

No - 0 to 1 INT

S3 TriggerEdge

Trigger edge

0: Only rising edge

1: Only falling edge

2: Both rising edge and falling
edge

No - 0 to 2 INT

S4 TerminalSource

Probe signal source
(applicable to only the bus
encoder axis)

0: DI terminal

1: Encoder Z signal

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-534-

S5 TriggerMode

Trigger mode

0: Single trigger

1: Continuous trigger

Yes 0 0 to 1 INT

S6 WindowOnly

Probe window enable

0: Disabled. Probe signals are
detected at all positions.

1: Enabled. Probe signals are
detected only when the
current position is between
FirstPosition (included) and
LastPosition.

Yes OFF
ON

OFF
BOOL

S7 FirstPosition Probe window start position Yes 0

Positive
number,
negative
number, or 0

REAL

S8 LastPosition Probe window end position Yes 0
Not equal to

FirstPosition
REAL

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Busy flag Yes OFF
ON

OFF
BOOL

D3 CommandA-
borted

Abortion Yes OFF
ON

OFF
BOOL

D4 PosPosition
Position latched on the rising
edge Yes 0

Positive
number,
negative
number, or 0

REAL

D5 NegPosition Position latched on the falling
edge Yes 0

Positive
number,
negative
number, or 0

REAL

D6 Error Error flag Yes OFF
ON

OFF
BOOL

D7 ErrorID Fault code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

When the bus encoder axis is associated with CH0 of the GR10-2HCE module, the PDO options as
shown in the following figure need to be selected on the process data page of the GR10-2HCE module.
At this time, the terminals X00 and X01 of the GR10-2HCE module can be used as probe terminals.

Instruction Description (LD & LiteST)

-535-

When the bus encoder axis is associated with CH1 of the GR10-2HCE module, the PDO options as
shown in the following figure need to be selected on the process data page of the GR10-2HCE module.
At this time, the terminals X10 and X11 of the GR10-2HCE module can be used as probe terminals.

Instruction Description (LD & LiteST)

-536-

On the rising edge, the instruction latches the input parameters on the left, such as ProbeID and
TriggerEdge, and other state update parameters are invalid.

When Enable is ON, the function block latches the current position of the axis when the instruction
detects that the input of the probe specified by ProbeID is active and meets the probe detection
conditions.

● When WindowOnly is OFF, the window detection function is disabled. The axis position can be
latched as long as the probe input signal is active.

● When WindowOnly is ON, the window detection function is enabled.

In linear mode, the instruction detects the probe signal only when the current position of the axis falls
within the range specified by FirstPosition and LastPosition.

In ring mode, when FirstPosition is less than LastPosition, the valid window range is as follows:

Instruction Description (LD & LiteST)

-537-

When FirstPosition is greater than LastPosition, the valid window range is as follows:

This instruction can detect the rising edge or falling edge of the probe signal separately or both the
rising edge and the falling edge at the same time. When detecting only the rising edge (falling edge),
the instruction writes the value detected on the rising edge (falling edge) into PosPosition
(NegPosition). At this time, the Done signal is set to ON when a detection cycle is completed.

If the rising edge and falling edge are detected at the same time, after the Enable signal is active, the
instruction immediately writes the position into PosPosition upon detecting the rising edge and writes
the position into NegPosition upon detecting the falling edge. After that, the detection cycle is
completed and the Done signal is output. There is no requirement on the input sequence of the rising
edge and falling edge.

The input TerminalSource of this instruction can be used to set the terminal type to DI or the Z signal.

This instruction supports the single trigger and continuous trigger modes. If the single trigger mode is
used, instruction execution ends when the Done signal output is active. If the continuous trigger mode
is used, the Done output active signal is reset after one PLC scan cycle, and the instruction
automatically starts to detect new probe input signals.

The following is an example.

In linear mode, the window range is 10 to 100, the EtherCAT cycle is set to 8 ms, and the velocity is 100.
Then the axis moves 0.8 per EtherCAT cycle. If the current position at the moment when an EtherCAT
cycle starts is 9.9, the probe signal is not detected within this EtherCAT cycle. The current position
changes to 10.7 upon start of the next EtherCAT cycle. Therefore, the probe signals between 10 and
10.7 are lost. If the current position at the moment when an EtherCAT cycle starts is 99.9, the probe
signal is detected within this EtherCAT cycle. The current position changes to 100.7 upon start of the
next EtherCAT cycle. Therefore, the probe signals between 100 and 100.7 are responded.

Instruction Description (LD & LiteST)

-538-

In continuous mode, if the input frequency of the probe signal is greater than the frequency of the PLC
scan cycle, some probe signals are lost.

Abortion

The ENC_TouchProbe instruction supports the detection probe 1 and probe 2. If two probe
instructions are defined in the program and the probe IDs of the two instructions are different, the two
probe instructions will work independently. If the probe IDs are the same, the probe instruction
executed later will abort the previous probe instruction.

Timing Diagram

1. Probe 1, active on the rising edge, DI signal trigger source, single trigger mode, window function
enabled

2. Probe 1, active on the falling edge, DI signal trigger source, single trigger mode, window function
disabled

Instruction Description (LD & LiteST)

-539-

3. Probe 1, active on both the rising edge and falling edge, DI signal trigger source, single trigger mode,
window function disabled

Instruction Description (LD & LiteST)

-540-

4. Probe 1, active on the rising edge, DI signal trigger source, continuous trigger mode, window
function disabled

5. Probe 1, active on both the rising edge and falling edge, DI signal trigger source, continuous trigger
mode (the Done signal is active for a cycle after the DI signal is active on both the rising and falling
edges), window function disabled

Instruction Description (LD & LiteST)

-541-

6. Probe 1, aborted by another probe-related instruction, window function disabled

7. Probe 1, instruction error

Instruction Description (LD & LiteST)

-542-

Function Description (Local Encoder Axis)

When the bus encoder axis is associated with CH0 of the GR10-2HCE module, the PDO options as
shown in the following figure need to be selected on the process data page of the GR10-2HCE module.
At this time, the terminals X00 and X01 of the GR10-2HCE module can be used as probe terminals.

Enable probe 1 and probe 2 on the configuration interface of the local encoder axis, and choose the
appropriate probe terminals as needed.

On the rising edge, the instruction latches the input parameters on the left, such as ProbeID and
TriggerEdge, and other state update parameters are invalid.

When Enable is TRUE, the function block latches the current position of the axis when the instruction
detects that the input of the probe specified by ProbeID is active and meets the probe detection
conditions.

When WindowOnly is FALSE, the window detection function is disabled. The axis position can be
latched as long as the probe input signal is active.

When WindowOnly is TRUE, the window detection function is enabled.

In linear mode, the instruction detects the probe signal only when the current position of the axis falls
within the range specified by FirstPosition and LastPosition.

In ring mode, when FirstPosition is less than LastPosition, the valid window range is as follows:

Instruction Description (LD & LiteST)

-543-

When FirstPosition is greater than LastPosition, the valid window range is as follows:

This instruction can detect the rising edge or falling edge of the probe signal separately or both the
rising edge and the falling edge at the same time. When detecting only the rising edge (falling edge),
the instruction writes the value detected on the rising edge (falling edge) into PosPosition
(NegPosition). At this time, the Done signal is set to ON when a detection cycle is completed.

If the rising edge and falling edge are detected at the same time, after the Enable signal is active, the
instruction immediately writes the position into PosPosition upon detecting the rising edge and writes
the position into NegPosition upon detecting the falling edge. After that, the detection cycle is
completed and the Done signal is output. There is no requirement on the input sequence of the rising
edge and falling edge.

This instruction supports the single trigger and continuous trigger modes. If the single trigger mode is
used, instruction execution ends when the Done signal output is active. If the continuous trigger mode
is used, the Done output active signal is reset after one PLC scan cycle, and the instruction
automatically starts to detect new probe input signals.

Description

When the window function is enabled, probe signal loss or detection out-of-range may occur near the
window area. The following is an example:

In linear mode, the window range is 10 to 100, the main task cycle is set to 8 ms, and the velocity is
100. Then the axis moves 0.8 per main task cycle. If the current position at the moment when a main

Instruction Description (LD & LiteST)

-544-

task cycle starts is 9.9, the probe signal is not detected within this main task cycle. The current position
changes to 10.7 upon start of the next main task cycle. Therefore, the probe signals between 10 and
10.7 are lost. If the current position at the moment when a main task cycle starts is 99.9, the probe
signal is detected within this main task cycle. The current position changes to 100.7 upon start of the
next main task cycle. Therefore, the probe signals between 100 and 100.7 are responded.

In continuous mode, if the input frequency of the probe signal is greater than the frequency of the PLC
scan cycle, some probe signals are lost.

Abortion

The ENC_TouchProbe instruction supports the detection probe 1 and probe 2. If two probe
instructions are defined in the program and the probe IDs of the two instructions are different, the two
probe instructions will work independently. If the probe IDs are the same, the probe instruction
executed later will abort the previous probe instruction.

Timing Diagram

1. Probe 1, active on the rising edge, DI signal trigger source, single trigger mode, window function
enabled

2. Probe 1, active on the falling edge, DI signal trigger source, single trigger mode, window function
disabled

Instruction Description (LD & LiteST)

-545-

3. Probe 1, active on both the rising edge and falling edge, DI signal trigger source, single trigger mode,
window function disabled

4. Probe 1, active on the rising edge, DI signal trigger source, continuous trigger mode, window
function disabled

Instruction Description (LD & LiteST)

-546-

5. Probe 1, active on both the rising edge and falling edge, DI signal trigger source, continuous trigger
mode (the Done signal is active for a cycle after the DI signal is active on both the rising and falling
edges), window function disabled

6. Probe 1, aborted by another probe-related instruction, window function disabled

Instruction Description (LD & LiteST)

-547-

7. Probe 1, instruction error

3.12.6 ENC_ArrayCompare

ENC_ArrayCompare – Encoder one-dimensional array comparison

Instruction Description (LD & LiteST)

-548-

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_ArrayCompare

One-
dimen-
sional
array
compari-
son

NC_ArrayCompare(Enable := ???,

Axis := ???,

Array := ???,

Size := ???,

Mode := ???,

Parameter := ,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

OutStatus => ,

Index => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–288 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_ArrayCompare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Encoder axis No - - _sENC_EXT_
AXIS

S2 Array Comparand array No - REAL[0-1000]

S3 Size Number of comparands No - 1 to 1000 INT

S4 Mode

Comparison mode (bus
encoder axis)

0: Reserved

1: Time control

2: Pulse control

3: Level control

Yes 0 to 3 INT

Instruction Description (LD & LiteST)

-549-

S5 Parameter

Control parameters (bus
encoder axis)

Time control: output active
duration, in µs.

Pulse control: output active
pulse count, in Unit.

Level control: initial level; 0
indicates low level and non-
zero indicates high level.

Yes

Positive
number

0

Negative
number

REAL

S6 OutputEnable

Hardware output enable (local
encoder axis)

0: Disabled

1: Enabled

Yes 1 0 to 1 INT

S7 InterruptMap

Interrupt ID (local encoder
axis)

0: No interrupt is generated.

1: Associate with comparison
interrupt 1.

…

16: Associate with comparison
interrupt 16.

Yes 0 0 to 16 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 OutStatus
Port output state (bus
encoder axis) Yes OFF

ON

OFF
BOOL

D4 Index Index of the next comparand Yes 0 0 to 999 INT

D5 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

When the bus encoder axis is associated with CH0 of the GR10-2HCE module, the PDO options as
shown in the following figure need to be selected on the process data page of the GR10-2HCE module.
At this time, Y00 of the GR10-2HCE module can be used for comparison output.

Instruction Description (LD & LiteST)

-550-

When the bus encoder axis is associated with CH1 of the GR10-2HCE module, the PDO options as
shown in the following figure need to be selected on the process data page of the GR10-2HCE module.
At this time, Y10 of the GR10-2HCE module can be used for comparison output.

Setting Comparison Points

Array in the instruction specifies the comparand array, and Size indicates the actual number of points
to be compared. Ensure that the value of Size is less than or equal to the number of data entries
specified by Array in the PLC program. If the value of Size is greater than the number of data entries
specified by Array, the instruction will not report an error, but the array index out-of-bounds error and
program execution error will occur inside the PLC.

Instruction Description (LD & LiteST)

-551-

Setting the Comparison Output Mode

The basic principle of the comparison output is to set the DO terminal to high level or reverse the
original level after the encoder runs to the specified position. When the output is set to high level, the
time duration or the number of consecutive pulses during which the output remains high level can be
specified.

1. Time mode
When Mode is set to 1, the DO terminal outputs high level after the encoder axis reaches the
comparison point. Parameter specifies the time duration during which the output remains high level,
Size specifies the number of comparison points, and Array specifies the comparison point array.
Among the output parameters, OutStatus indicates the output state of the comparison output
terminal, and Index indicates the index of the next array coordinate point to be compared.

Assume that the comparison point array is P[4], and the output time at each comparison point is 5
ms. The instruction starts to run after the Enable input becomes active. The timing diagram is as
follows.

Instruction Description (LD & LiteST)

-552-

Note
If the PLC scan cycle is greater than the specified output time of point Y, for example, if the PLC scan cycle is 10 ms
and the output time of point Y is 100 µs, the output change of OutStatus may not be detected in the PLC task, but
point Y is output normally.

Before the comparison output is completed, if the Enable input is set to OFF, the subsequent
comparison points are not compared any more.

Instruction Description (LD & LiteST)

-553-

2. Pulse mode
When Mode is set to 2, the DO terminal outputs high level after the encoder axis reaches the
comparison point. Parameter specifies the number of encoder pulses (unit: Unit) during which the
output remains high level, Size specifies the number of comparison points, and Array specifies the
comparison point array. Among the output parameters, OutStatus indicates the output state of the
comparison output terminal, and Index indicates the index of the next array coordinate point to be
compared.

Assume that the comparison point array is P[4], and the output remains high level at each
comparison point for 2 Units. The instruction starts to run after the Enable input becomes active.
The timing diagram is as follows.

Instruction Description (LD & LiteST)

-554-

Before the comparison output is completed, if the Enable input is set to OFF, the subsequent
comparison points are not compared any more, as in the case of the time mode.

3. Level mode
When Mode is set to 3, the level mode is used. Parameter specifies the initial level of the output
terminal when the Enable signal of the instruction is active. If it is 0, the initial level of the Y output
terminal is OFF; if it is not 0, the initial level of the Y output terminal is ON. Size specifies the number
of comparison points, and Array specifies the comparison point array. Among the output
parameters, OutStatus indicates the output state of the comparison output terminal, and Index
indicates the index of the next array coordinate point to be compared.

Assume that the comparison point array is P[4], and Parameter is set to a non-zero value. The
instruction starts to run after the Enable input becomes active. The timing diagram is as follows.

Instruction Description (LD & LiteST)

-555-

As shown in the preceding figure, after the comparison output is completed, the state of the Y00
output terminal is still ON. If you want to set Y00 to OFF at this time, you need to call the ENC_
ResetCompare instruction. For details, see the description of the ENC_ResetCompare instruction.

Before the comparison output is completed, if the Enable input is set to OFF, the comparison output
stops and the output state of the Y00 terminal remains unchanged (for example, it remains ON). In
this case, if you want to forcibly reset Y00 to OFF, you also need to call the ENC_ResetCompare
instruction.

Multi-execution

If a new comparison output instruction is triggered during the comparison output process, the
previous instruction being executed is aborted, its CommandAborted signal output becomes active,
and the state of the Y output terminal is determined by the new instruction.

The following is an example.

Instruction Description (LD & LiteST)

-556-

In the first ENC_ArrayCompare instruction, Mode is set to 1 (time mode), the comparison point array is
P[4], and the output time at each comparison point is 5 ms. The instruction starts to run after the
Enable input becomes active. After the first instruction runs for a period of time, the second ENC_
ArrayCompare instruction is triggered. In the second instruction, Mode is set to 3 (level mode), the
comparison point array is P[4], and Parameter is set to a non-zero value. The timing diagram is as
follows.

Instruction Description (LD & LiteST)

-557-

Function Description (Local Pulse Axis)

Enable comparison output on the comparison output configuration interface of the local pulse axis,
select an output terminal, and select the pulse output unit (time or unit).

Setting Comparison Points

Array in the instruction specifies the comparand array, and Size indicates the actual number of points
to be compared. Ensure that the value of Size is less than or equal to the number of data entries
specified by Array in the PLC program. If the value of Size is greater than the number of data entries

Instruction Description (LD & LiteST)

-558-

specified by Array, the instruction will not report an error, but the array index out-of-bounds error and
program execution error will occur inside the PLC.

Setting the Comparison Output Mode

The basic principle of the comparison output is to set the DO terminal to high level after the encoder
runs to the specified position. When the output is set to high level, the time duration or the number of
consecutive pulses during which the output remains high level can be specified.

1. Time mode
In time mode, the DO terminal outputs high level after the encoder axis reaches the comparison
point. The time duration during which the output remains high level is configured on the
background configuration interface. Size specifies the number of comparison points, and Array
specifies the comparison point array. Index indicates the next array coordinate point to be
compared.

Assume that the comparison point array is P[4], and the output time at each comparison point is 5
ms. The instruction starts to run after the Enable input becomes active. The timing diagram is as
follows.

Instruction Description (LD & LiteST)

-559-

Before the comparison output is completed, if the Enable input is set to OFF, the subsequent
comparison points are not compared any more.

2. Pulse mode
When Unit is selected as the unit, the output remains high level for a specified number of encoder
pulses. Size specifies the number of comparison points, and Array specifies the comparison point
array. Index indicates the next array coordinate point to be compared.

Assume that the comparison point array is P[4], and the output remains high level at each
comparison point for 2 Units. The instruction starts to run after the Enable input becomes active.
The timing diagram is as follows.

Instruction Description (LD & LiteST)

-560-

Before the comparison output is completed, if the Enable input is set to OFF, the subsequent
comparison points are not compared any more, as in the case of the time mode.

Other Parameters

When OutputEnable is set to 1, the configured comparison output terminal generates comparison
output signals. If OutputEnable is set to 0, no comparison output signals are generated.

InterruptMap is used to associate the comparison interrupt subprogram. When it is set to 0, no
interrupt subprogram is associated. When it is set to 1 to 16, the specified interrupt subprogram is
associated.

3.12.7 ENC_StepCompare

ENC_StepCompare – Encoder one-dimensional step comparison

Instruction Description (LD & LiteST)

-561-

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_
StepCompare

Encoder axis step
comparison

ENC_StepCompare(Enable := ???,

Axis := ???,

StartPosition := ???,

EndPosition := ???,

Step := ???,

Mode := ???,

Parameter := ,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

OutStatus => ,

Position => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–289 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_StepCompare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Encoder axis No - - _sENC_EXT_
AXIS

S2 StartPosition Comparison start position No - - REAL

S3 EndPosition Comparison end position No - - REAL

S4 Step Step No - - REAL

S5 Mode

Comparison mode

0: Reserved

1: Time control

2: Pulse control

3: Level control

Yes - 0 to 3 INT

Instruction Description (LD & LiteST)

-562-

S6 Parameter

Control parameters

Time control: output active
duration, in µs.

Pulse control: output active
pulse count, in Unit.

Level control: initial level; 0
indicates low level and non-
zero indicates high level.

Yes 0

Positive
number

0

Negative
number

REAL

S7 OutputEnable

Hardware output enable (local
encoder axis)

0: Disabled

1: Enabled

Yes 0 0 to 1 INT

S8 InterruptMap

Interrupt ID (local encoder
axis)

0: No interrupt is generated.

1: Associate with comparison
interrupt 1.

…

16: Associate with comparison
interrupt 16.

Yes 0 0 to 16 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 OutStatus
Port output state (bus
encoder axis) Yes OFF

ON

OFF
BOOL

D4 Position Next comparand Yes 0 REAL

D5 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

When the bus encoder axis is associated with the first channel of the GR10-2HCE module, the PDO
options as shown in the following figure need to be selected on the process data page of the GR10-
2HCE module. At this time, Y00 of the GR10-2HCE module can be used for comparison output.

Instruction Description (LD & LiteST)

-563-

When the bus encoder axis is associated with the second channel of the GR10-2HCE module, the PDO
options as shown in the following figure need to be selected on the process data page of the GR10-
2HCE module. At this time, Y10 of the GR10-2HCE module can be used for comparison output.

Setting Comparison Points

In this instruction, StartPosition specifies the start position of the comparison points, and EndPosition
specifies the end position of the comparison points.

● In linear mode, when StartPosition is less than EndPosttion, set Step to a positive value, which
indicates the count-up comparison mode; when StartPostion is greater than EndPosition, set Step
to a negative value, which indicates the count-down comparison mode.

Instruction Description (LD & LiteST)

-564-

● In ring mode, when StartPosition is less than EndPosttion, set Step to a positive value, which
indicates the up-counting comparison mode; when StartPostion is greater than EndPosition, set
Step to a negative value, which indicates the down-counting comparison mode.

Note
The first comparison point must be the point specified by StartPosition, but the last comparison point is not neces-
sarily the point specified by EndPosition. For example, assume that the start point is 10, the end point is 25, and the
step is 10. In this case, the comparison output signal is generated only at position 10 and position 20.

Comparison Modes

The step comparison instruction supports the time control, pulse control, and level control modes,
and the mode is specified by the parameter Mode of the instruction. For details about the three modes,
see the description of the ENC_ArrayCompare instruction.

Multi-execution

If a new comparison output instruction is triggered during the comparison output process, the
previous instruction being executed is aborted, its CommandAborted signal output becomes active,
and the state of the Y output terminal is determined by the new instruction.

Function Description (Local Encoder Axis)

Enable comparison output on the comparison output configuration interface of the local pulse axis,
select an output terminal, and select the pulse output unit (time or unit).

Setting Comparison Points

Instruction Description (LD & LiteST)

-565-

In this instruction, StartPosition specifies the start position of the comparison points, and EndPosition
specifies the end position of the comparison points.

In linear mode, when StartPosition is less than EndPosttion, set Step to a positive value, which
indicates the up-counting comparison mode; when StartPostion is greater than EndPosition, set Step
to a negative value, which indicates the down-counting comparison mode.

In ring mode, when StartPosition is less than EndPosttion, set Step to a positive value, which indicates
the up-counting comparison mode; when StartPostion is greater than EndPosition, set Step to a
negative value, which indicates the down-counting comparison mode.

Note
The first comparison point must be the point specified by StartPosition, but the last comparison point is not neces-
sarily the point specified by EndPosition. For example, assume that the start point is 10, the end point is 25, and the
step is 10. In this case, the comparison output signal is generated only at position 10 and position 20.

Comparison Modes

The step comparison instruction supports the time control and pulse control modes, which is
configured on the background configuration interface. For details about the two modes, see the
description of the ENC_StepCompare instruction.

Other Parameters

When OutputEnable is set to 1, the configured comparison output terminal generates comparison
output signals. If OutputEnable is set to 0, no comparison output signals are generated.

InterruptMap is used to associate the comparison interrupt subprogram. When it is set to 0, no
interrupt subprogram is associated. When it is set to 1 to 16, the specified interrupt subprogram is
associated.

Multi-execution

Instruction Description (LD & LiteST)

-566-

If a new comparison output instruction is triggered during the comparison output process, the
previous instruction being executed is aborted, its CommandAborted signal output becomes active,
and the state of the Y output terminal is determined by the new instruction.

3.12.8 ENC_Compare

ENC_Compare – Single-point comparison output

Graphic Block

Table 3–290 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_Compare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis
Encoder axis

No - -
sENC
EXT_AXIS

S2 Position Comparison position No - - REAL

S3 OutputEnable

Hardware output enable
(local encoder axis)

0: Disabled

1: Enabled

Yes 0 0 to 1 INT16

S4 InterruptMap

Interrupt ID (local encoder
axis)

0: No interrupt is
generated.

1: Associate with
comparison interrupt 1.

…

16: Associate with
comparison interrupt 16.

Yes 0 0 to 16 INT16

D1 Done
Completion flag

Yes FALSE
TRUE

FALSE
BOOL

D2 Busy
Executing

Yes FALSE
TRUE

FALSE
BOOL

D3 CommandA-
borted

Abortion of execution
Yes FALSE

TRUE

FALSE
BOOL

D4 Error
Error

Yes FALSE
TRUE

FALSE
BOOL

D5 ErrorID Error code Yes 0 - INT

Instruction Description (LD & LiteST)

-567-

Function Description (Bus Encoder Axis)

The bus encoder axis does not support this instruction.

Function Description (Local Encoder Axis)

Enable comparison output on the comparison output configuration interface of the local pulse axis,
select an output terminal, and select the pulse output unit (time or unit).

When OutputEnable is set to 1, the configured comparison output terminal generates comparison
output signals. If OutputEnable is set to 0, no comparison output signals are generated.

InterruptMap is used to associate the comparison interrupt subprogram. When it is set to 0, no
interrupt subprogram is associated. When it is set to 1 to 16, the specified interrupt subprogram is
associated.

3.12.9 ENC_GroupArrayCompare

ENC_GroupArrayCompare – Encoder two-dimensional array comparison

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_
GroupArray-
Compare

Encoder
axis array
compari-
son (bus
encoder
axis)

ENC_GroupArrayCompare(Enable := ???,

AxisX := ???,

AxisY := ???,

Array := ???,

Size := ???,

Mode := ???,

Parameter := ,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

OutStatus => ,

WarningX => ,

WarningY => ,

Index => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Instruction Description (LD & LiteST)

-568-

Table 3–291 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_GroupArrayCompare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 AxisX Encoder axis (x-axis) No - - _sENC_EXT_
AXIS

S2 AxisY Encoder axis (y-axis) No
_sENC_EXT_
AXIS

S3 Array Comparand array No - -
_sPoint2D
[0..1000]

S4 Size Number of comparands No - 1 to 1000 INT

S5 Mode

Comparison mode

0: Configuration mode
(supported by the local
encoder axis)

1: Time control

2: Reserved

3: Level control

No 0 to 3 INT

S6 Parameter

Control parameters

Time control: output active
duration, in µs.

Level control: initial level; 0
indicates low level and non-
zero indicates high level.

Yes 0

Positive
number

0

Negative
number

REAL

S7 OutputEnable Reserved Yes 0 0 to 1 INT

S8 InterruptMap Reserved Yes 0 0 to 16 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 OutStatus Port output state Yes OFF
ON

OFF
BOOL

D4 WarningX Warning output of x-axis Yes OFF
ON

OFF
BOOL

D5 WarningY Warning output of y-axis Yes OFF
ON

OFF
BOOL

D6 Index Index of the next comparand Yes 0 0 to 999 INT

D7 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D8 Error Error Yes OFF
ON

OFF
BOOL

D9 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Instruction Description (LD & LiteST)

-569-

Function Description (Bus Encoder Axis)

The two channels of the GR10-2HCE module can work together to implement the two-dimensional
comparison output function. The first channel is used as the x-axis input, and the second channel is
used as the y-axis input. Therefore, when calling this instruction, ensure that the encoder axes
specified by AxisX and AxisY are bound to the same GR10-2HCE module. Moreover, ensure that AxisX is
bound to the first channel and AxisY is bound to the second channel.

You need to assign the two-dimensional comparison output function to the Y00 output terminal on the
AxisX mode/parameter configuration interface, and set the allowable error and warning deviation for
each axis of the two-dimensional comparison output.

The PDO options as shown in the following figure need be selected on the process data page of the
GR10-2HCE module. In this case, Y00 of the GR10-2HCE module can be used as a two-dimensional
comparison output terminal.

Two-dimensional Comparison Output Principles

Set T (Tx, Ty) as the target point on the plane, M (Mx, My) as the maximum allowable position error,
and N (Nx, Ny) as the warning buffer detection range.

As shown in the following figure, when the system runs to the allowable output area, it is considered to
have entered the target area. After the system enters the target area, the controller will select the
output based on the motion profile of the encoder axis to achieve optimal control (Note 1).

Instruction Description (LD & LiteST)

-570-

When the x-axis (y-axis) has entered the allowable output area, but the y-axis (x-axis) has not entered
the warning buffer area, that is, it is still in the areas in red in the following figure, the WarningY
(WarningX) output of the instruction becomes active and remains active until the y-axis (x-axis) enters
the warning buffer area.

In the non-detection area and warning buffer area, since the comparison output conditions are not
satisfied, there is no comparison output signal or warning signal.

Note
After reaching the range of the comparison point, if the encoder input does not change any more, the comparison
output will be generated after 1 second.

Comparison Output Modes

The two-dimensional comparison output instruction supports the time control and level control
modes. For details, see the description of the ENC_ArrayCompare instruction.

Multi-execution

If a new comparison output instruction is triggered during the comparison output process, the
previous instruction being executed is aborted, its CommandAborted signal output becomes active,
and the state of the Y output terminal is determined by the new instruction.

Function Description (Local Encoder Axis)

The local encoder axis does not support this instruction.

3.12.10 ENC_ReadStatus

ENC_ReadStatus – Encoder state read

Instruction Description (LD & LiteST)

-571-

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_ReadStatus
Encoder axis state read
(bus encoder axis)

ENC_ReadStatus(Enable := ???,

Axis := ???,

Valid => ,

Busy => ,

AxisErrorCode => ,

SlaveErrorCode => ,

DigitalInput => ,

Error => ,

ErrorID =>);

Table 3–292 Instruction format
16-bit
Instruction

ENC_ReadStatus: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Bus encoder axis No - - _sENC_EXT_
AXIS

D1 Valid Active Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 AxisErrorCode Axis fault code Yes 0 - INT
D4 SlaveErrorCode Drive fault code Yes 0 - INT

D5 DigitalInput

DI terminal state

Bit0: CHn-X0 terminal state

Bit1: CHn-X1 terminal state

Bit2: CHn-X2 terminal state

Bit3: CHn-X3 terminal state

Others: Reserved

Yes 0 - INT

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

This instruction reads the state of a bus encoder axis.

Instruction Description (LD & LiteST)

-572-

AxisErrorCode is used to read the fault code of the bus encoder axis. For details about the fault code,
see the list of fault codes. SlaveErrorCode displays the fault code of the GR10-2HCE module. For details
about the fault code list, see the application manual of the GR10-2HCE module.

DigitalInput displays the DI terminal state of the GR10-2HCE module. When the axis is bound to the
CH0 channel, it displays the state of X00, X01, X02, and X03; when the axis is bound to the CH1 channel,
it displays the states of X10, X11, X12, and X13.

Function Description (Local Encoder Axis)

The local encoder axis does not support this instruction.

3.12.11 ENC_DigitalOutput

ENC_DigitalOutput – Encoder DO control

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_
DigitalOutput

Encoder axis
DO control (bus
encoder axis)

ENC_DigitalOutput(Enable := ???,

Axis := ???,

Value := ,

Valid => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–293 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_DigitalOutput: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Bus encoder axis instruction No - - _sENC_EXT_
AXIS

S2 Value

DO terminal set value

Bit0: CHn-Y0 output state

Bit1: CHn-Y1 output state

Bit2: CHn-Y2 output state

Others: Reserved

Yes 0 - INT

D1 Valid Output active Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

Instruction Description (LD & LiteST)

-573-

D3 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

This instruction is used to set the DO terminal state of the GR10-2HCE module.

When the bus encoder axis is bound to the CH0 channel of the GR10-2HCE module, the instruction
controls the states of Y00, Y01, and Y02; when the axis is bound to the CH1 channel of the GR10-2HCE
module, the instruction controls the states of Y10, Y11, and Y12.

Function Description (Local Encoder Axis)

The local encoder axis does not support this instruction.

3.12.12 ENC_ResetCompare

ENC_ResetCompare – Encoder comparison output reset

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_
ResetCom-
pare

Encoder axis
comparison output
reset (bus encoder
axis)

ENC_ResetCompare(Execute := ???,

Axis := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–294 Instruction format
16-bit
Instruction

ENC_ResetCompare: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Bus encoder axis No - - _sENC_EXT_
AXIS

D1 Done Completion flag Yes OFF ON

OFF

BOOL

Instruction Description (LD & LiteST)

-574-

D2 Busy Executing Yes OFF ON

OFF

BOOL

D3 CommandAbort-
ed

Abortion of execution Yes OFF ON

OFF

BOOL

D4 Error Error Yes OFF ON

OFF

BOOL

D5 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Function Description (Bus Encoder Axis)

This instruction aborts the execution of three comparison output instructions (ENC_StepCompare,
ENC_GroupArrayCompare, and ENC_ArrayCompare) and sets the comparison output terminal to OFF.

1. Abortion rules in time or pulse mode
When the comparison output instruction is set to time or pulse mode, if this instruction is called
when the Done signal of the comparison output instruction is OFF, the comparison output
instruction is aborted, its CommandAborted signal output becomes active, and the comparison
output terminal is forced to OFF. After that, the Done signal output of ENC_ResetCompare
instruction becomes active.

Instruction Description (LD & LiteST)

-575-

2. Abortion rules in level mode

Instruction Description (LD & LiteST)

-576-

When the comparison output instruction is set to level mode, if this instruction is called when the
Done signal of the comparison output instruction is OFF, the instruction processing is the same as
that in time or pulse mode mentioned above.

If the ENC_ResetCompare instruction is called when the Done signal of the comparison output
instruction is ON, that is, when the comparison output is completed, the output signals (Done, Busy,
CommandAborted) of the comparison output instruction remain unchanged, the controlled
comparison output terminal is forced to OFF, and then the Done signal output of the ENC_
ResetCompare instruction becomes ON.

Multi-execution

Instruction Description (LD & LiteST)

-577-

If a new comparison output reset instruction is triggered during the comparison reset process, the
previous instruction being executed is aborted, and its CommandAborted signal output becomes
active.

Function Description (Local Encoder Axis)

The local encoder axis does not support this instruction.

3.12.13 ENC_SetUnit

ENC_SetUnit – Gear ratio setting

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_SetUnit
Gear ratio
setting

ENC_SetUnit(Enable := ???,

Axis := ???,

PlusePerCycle := ???,

DisPerCycle := ???,

Numerator := ???,

Denotinator := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–295 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_SetUnit: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name No - _sENC_
EXT_AXIS

S2 PlusePerCycle Number of pulses per
revolution of the encoder

No - Positive
number

DINT

S3 DisPerCycle Distance per revolution of
the rotary table

No - 0.01 to
9999999

REAL

S4 Numerator Gear ratio (numerator) No 1 Positive
number

DINT

S5 Denotinator Gear ratio (denominator) No 1 Positive
number

DINT

D1 Done Completion flag Yes FALSE ON/OFF BOOL

D2 Busy Busy flag Yes FALSE ON/OFF BOOL

Instruction Description (LD & LiteST)

-578-

D3 CommandA-
borted

Abortion Yes FALSE ON/OFF BOOL

D4 Error Error flag Yes FALSE ON/OFF BOOL

D5 ErrorID Fault code Yes 0 - INT

Function Description (Bus Encoder Axis)

The bus encoder axis does not support this instruction.

Function Description (Local Encoder Axis)

This instruction is used for the PLC to reconfigure the gear ratio of the local encoder axis before
enabling counting after power-on, program download, or execution of a RUN/STOP operation.

The gear ratio of a local encoder axis is calculated as follows:

Example

This example describes how to set the local encoder axis parameters as follows automatically after
power-on of the PLC.

Parameter Value
Number of pulses per revolution of the encoder 10000

Distance per revolution of the rotary table 30

Gear ratio (numerator) 3

Gear ratio (denominator) 2

Add the following program in the PLC. Use M8000 to trigger the instruction.

Note
If this instruction is called during program execution, the local encoder axis will be re-initialized, causing a sudden
change in its feedback position.

Timing Diagram

Instruction Description (LD & LiteST)

-579-

3.12.14 ENC_SetLineRotationMode

ENC_SetLineRotationMode – Rotation mode setting

Graphic Block

Instruction Name LD Expression LiteST Expression

ENC_
SetLineRotationMode

Rotation
mode
setting

ENC_SetLineRotationMode(Enable := ???,

Axis := ???,

LineRotateMode := ???,

SoftLimitEnable := ???,

Plimit := ???,

Nlimit := ???,

Rotation := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–296 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ENC_SetLineRotationMode: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Axis Axis name No -
sENC
EXT_AXIS

S2
LineRotate-
Mode

Linear/Rotary mode

0: Linear mode

1: Rotary mode

No - 0 to 1 INT

Instruction Description (LD & LiteST)

-580-

S3 SoftLimitEna-
ble

Limiting enable in linear
mode

ON: Enabled

OFF: Disabled

No - Positive
number

BOOL

S4 PLimit Positive limit in linear
mode

No - REAL

S5 NLimit Negative limit in linear
mode

No - REAL

S6 Rotation Rotation period in rotary
mode

No - REAL

D1 Done Completion flag Yes FALSE ON/OFF BOOL

D2 Busy Busy flag Yes FALSE ON/OFF BOOL

D3 CommandA-
borted

Abortion Yes FALSE ON/OFF BOOL

D4 Error Error flag Yes FALSE ON/OFF BOOL
D5 ErrorID Fault code Yes 0 - INT

Function Description (Bus Encoder Axis)

The bus encoder axis does not support this instruction.

Function Description (Local Encoder Axis)

This instruction is used for the PLC to reconfigure the linear/rotary mode of the local encoder axis
before enabling counting after power-on, program download, or execution of a RUN/STOP operation.

When LineRotateMode is set to 0, the local encoder axis works in linear mode.

In linear mode, limiting is disabled when SoftLimitEnable is OFF. When SoftLimitEnable is ON, limiting
is enabled. At this time, PLimit indicates the positive limit, and NLimit indicates the positive limit.

When LineRotateMode is set to 1, the local encoder axis works in rotary mode. Rotation indicates the
rotation cycle.

Example

In this example, the local encoder axis switches to linear mode automatically after power-on of the
PLC. Limiting is enabled. The positive limit is 100, and the negative limit is –10. The program is as
follows.

Instruction Description (LD & LiteST)

-581-

Timing Diagram

3.12.15 HC_Preset

This instruction sets the counter value as the preset value according to the trigger signal.
HC_Preset – High-speed counter preset

Instruction Description (LD & LiteST)

-582-

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_Preset
High-speed
counter preset

HC_Preset(Enable := ???,

Axis := ???,

TriggerEdge := ,

Position := ???,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–297 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_Preset: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1
Axis Axis name/ID, which specifies

the local encoder axis to be
operated

No - 0 to 32767 INT

S2 TriggerEdge

Trigger edge

0: Triggered on the rising edge
of the instruction

1: Triggered on the rising edge
of the input terminal X

2: Triggered on the falling
edge of the input terminal X

3: Triggered on the rising or
falling edge of the input
terminal X

Yes 0 0 to 3 INT

S3 Position Preset position (unit: Unit) No - - REAL

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 *1 INT

Instruction Description (LD & LiteST)

-583-

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–298 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ √ -

D1 √[1] - √ - √ - - - -

D2 √[1] - √ - √ - - - -

D3 √[1] - √ - √ - - - -

D4 √[1] - √ - √ - - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_Preset instruction assigns the counter axis position according to the preset condition.

TriggerType specifies the preset condition, including the rising edge of the instruction or external
terminal input.

Item Setting Definition

TriggerType

0 Triggered on the rising edge of the instruction flow

1 Triggered on the rising edge of the external input X

2 Triggered on the falling edge of the external input X

3
Triggered on the rising or falling edge of the external
input X

When the preset condition is set to the external input X, you need to select the preset function in
counter parameter configuration and select the input terminal and trigger condition. The input
terminal can be set to any one of X0 to X7, and the trigger condition can be the rising edge or falling
edge.

Timing Diagram

● The timing diagram of the instruction is as follows when TriggerEdge is set to the rising edge of the
instruction (TriggerEdge = 0).

Instruction Description (LD & LiteST)

-584-

● The timing diagram of the instruction is as follows when TriggerEdge is set to the rising or falling
edge of the external input X (TriggerEdge = 3).

Instruction Description (LD & LiteST)

-585-

Instruction Example

3.12.16 HC_Counter

This instruction controls the high-speed counter to start or stop counting.
HC_Counter – High-speed counter enable

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_Counter High-speed
counter enable

HC_Counter(Enable := ???,

Axis := ???,

Invert := ,

Valid => ,

Position => ,

Velocity => ,

Direction => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–299 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_Counter: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1

Axis Axis name/ID, which
specifies the local
encoder axis to be
operated

No - 0 to 32767 INT

S2 Invert Counting inversion Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-586-

D1 Valid

Active state, which is
ON when the counter
enters the counting
state

Yes OFF
ON

OFF
BOOL

D2 Position
Current position (unit:
Unit) Yes 0 - REAL

D3 Velocity Current velocity (unit:
Unit/s) Yes 0 - REAL

D4 Direction Counting direction Yes OFF
ON

OFF
BOOL

D5 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–300 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

D1 √[1] - √ - √ - - - -

D2 - - - √ √ √ - - -

D3 - - - √ √ √ - - -

D4 √[1] - √ - √ - - - -

D5 √[1] - √ - √ - - - -

D6 √[1] - √ - √ - - - -

D7 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_Counter instruction implements position counting and velocity measurement of the counter
axis.

The counter axis position (unit: Unit) varies within a certain range based on the mode setting.

Invert (counting inversion)

Instruction Description (LD & LiteST)

-587-

Invert specifies the counting direction of the counter. The following table lists the counting directions
of different counting modes. Modification on Invert takes effect only after this function block
instruction is enabled again.

Invert A/B Phase Pulse+Direction CW/CCW
Single-phase

Counter

0

Phase A leading phase B,
counting up

Phase B leading phase A,
counting down

Direction signal = OFF,
counting down

Direction signal = ON,
counting up

Phase A, counting
up

Phase B, counting
down

Counting up

1

Phase A leading phase B,
counting down

Phase B leading phase A,
counting up

Direction signal = OFF,
counting up

Direction signal = ON,
counting down

Phase A, counting
down

Phase B, counting
up

Counting down

Timing Diagram

● In pulse+direction mode, if the direction signal is ON and Invert is set to 0, or the direction signal is
OFF and Invert is set to 1, the counter counts up, as shown in the following figure.

● In pulse+direction mode, if the direction signal is ON and Invert is set to 1, or the direction signal is
OFF and Invert is set to 0, the counter counts down, as shown in the following figure.

Instruction Description (LD & LiteST)

-588-

Instruction Example

The counter axis velocity is the current real-time velocity (unit: Unit/s). The minimum velocity that can
be measured by the counter axis is the velocity corresponding to 1 pulse of the counter within 1s. If 1
pulse of the counter corresponds to 0.1 Unit, the minimum velocity that can be measured is 0.1 Unit/s.

3.12.17 HC_TouchProbe

This instruction records the counter value based on the trigger signal.
HC_TouchProbe – High-speed counter probe

Instruction Description (LD & LiteST)

-589-

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_TouchProbe
High-speed
counter probe

HC_TouchProbe(Enable := ???,

Axis := ???,

ProbeID := ???,

TriggerEdge := ,

TriggerMode := ,

Done => ,

Busy => ,

PosPosition => ,

NegPosition => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–301 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_TouchProbe: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1
Axis Axis name/ID, which specifies the

local encoder axis to be operated No - 0 to 32767 INT16

S2 ProbeID

Probe ID

0: Probe 1

1: Probe 2

No 0 0 to 1 INT16

S3 TriggerEdge

Trigger edge 1: Triggered on the
rising edge of the external input X

2: Triggered on the falling edge of
the external input X

3: Triggered on the rising and
falling edges of the external input X

Yes 1 1 to 3 INT16

S4 TriggerMode
Trigger mode 0: Single trigger

1: Continuous trigger
Yes 0 0 to 1 INT16

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 PosPosition
Position latched on the rising edge
(unit: Unit) Yes 0 - REAL32

D4 NegPosition Position latched on the falling
edge (unit: Unit) Yes 0 - REAL32

Instruction Description (LD & LiteST)

-590-

D5 CommandA-
borted

Abortion of execution Yes OFF
ON

OFF
BOOL

D6 Error Error Yes OFF
ON

OFF
BOOL

D7 ErrorID Error code Yes 0 *1 INT16

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–302 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

D1 √[1] - √ - √ - - - -

D2 √[1] - √ - √ - - - -

D3 - - - √ √ √ - - -

D4 - - - √ √ √ - - -

D5 √[1] - √ - √ - - - -

D6 √[1] - √ - √ - - - -

D7 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_TouchProbe instruction can latch the counter axis position value when the external input
trigger condition is active.

Each counter axis supports two probes. During use, you need to select the corresponding probe
function in counter parameter configuration as well as the input terminal and trigger condition. The
input terminal can be set to any one of X1 to X7.

TriggerEdge specifies the probe trigger edge. The rising edge trigger position is latched in the output
parameter PosPosition, and the falling edge trigger position is latched in the output parameter
NegPosition.

Item Setting Definition

TriggerEdge

1 Triggered on the rising edge of the external input X

2 Triggered on the falling edge of the external input X

3
Triggered on the rising or falling edge of the external
input X

Instruction Description (LD & LiteST)

-591-

TriggerMode in the instruction can be set to the single trigger or continuous trigger mode.

● If the single trigger mode is used, when the function block instruction flow and the external input
trigger condition are active, the counter axis position is latched once, and the Done signal is output.
The counter axis position is latched in real time based on the trigger edge, which is not affected by
program execution. During instruction execution, affected by the scan cycle, when the program
scans and executes to the latched instruction, it updates the latched position to the output
parameter of the instruction.

● If the continuous trigger mode is used, when the function block instruction flow and the external
input trigger condition are active, the counter axis position is latched, and the Done signal that is
active for one scan cycle is output. When the Done signal becomes OFF and the external input
trigger condition is active, the counter axis position continues to be latched and the Done signal
that is active for one scan cycle is output. During the scan cycle in which the Done signal is active, if
the external input trigger condition is active, the counter axis position is not latched at this time.

● When the dual-edge trigger mode is used, the Done signal is output after the instruction is triggered
on both the rising and falling edges to complete the latch. In single trigger mode, the Done signal
remains active until the instruction execution is completed; in continuous trigger mode, the Done
signal is active for one scan cycle, and the latch signal is not responded within the scan cycle when
the Done signal is active.

Instruction Description (LD & LiteST)

-592-

Timing Diagram

● The timing diagram of the instruction is as follows when TriggerEdge is set to the rising edge of the
external input X (TriggerEdge = 1) and TriggerMode is set to the single trigger mode (TriggerMode =
0).

● The timing diagram of the instruction is as follows when TriggerEdge is set to the falling edge of the
external input X (TriggerEdge = 2) and TriggerMode is set to the single trigger mode (TriggerMode =
0).

Instruction Description (LD & LiteST)

-593-

● The timing diagram of the instruction is as follows when TriggerEdge is set to the rising and falling
edges of the external input X (TriggerEdge = 3) and TriggerMode is set to the single trigger mode
(TriggerMode = 0).

● The timing diagram of the instruction is as follows when TriggerEdge is set to the rising and falling
edges of the external input X (TriggerEdge = 3) and TriggerMode is set to the continuous trigger
mode (TriggerMode = 1).

Instruction Description (LD & LiteST)

-594-

Instruction Example

3.12.18 HC_Compare

This instruction detects whether the counter count value reaches the specified value.
HC_Compare – High-speed counter comparison

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_Compare High-speed counter
comparison

HC_Compare(Enable := ???,

Axis := ???,

Position := ???,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–303 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_Compare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1
Axis Axis name/ID, which specifies the

local encoder axis to be operated No - 0 to 32767 INT

S2 Position Comparison position (unit: Unit) No - - REAL

S3 OutputEnable

Hardware output enable

0: Disabled

1: Enabled

Yes 0 0 to 1 INT

Instruction Description (LD & LiteST)

-595-

S4 InterruptMap

Interrupt generation and
association when the comparand
and count value match

0: No interrupt is generated.

1: Associate with comparison
interrupt 1.

...

16: Associate with comparison
interrupt 16.

Yes 0 0 to 16 INT

D1 Done Completion flag Yes OFF
ON

OFF
BOOL

D2 Busy Executing Yes OFF
ON

OFF
BOOL

D3 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D4 Error Error Yes OFF
ON

OFF
BOOL

D5 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–304 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ √ -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

D1 √[1] - √ - √ - - - -

D2 √[1] - √ - √ - - - -

D3 √[1] - √ - √ - - - -

D4 √[1] - √ - √ - - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_Compare instruction compares the counter axis position with a single position.

Instruction Description (LD & LiteST)

-596-

Timing Diagram

The timing diagram of the instruction is as follows when the hardware output is enabled
(OutputEnable = 1).

Instruction Example

The instruction compares the counter axis with a single position. When the instruction flow is active,
the Done signal is output after the counter axis position reaches the comparison position.

3.12.19 HC_ArrayCompare

This instruction continuously detects whether the counter count value reaches the specified array
sequence.
HC_ArrayCompare – High-speed counter array comparison

Instruction Description (LD & LiteST)

-597-

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_ArrayCompare
High-speed
counter array
comparison

HC_ArrayCompare(Enable := ???,

Axis := ???,

Array := ???,

ArrayLength := ???,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

NextIndex => ,

CommandAborted => ,

Error => ,

ErrorID =>);

Table 3–305 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_ArrayCompare: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 Axis Axis name/ID, which
specifies the local encoder
axis to be operated

No - 0 to 32767 INT

S2 Array Comparison position array
(unit: Unit)

No - - REAL

S3 ArrayLength Array length No - 0 to 100 INT

S4 OutputEnable Hardware output enable

0: Disabled

1: Enabled

Yes 0 0 to 1000 INT

S5 InterruptMap Interrupt generation and
association when the
comparand and count value
match

0: No interrupt is generated.

1: Associate with
comparison interrupt 1.

...

16: Associate with
comparison interrupt 16.

Yes 0 0 to 16 INT

D1 Done Completion flag Yes OFF ON

OFF

BOOL

D2 Busy Executing Yes OFF ON

OFF

BOOL

Instruction Description (LD & LiteST)

-598-

D3 NextIndex Index of the next
comparand

Yes 0 0 to 100 INT

D4 Aborted Abortion of execution Yes OFF ON

OFF

BOOL

D5 Error Error Yes OFF ON

OFF

BOOL

D6 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–306 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ √ √ - -

D1 √[1] - √ - √ - - - -

D2 √[1] - √ - √ - - - -

D3 - - - √ √ √ - - -

D4 √[1] - √ - √ - - - -

D5 √[1] - √ - √ - - - -

D6 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_ArrayCompare instruction compares the counter axis position with multiple positions
continuously.

When the instruction flow is active, the counter axis position is compared with the position value in
array 0. If they are equal, the counter axis position is compared with the next position value in the
array. ArrayLength in the instruction specifies the array length. After all the positions are compared,
the Done signal is output.

The output parameter NextIndex indicates the index of the next comparison point, that is, the number
of completed comparison points.

Instruction Description (LD & LiteST)

-599-

Timing Diagram

The timing diagram of the instruction is as follows when the hardware output is enabled
(OutputEnable = 1) and three positions are compared (ArrayLength = 3).

Instruction Example

3.12.20 HC_StepCompare

This instruction continuously detects whether the counter count value reaches the continuous se-
quence with specified range and step.
HC_StepCompare – High-speed counter step comparison

Instruction Description (LD & LiteST)

-600-

Graphic Block

Instruction Name LD Expression LiteST Expression

HC_StepCompare
High-speed
counter step
comparison

HC_StepCompare(Enable := ???,

Axis := ???,

StartPosition := ???,

EndPosition := ???,

Step := ???,

OutputEnable := ,

InterruptMap := ,

Done => ,

Busy => ,

NextIndex => ,

Table 3–307 Instruction format
16-bit
Instruction

-

32-bit
Instruction

HC_StepCompare: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1
Axis Axis name/ID, which specifies

the local encoder axis to be
operated

No - 0 to 32767 INT

S2 StartPosition Start position (unit: Unit) No - - REAL

S3 EndPosition End position (unit: Unit) No - - REAL

S4 Step Step (unit: Unit) No - Positive
number

REAL

S5 OutputEnable

Hardware output enable

0: Disabled

1: Enabled

Yes 0 0 to 1 INT

S6 InterruptMap

Interrupt generation and
association when the
comparand and count value
match

0: No interrupt is generated.

1: Associate with comparison
interrupt 1.

...

16: Associate with comparison
interrupt 16.

Yes 0 0 to 16 INT

D1 Done
0: Not completed

1: Completed
Yes OFF

ON

OFF
BOOL

D2 Busy Executing Yes FLASE
ON

OFF
BOOL

D3 NextIndex Index of the next comparand Yes 0 0 to 100 INT

Instruction Description (LD & LiteST)

-601-

D4 CommandAbort-
ed

Abortion of execution Yes OFF
ON

OFF
BOOL

D5 Error Error Yes OFF
ON

OFF
BOOL

D6 ErrorID Error code Yes 0 *1 INT

Note
*1: For details, see “3.12.21 Error Codes” on page 603Error Codes.

Table 3–308 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ √ -

S3 - - - √ √ √ √ √ -

S4 - - - √ √ √ √ √ -

S5 - - - √ √ √ √ - -

S6 - - - √ √ √ √ - -

D1 √[1] - √ - √ - - - -

D2 √[1] - √ - √ - - - -

D3 - - - √ √ √ - - -

D4 √[1] - √ - √ - - - -

D5 √[1] - √ - √ - - - -

D6 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The HC_StepCompare instruction compares the counter axis position with consecutive positions with
equal steps.

When the instruction flow is active, the counter axis position is compared with the position specified by
StartPosition. When they are equal, the comparison position increases or decreases by a value
specified by Step and then is compared with the counter axis position. After the last comparison
position is compared, the Done signal is output.

The output parameter NextIndex indicates the index of the next comparison point. The index starts
from 0, that is, 0 indicates the first comparison point. Therefore, this index number is equal to the
number of comparison points that have been compared.

Instruction Description (LD & LiteST)

-602-

Timing Diagram

● The timing diagram of the instruction is as follows when the hardware output is enabled
(OutputEnable = 1) and StartPosition is less than EndPosition.

● The timing diagram of the instruction is as follows when the hardware output is enabled
(OutputEnable = 1) and StartPosition is greater than EndPosition.

Instruction Description (LD & LiteST)

-603-

Instruction Example

3.12.21 Error Codes

The following table lists the error codes of the high-speed counter function blocks.

Error Code Description

0 No error occurs.
100 The axis ID is invalid./It's not the local encoder axis.
101 The imaginary axis mode is not supported.

102 The ENC_SetUnit instruction is configured after encoder counting is enabled. Ensure that the
instruction is enabled before the encoder is enabled, and that PlusePerCycle is set properly.

103 DisPerCycle is set incorrectly in the instruction. Ensure that the parameter value is within the
permissible range.

Instruction Description (LD & LiteST)

-604-

Error Code Description
104 Numerator is set incorrectly in the instruction. Ensure that the parameter value is within the

permissible range.

105 Denotinator is set incorrectly in the instruction. Ensure that the parameter value is within the
permissible range.

106 Failed to set the gear ratio.

107 The ENC_SetLineRotationMode instruction is configured after encoder counting is enabled.
Ensure that the instruction is enabled before the encoder is enabled, and that LineRotateMode is
set properly.

108 PLimit is set incorrectly in the instruction. Ensure that the parameter value is within the
permissible range.

109 NLimit is set incorrectly in the instruction. Ensure that the parameter value is within the
permissible range.

110 PLimit and NLimit are set incorrectly in the instruction. Ensure that the parameter values are
within the permissible range.

111 Rotation is set incorrectly in the instruction. Ensure that the parameter value is within the
permissible range.

113 The current parameters do not meet the conditions for enabling software limiting.

114 Failed to set the linear/rotary mode.

200 An invert parameter input error occurs.

201 A trigger mode parameter input error occurs.

202
A trigger edge parameter input error occurs. The trigger edge is invalid or the X input is not
configured.

203 FirstPosition is set incorrectly in the instruction.

204 LastPosition is set incorrectly in the instruction.

205 Failed to execute the instruction because the parameters in the probe instruction are set
incorrectly.

206 Failed to set the preset position due to a parameter exception.

300 A probe ID parameter input error occurs.

301
An output enable parameter input error occurs. The output enable signal is invalid or the Y
output is not configured.

400 An interrupt mapping parameter input error occurs.

500 A preset position parameter input error occurs.

501 A comparison position parameter input error occurs.

502 A start position parameter input error occurs.

503 An end position parameter input error occurs.

504 A step parameter input error occurs.

600 An array length parameter input error occurs or the number of positions for step comparison
exceeds 100.

1000 Counting exceeded the lower limit.

1001 Counting exceeded the upper limit.

The following table lists the error codes of the bus encoder axis instructions.

Instruction Description (LD & LiteST)

-605-

Error Code Cause Solution

9701
The encoder axis instruction failed to request the
memory.

1. Check whether the PLC memory runs out.

2. Contact the manufacturer.

9702

1. The encoder axis type is incorrect.

2. The requested encoder axis does not exist.

3. The instruction is not supported in offline
commissioning.

This instruction does not support the set axis type.
Check whether the axis type setting is incorrect.

2. The instruction is not supported during offline
commissioning.

9703 Failed to configure the axis. Check whether the board software and the
software tool match.

9704
Counter operation command is not configured in I/
O mapping of the encoder axis.

Configure Counter operation command in I/O
mapping of the encoder axis.

9705 Counter status is not configured in I/O mapping of
the encoder axis.

Configure Counter status in I/O mapping of the
encoder axis.

9706
Encoder present position is not configured in I/O
mapping of the encoder axis.

Configure Encoder present position in I/O mapping
of the encoder axis.

9707 Pulse rate is not configured in I/O mapping of the
encoder axis.

Configure Pulse rate in I/O mapping of the encoder
axis.

9708
The positive limit of the encoder axis is not greater
than the negative limit.

Ensure that the positive limit of the encoder axis is
greater than the negative limit.

9709
The positive limit of the encoder axis is greater
than 2147483647 after being converted into the
pulse unit.

Ensure that the positive limit of the encoder axis is
less than or equal to 2147483647 after being
converted into the pulse unit.

9710
The negative limit of the encoder axis is less than –
2147483648 after being converted into the pulse
unit.

Ensure that the negative limit of the encoder axis is
greater than or equal to –2147483648 after being
converted into the pulse unit.

9711
The revolution cycle of the encoder axis in ring
mode is greater than 2147483647 after being
converted into the pulse unit.

Ensure that the revolution cycle of the encoder axis
in ring mode is less than or equal to 2147483647
after being converted into the pulse unit.

9712 The encoder axis is changed while the ENC_
Counter instruction is still active.

Do not change the encoder axis while the ENC_
Counter instruction is still active.

9713 The GR10-2HCE module is faulty.
Check the fault code object dictionary of the GR10-
2HCE module and troubleshoot the fault according
to the fault code.

9714 Failed to reset the encoder axis fault.

1. The current fault of the encoder axis does not
support reset.

2. The encoder shaft enters the faulty state
immediately after the fault is reset. Check the axis
fault codes and slave fault codes to further
determine the fault type.

9715
The ENC_Reset instruction is called when the
encoder axis is not faulty.

Do not call the ENC_Reset instruction when the
encoder axis is not faulty.

9716
The value of TriggerMode of the ENC_Preset
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9717
The value of Position of the ENC_Preset instruction
is greater than 9999999.

Set Position of the ENC_Preset instruction to a
value less than or equal to 9999999.

9718
Physical output command is not configured in I/O
mapping of the encoder axis.

Configure Physical output command in I/O
mapping of the encoder axis.

9719
The preset position or comparison output position
of the encoder axis instruction is greater than the
positive limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than or equal to the positive limit.

Instruction Description (LD & LiteST)

-606-

Error Code Cause Solution

9720
The preset position or comparison output position
of the encoder axis instruction is less than the
negative limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
greater than or equal to the negative limit.

9721

The preset position or comparison output position
of the encoder axis instruction is greater than
2147483647 or less than –2147483648 after being
converted into the pulse unit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
between –2147483648 and +2147483647 after
being converted into the pulse unit.

9722
The preset position or comparison output position
of the encoder axis instruction is greater than or
equal to the revolution cycle in ring mode.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than the revolution cycle in ring mode.

9723
The value of ProbeID of the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9724
The value of TriggerEdge of the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9725
The value of TerminalSource of the ENC_
TouchProbe instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9726
The value of TriggerMode of the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9727
The probe status word is not associated in I/O
mapping of the encoder axis.

Ensure that the probe status word is associated in
I/O mapping of the encoder axis.

9728
The probe feedback position is not associated in I/
O mapping of the encoder axis.

Ensure that the probe feedback position is
associated in I/O mapping of the encoder axis.

9729 The control word is not associated in I/O mapping
of the encoder axis.

Ensure that the control word is associated in I/O
mapping of the encoder axis.

9730
The probe window function of the encoder axis is
enabled, but the start position of the window is not
less than the end position.

Ensure that the start position of the probe window
is less than the end position.

9731 The Xn0 terminal is not assigned with the probe
function.

Assign the probe function to the Xn0 terminal.

9732 The Xn1 terminal is not assigned with the probe
function.

Assign the probe function to the Xn1 terminal.

9733 The instruction is not supported by the local
encoder axis.

Note that this instruction applies only to the bus
encoder axis.

9734 The instruction is not supported by the bus
encoder axis.

Note that this instruction applies only to the local
encoder axis.

9742 Compare mode is not configured in I/O mapping of
the encoder axis.

Configure Compare mode in I/O mapping of the
encoder axis.

9743
Compare pulse/time is not configured in I/O
mapping of the encoder axis.

Configure Compare pulse/time in I/O mapping of
the encoder axis.

9744
Compare size/step is not configured in I/O
mapping of the encoder axis.

Configure Compare size/step in I/O mapping of the
encoder axis.

9745
Compare point value 1 is not configured in I/O
mapping of the encoder axis.

Configure Compare point value 1 in I/O mapping of
the encoder axis.

9746
Compare point value 2 is not configured in I/O
mapping of the encoder axis.

Configure Compare point value 2 in I/O mapping of
the encoder axis.

9747
Physical output status' is not configured in I/O
mapping of the encoder axis.

Configure Physical output status in I/O mapping of
the encoder axis.

9748
Compare error code is not configured in I/O
mapping of the encoder axis.

Configure Compare error code in I/O mapping of
the encoder axis.

9749
Current compare number/position is not
configured in I/O mapping of the encoder axis.

Configure Current compare number/position in I/O
mapping of the encoder axis.

Instruction Description (LD & LiteST)

-607-

Error Code Cause Solution

9750
Failed to obtain the start address of the array of
the single-axis array comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9751
Failed to obtain the start address of the axis group
of the axis group array comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9752 The bus encoder axis is not associated with any
slave.

Associate the bus encoder axis with a slave.

9753
The x-axis and y-axis of the axis group array
comparison instruction are not associated with the
same slave.

Associate the x-axis and y-axis of the axis group
comparison output instruction with the same
slave.

9754
The x-axis of the axis group array comparison
instruction is not associated with the first channel
of the slave.

Associate the x-axis of the axis group comparison
output instruction with the first channel of the
slave.

9755
The y-axis of the axis group array comparison
instruction is not associated with the second
channel of the slave.

Associate the y-axis of the axis group comparison
output instruction with the second channel of the
slave.

9756
The Yn0 terminal is not assigned with the one-
dimensional comparison output function.

Assign the one-dimensional comparison output
function to the Yn0 output terminal corresponding
to the channel.

9757
The absolute value of the start value of the
encoder axis step comparison output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9758
The absolute value of the end value of the encoder
axis step comparison output instruction is greater
than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9759
The absolute value of the step of the encoder axis
step comparison output instruction is greater than
9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9760
The absolute value of Parameter of the encoder
axis step comparison output instruction is greater
than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9761
The value of Mode of the encoder axis comparison
output instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9762
The time for time control of the encoder axis
comparison output is out of range.

Ensure that the parameter value is within the
allowable range.

9763
The step of the encoder axis step comparison
output instruction is 0.

Set the step of the step comparison output
instruction to a value other than 0.

9764
The start position of the step comparison output
instruction of the encoder axis is equal to the end
position.

Ensure that the start position of the step
comparison output instruction is not equal to the
end position.

9765
The start position of the step comparison output
instruction of the encoder axis is greater than the
end position, but the step is positive.

Set the step to a negative value.

9766
The start position of the step comparison output
instruction of the encoder axis is less than the end
position, but the step is negative.

Set the step to a positive value.

Instruction Description (LD & LiteST)

-608-

Error Code Cause Solution

9767
The value of Size of the encoder axis array
comparison output instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9768
The absolute value of the target position in the
encoder axis array comparison output instruction
is greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9769
The axis is performing one-dimensional
comparison output and must not be aborted by a
two-dimensional comparison output instruction.

Wait for the one-dimensional comparison output
to complete or stop the one-dimensional
comparison output before executing the two-
dimensional comparison output instruction.

9770
The EtherCAT slave is disconnected during
operation.

Check whether the EtherCAT slave is disconnected
during operation.

9771 The bus encoder axis is in offline commissioning
mode.

The bus encoder axis does not support the offline
commissioning mode.

9772
The DI terminal is not assigned with the preset
position function.

Assign the preset position function to the DI
terminal before calling the preset position
instruction.

9773
The value of Parameter in the comparison
instruction is out of range when the pulse output
mode is selected.

Do not set Parameter to 0 or a negative value when
the pulse output mode is selected in the
comparison instruction.

9774
The 2HCE module fails when the comparison
output instruction is called.

1. Ensure that the input parameters are within the
allowable range.

2. Check whether I/O mapping of the encoder axis
is manually modified and whether it meets the I/O
mapping configuration requirements of the
comparison output instruction.

9775 The set position in ring mode is less than 0.
Set the position in ring mode to a value greater
than or equal to 0.

9776
The Yn0 terminal is not assigned with the two-
dimensional comparison output function.

Assign the two-dimensional comparison output
function to the Yn0 output terminal corresponding
to the channel.

9777
The axis is performing two-dimensional
comparison output and cannot be aborted by a
one-dimensional comparison output instruction.

Wait for the two-dimensional comparison output
to complete or stop the two-dimensional
comparison output before calling the one-
dimensional comparison output instruction.

3.13 Timer Instructions

3.13.1 Timer Instruction Parameters

The PLC supports four types of timers: pulse timer (TPR), on-delay timer (TONR), off-delay timer (TOFR),
and accumulating timer.
The time base of the timers is 1 ms, and the timer count value and state are updated when the timer
instruction is executed. The program supports a maximum of 4096 timer instructions. The instruction
parameters of these four types of timers are the same, which are listed as follows:

Instruction Description (LD & LiteST)

-609-

Table 3–309 Timer instruction parameters

Parameter Definition Data Type Description
IN Instruction execution input / Start input
PT Input variable DINT Delay time
R Input variable BOOL Reset input

Q Output variable BOOL Timer output

ET Output variable DINT Current timing time

Timer timing

3.13.2 Instruction List

The following table lists the timer instructions.

Table 3–310 Timer instruction list
Instruction Category Instruction Function

Timer instruction

TPR Pulse timer
TONR On-delay timer

TOFR Off-delay timer

TACR Accumulating timer

3.13.3 TPR

TPR – Pulse timer

Graphic Block
Instruc
tion

Name LD Expression LiteST Expression

TPR Pulse timer TPR(IN := ???,PT := ???,R := ,Q => ,ET =>);

Instruction Description (LD & LiteST)

-610-

16-bit
Instruction

-

32-bit
Instruction

TPR: Continuous execution

Operand Name Description Range Data Type

S1 PT Preset timing duration (in ms) - DINT
S2 R Reset*1 - BOOL
D1 Q Output result*1 - BOOL

D2 ET Elapsed time*1 (in ms) - DINT

Note
*1: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or
there is no output.

Table 3–311 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ √ √ - - √ - - -

D1 √[1] √ √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Parameter Description

When the IN input flow of the timer instruction changes from OFF to ON, the timer starts timing and
the output Q turns ON. At this time, no matter how the IN input flow changes, Q remains ON for the
time period specified by PT. When the timing duration reaches the time period specified by PT, Q
changes to OFF.

During timing of the timer, ET outputs the current timing duration. After the timing duration reaches
the value specified by PT, if the IN input flow is ON, the ET value is retained; if the IN input flow is OFF,
the ET value becomes 0.

During timing, if the reset input R changes from OFF to ON, the timing duration of the TPR timer is
reset to 0, and the output Q turns OFF. After the reset input R turns OFF, if the IN input flow is active,
the timer resumes timing.

Instruction Description (LD & LiteST)

-611-

Description of parameters:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing Diagram

The timing diagram of the parameters IN, R, Q, and ET is as follows:

Note
The output parameter Q is updated in the PLC main task. Therefore, affected by the PLC scan cycle, it may not be
output immediately when the time specified by PT elapses. The output may be delayed in varying degrees, with a
maximum delay of one PLC scan cycle.

3.13.4 TONR

TONR – On-delay timer

Graphic Block
Instruc
tion

Name LD Expression LiteST Expression

TONR On-delay timer TONR(IN := ???,PT := ???,R := ,Q => ,ET =>);

16-bit
Instruction

-

32-bit
Instruction

TONR: Continuous execution

Operand Name Description Range Data Type

S1 PT Preset timing duration (in ms) - DINT
S2 R Reset*1 - BOOL
D1 Q Output result*1 - BOOL

D2 ET Elapsed time*1 (in ms) - DINT

Instruction Description (LD & LiteST)

-612-

Note
*1: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or
there is no output.

Table 3–312 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ √ √ - - √ - - -

D1 √[1] √ √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the IN input flow of the timer instruction changes from OFF to ON, the timer starts timing and
the output Q turns ON. During the period when the IN input flow remains ON, the running time of the
timer is the time specified by PT. After the timing duration reaches the time period specified by PT, Q
turns ON. During the timing process or after timing is completed, when the IN input flow changes to
OFF, timing ends and Q turns OFF. During the period when the IN input flow remains OFF, Q remains
OFF.

When the IN input flow is ON, ET outputs the current timing duration during timing of the timer, and
the ET value is retained after the timing duration reaches the value specified by PT. When the IN input
flow is OFF, the ET value becomes 0.

During timing, if the reset input R changes from OFF to ON, the timing duration of the TONR timer is
reset to 0, and the output Q turns OFF. After the reset input R turns OFF, to resume timing, you need to
set the IN input flow to ON again.

Description of parameters:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing Diagram

The timing diagram of the parameters IN, R, Q, and ET is as follows:

Instruction Description (LD & LiteST)

-613-

Note
The output parameter Q is updated in the PLC main task. Therefore, affected by the PLC scan cycle, it may not be
output immediately when the time specified by PT elapses. The output may be delayed in varying degrees, with a
maximum delay of one PLC scan cycle.

3.13.5 TOFR

TOFR – Off-delay timer

Graphic Block

Instruction Name LD Expression LiteST Expression

TOFR Off-delay timer

TOFR(IN := ???,

PT := ???,

R := ,

Q => ,

ET =>);

16-bit
Instruction

-

32-bit
Instruction

TOFR: Continuous execution

Operand Name Description Range Data Type

S1 PT Preset timing duration (in ms) - DINT
S2 R Reset*1 - BOOL
D1 Q Output result*1 - BOOL

D2 ET Elapsed time*1 (in ms) - DINT

Note
*1: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or
there is no output.

Instruction Description (LD & LiteST)

-614-

Table 3–313 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ √ √ - - √ - - -

D1 √[1] √ √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the IN input of the timer instruction changes from OFF to ON, the timer starts timing and the
output Q turns ON. When the IN input flow changes from ON to OFF, during the period when the IN
input flow remains ON, the running time of the timer is the time specified by PT. After the timing
duration reaches the time period specified by PT, Q turns OFF. During the period when the IN input
flow remains OFF, Q remains OFF.

When the IN input flow is ON, the ET output becomes 0. When the IN input changes from ON to OFF, ET
outputs the current timing duration during timing of the timer, and the ET value is retained after the
timing duration reaches the value specified by PT.

When the IN input flow is ON, if the reset input R changes from OFF to ON, the output Q turns OFF; if R
resumes OFF, the output Q resumes ON. When the IN input flow changes from ON to OFF, if the reset
input R changes from OFF to ON during the timing process or after timing is completed, the output Q
turns OFF, and ET is reset to 0. After the reset input R turns OFF, to resume timing, you need to set the
IN input flow OFF again.

Description of parameters:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing Diagram

The timing diagram of the parameters IN, R, Q, and ET is as follows:

Instruction Description (LD & LiteST)

-615-

Note
The output parameter Q is updated in the PLC main task. Therefore, affected by the PLC scan cycle, it may not be
output immediately when the time specified by PT elapses. The output may be delayed in varying degrees, with a
maximum delay of one PLC scan cycle.

3.13.6 TACR

TACR – Accumulating timer

Graphic Block

Instruction Name LD Expression LiteST Expression

TACR Accumulating timer TACR(IN := ???,PT := ???,R := ,Q => ,ET =>);

16-bit Instruction -
32-bit Instruction TACR: Continuous execution
Operand Name Description Range Data Type

S1 PT Preset timing duration (in ms) - DINT
S2 R Reset*1 - BOOL
D1 Q Output result*1 - BOOL

D2 ET Elapsed time*1 (in ms) - DINT

Note
*1: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or
there is no output.

Instruction Description (LD & LiteST)

-616-

Table 3–314 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 √ √ √ - - √ - - -

D1 √[1] √ √ - - √ - - -

D2 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the IN input flow of the timer instruction is ON, if the timer value has not reached the time period
specified by PT, the timer continues to count, and the output Q is OFF; when the timing duration
reaches the time period specified by PT, Q turns ON. During the timing process, if IN changes from ON
to OFF, the timing duration is retained. When IN turns ON again, the timer starts counting from the
current retained value. After the time specified by PT is reached, Q becomes ON.

When the IN input flow is ON, ET outputs the current timing value. After the timing duration reaches
the time period specified by PT, the ET value is retained. When the IN input flow turns OFF, ET remains
unchanged.

During the timing process or after timing is completed, if the reset input R changes from OFF to ON, the
output Q turns OFF, and ET is reset to 0. After the reset input R turns OFF, to resume timing, you need
to set the IN input flow OFF again.

Description of parameters:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing Diagram

The timing diagram of the parameters IN, R, Q, and ET is as follows:

Instruction Description (LD & LiteST)

-617-

Note
The output parameter Q is updated in the PLC main task. Therefore, affected by the PLC scan cycle, it may not be
output immediately when the time specified by PT elapses. The output may be delayed in varying degrees, with a
maximum delay of one PLC scan cycle.

3.14 Pointer instruction

3.14.1 Instruction List

The following table lists the pointer instructions.

Instruction Description (LD & LiteST)

-618-

Instruction Category Instruction Function

Pointer instruction

PTGET Pointer variable assignment

PTINC Pointer variable address incremented by 1

PTDEC Pointer variable address decremented by 1

PTADD Pointer variable address addition
PTSUB Pointer variable address subtraction
PTSET Pointer variable assignment

PTMOV Pointer variable mutual assignment

PTLD> Pointer variable contact comparison greater than

PTLD>= Pointer variable contact comparison greater than or equal to

PTLD<= Pointer variable contact comparison less than or equal to

PTLD= Pointer variable contact comparison equal to

PTLD<> Pointer variable contact comparison not equal to

PTAND> Pointer variable AND contact comparison greater than

PTAND>=
Pointer variable AND contact comparison greater than or
equal to

PTAND< Pointer variable AND contact comparison less than

PTAND<= Pointer variable AND contact comparison less than or equal to

PTAND= Pointer variable AND contact comparison equal to

PTAND<> Pointer variable AND contact comparison not equal to

PTOR> Pointer variable OR contact comparison greater than

PTOR>= Pointer variable OR contact comparison greater than or equal
to

PTOR< Pointer variable OR contact comparison less than

PTOR<= Pointer variable OR contact comparison less than or equal to

PTOR= Pointer variable OR contact comparison equal to

PTOR<> Pointer variable OR contact comparison not equal to

3.14.2 PTGET

PTGET – Pointer variable assignment

16-bit
instruction

PTGET (bit): Continuous execution/PTGETP: Pulse execution

32-bit
instruction

-

16-bit
instruction

PTGET (word): Continuous execution/PTGETP: Pulse execution

32-bit
instruction

PTGET (dword): Continuous execution/PTGETP: Pulse execution

Operand Name Description Range Data Type

S1 Pointer Variable Start address of the target - DINT

S2 Target variable Start address of the target pointed to by the
pointer variable - INT, DINT

Instruction Description (LD & LiteST)

-619-

Table 3–315 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - ✓[1] - - -

S2 √ √ √ √ √ - - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The PTGET instruction can obtain the address of a bit, word, or dword element or variable.
● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment

first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

PTGET PT5 D10: Point the pointer variable PT5 to the D10 element.

3.14.3 PTINC

PTINC – Pointer variable address incremented by 1

16-bit instruction -
32-bit instruction PTINC: Continuous execution/PTINCP: Pulse execution
Operand Name Description Range Data Type

D Pointer Variable Pointer Variable - DINT

Table 3–316 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - - - √[1] - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The increment is based on the unit of the variable pointed to by the pointer variable. The pointer
points to the next element of the same type of the current variable. For example, the pointer points

Instruction Description (LD & LiteST)

-620-

to the next bit element if the current variable is a bit element, it points to the next word variable if
the current variable is a word variable, and it points to the next dword variable if the current
variable is a dword variable.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.
2. PTINC PT5: Point the pointer PT5 to the next element, that is, D11.

3.14.4 PTDEC

PTDEC – Pointer variable address decremented by 1

16-bit instruction -
32-bit instruction PTDEC: Continuous execution/PTDECP: Pulse execution
Operand Name Description Range Data Type

D Pointer Variable Pointer Variable - DINT

Table 3–317 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D - - - - - √[1] - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The decrement is based on the unit of the variable pointed to by the pointer variable. The pointer
points to the previous element of the same type of the current variable. For example, the pointer
points to the previous bit element if the current variable is a bit element, it points to the previous
word variable if the current variable is a word variable, and it points to the previous dword variable
if the current variable is a dword variable.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.

Instruction Description (LD & LiteST)

-621-

2. PTDEC PT5: Point the pointer PT5 to the previous element, that is, D9.

3.14.5 PTADD

PTADD – Pointer variable address addition
16-bit
instruction

PTADD: Continuous execution/PTADDP: Pulse execution

32-bit
instruction

-

Operand Name Description Range Data Type

S1 Source pointer Source pointer - DINT
S2 Offset address Offset address 0 to 32767 INT
D Target pointer Target pointer - DINT

Table 3–318 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √[1] - - -

S2 - - - √ √ - √ - -

D - - - - - √[1] - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The addition is based on the unit of the variable pointed to by the POINTER variable. The pointer
points to the next n element of the current variable. For example, the pointer points to the next n
bit element if the current variable is a bit element, it points to the next n word variable if the current
variable is a word variable, and it points to the next n dword variable if the current variable is a
dword variable.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.
2. PTADD PT5 K4 PT5: When the pointer PT5 points to the D10 element, executing the PTADD

instruction points PT5 to the position of the element pointed to by PT5 plus 4 elements, that is, D14.
3. PTADD PT5 K5 PT6: When the pointer PT5 points to the D10 element, executing the PTADD

instruction points PT6 to the position of the element pointed to by PT5 plus 5 elements, that is, D15,
while the element pointed to by PT5 remains unchanged, that is, D10.

Instruction Description (LD & LiteST)

-622-

3.14.6 PTSUB

PTSUB – Pointer variable address subtraction
16-bit instruction PTSUB: Continuous execution/PTSUBP: Pulse execution
32-bit instruction -
Operand Name Description Range Data Type

S1 Source pointer Source pointer - DINT

S2 Offset address Offset address 0 to 32767 INT
D Target pointer Target pointer - DINT

Table 3–319 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √[1] - - -

S2 - - - √ √ - √ - -

D - - - - - √[1] - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The subtraction is based on the unit of the variable pointed to by the pointer variable. The pointer
points to the previous n element of the current variable. For example, the pointer points to the
previous n bit element if the current variable is a bit element, it points to the previous n word
variable if the current variable is a word variable, and it points to the previous n dword variable if
the current variable is a dword variable.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.
2. PTSUB PT5 K4 PT5: When the pointer PT5 points to the D10 element, executing the PTSUB

instruction points PT5 to the position of the element pointed to by PT5 minus 4 elements, that is, D6.
3. PTSUB PT5 K5 PT6: When the pointer PT5 points to the D10 element, executing the PTSUB

instruction points PT6 to the position of the element pointed to by PT5 minus 5 elements, that is, D5,
while the element pointed to by PT5 remains unchanged, that is, D10.

3.14.7 PTSET

This instruction points the pointer variable to the target variable with specified variable length.

Instruction Description (LD & LiteST)

-623-

PTSET – Pointer variable assignment

16-bit Instruction -
32-bit Instruction PTSET: Continuous execution/PTSETP: Pulse execution, 13 steps

Operand Name Description Range Data Type

S1 Pointer element - - -
S2 Target variable Start address of the

target pointed to by
the pointer variable

- BOOL, word, dword,
FLT32

S3 Variable length - - -

Table 3–320 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √[1] - - -

S2 √ √ √ √ √ - - - -

S3 - - - √ √ - √ - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

This instruction is a higher-order application and should be used with caution.

This instruction defines pointer variables of no specified type in the unit of bit. It can point pointer
variables to various basic types, arrays, and structures.

This instruction can be used as transit for forced type conversion.

Instruction Example

Pointers are used to assign the structure array. The pointer ptx points to the first element of the first
structure of the structure array to assign values to the first element of each structure. The length of the
variable is the length of each structure Stru, that is, 80 bits. See the following figure.

Instruction Description (LD & LiteST)

-624-

After execution, the first element of each structure becomes 1, 2, and 3 respectively.

The following is an example of forced type conversion:

The execution result is equivalent to combining two i16_arr6 into a 32-bit number, that is:

The 16 bits of i16_arr6[0] is converted into the low-order 16 bits of i32arr1[0].

Instruction Description (LD & LiteST)

-625-

The 16 bits of i16_arr6[1] is converted into the high-order 16 bits of i32arr1[0].

3.14.8 PTMOV

PTMOV – Pointer variable mutual assignment

16-bit instruction -
32-bit instruction PTMOV: Continuous execution/PTMOVP: Pulse execution
Operand Name Description Range Data Type

S Source pointer Source pointer - DINT

D Target pointer Target pointer - DINT

Table 3–321 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S - - - - - ✓[1] - - -

D - - - - - ✓[1] - - -

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The PTMOV instruction is used to back up the address of the pointer variable, that is, it makes two
pointer variables to point to the same address.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

● The pulse-type instruction is recommended for level execution.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.
2. PTMOV PT5 PT6: Point the pointer PT6 to the position pointed to by PT5, that is, D10.

3.14.9 PT#

PT# – Pointer variable contact comparison

Pointer variable contact comparison instructions include the PTLD, PTAND, and PTOR instructions, and
indicates >, >=, <, <=, =, or <>.

16-bit instruction -
32-bit instruction PTLD>: Continuous execution
16-bit instruction -
32-bit instruction PTLD>=: Continuous execution

Instruction Description (LD & LiteST)

-626-

16-bit instruction -
32-bit instruction PTLD<: Continuous execution
16-bit instruction -
32-bit instruction PTLD<=: Continuous execution
16-bit instruction -
32-bit instruction PTLD=: Continuous execution
16-bit instruction -
32-bit instruction PTLD<>: Continuous execution
16-bit instruction -
32-bit instruction PTAND>: Continuous execution
16-bit instruction -
32-bit instruction PTAND>=: Continuous execution
16-bit instruction -
32-bit instruction PTAND<: Continuous execution
16-bit instruction -
32-bit instruction PTAND<=: Continuous execution
16-bit instruction -
32-bit instruction PTAND=: Continuous execution
16-bit instruction -
32-bit instruction PTAND<>: Continuous execution
16-bit instruction -
32-bit instruction PTOR>: Continuous execution
16-bit instruction -
32-bit instruction PTOR>=: Continuous execution
16-bit instruction -
32-bit instruction PTOR<: Continuous execution
16-bit instruction -
32-bit instruction PTOR<=: Continuous execution
16-bit instruction -
32-bit instruction PTOR=: Continuous execution
16-bit instruction -
32-bit instruction PTOR<>: Continuous execution
Operand Name Description Range Data Type

S1 Current pointer Current pointer - -

S2 Compare object Compare object - -

Note
For the PTLD*, PTAND*, and PTOR* instructions, the input is PT*, and the corresponding instructions are automati-
cally generated at the background.

Table 3–322 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √[1] - - -

S2 √ √ √ √ √ - - - -

Instruction Description (LD & LiteST)

-627-

Note
[1] Only the pointer variable POINTER is supported.

Function and Instruction Description

● The PT# instruction compares the address of the element pointed to by the pointer with the
address of the compare object.

● To use the pointer variable POINTER, you need to call the PTGET instruction for value assignment
first. Otherwise, the pointer may point to an incorrect position, resulting in a system execution
exception.

Instruction Example

1. PTGET PT5 D10: Point the pointer PT5 to the D10 element.
2. PT> PT5 D5: The output flow is ON. PT> PT5 D20: The output flow is OFF.

3.15 Communication Instructions

3.15.1 Instruction List

The following table lists the communication protocol instructions.

Instruction Description (LD & LiteST)

-628-

Instruction Category
Communication

protocol Instruction Function

Communication
protocol instruction

Serial port free
protocol

SerialSR
Serial port free protocol transmission
and reception

SerialSend Serial port free protocol transmission

SerialRcv Serial port free protocol reception

Modbus protocol

MB_Master Transmission and reception of serial
Modbus protocol

MB_Client Transmission and reception of the
Modbus TCP protocol

TCP/ IP free protocol

TCP_Listen TCP listening

TCP_Accept TCP connection request accept

TCP_Connect TCP connection request initiation

TCP_Close TCP connection close
TCP_Send TCP data transmission
TCP_Receive TCP data reception

UDP/IP free protocol
UDP_Bind UDP socket binding

UDP_Send UDP data transmission
UDP_Receive UDP data reception

EtherCAT protocol

ETC_ReadParameter_CoE Reading SDO parameters of EtherCAT
slave

ETC_WriteParameter_CoE Writing SDO parameters of EtherCAT
slave

ETC_RestartMaster Restarting EtherCAT master

EtherNet/IP protocol

EIP_Generic_Service Calling the "Generic" service

EIP_Get_Attributes_All Calling the "Get_Attributes_All" service

EIP_Get_Attribute_Single Calling the "Get_Attribute_Single"
service

EIP_Set_Attributes_All Calling the "Set_Attributes_All" service

EIP_Set_Attribute_Single Calling the "Set_Attribute_Single"
service

EIP_Apply_Attributes Calling the "Apply_Attributes" service

EIP_NOP Calling the "NOP" service

EIP_Reset Calling the "Reset" service

EIP_Start Calling the "Start" service

EIP_Stop Calling the "Stop" service

3.15.2 SerialSR

SerialSR – Serial port free protocol transmission and reception and free protocol cancellation

This instruction is used to implement free protocol communication through the serial port.

Instruction Description (LD & LiteST)

-629-

Graphic Block

16-bit Instruction SerialSR: Continuous execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Port Port number - INT
S2 SendBuf TX buffer - BYTE[]/INT[]
S3 SendSize Number of bytes to transmit 0 to 256 INT

S4 RcvBuf RX buffer - BYTE[]/INT[]
S5 RcvSize Number of bytes to receive 0 to 256 INT

S6 Timeout Reception timeout time (unit: ms[1]) - INT

D1 Done Completion flag[1] - BOOL

D2 Status Instruction operation state[1] - INT

D3 Sent Size of transmitted data[1] - INT
D4 Received Size of received data[1] - INT

Note
[1]: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or
there is no output.

Table 3–323 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ - - -

S5 - - - √ √ √ √ - -

S6 - - - √ √ √ √ - -

D1 √[2] √ √ - - √ - - -

D2 - - - √ √ √ - - -

D3 - - - √ √ √ - - -

D4 - - - √ √ √ - - -

Note
[2] The X element is not supported.

Instruction Description (LD & LiteST)

-630-

Function and Instruction Description

● Function description
This instruction implements data transmission and reception of free protocols. After the instruction
is triggered, data of the specified length is sent through the specified port, and after the
transmission is completed, data of the specified length is received. The corresponding output is
updated during the transmission and reception process.

When the SerialSR instruction is in a receive waiting state, you can set the system variable
_SerialSR.abort to a non-zero value to terminate the current receiving process. The parameter takes
effect immediately after modification.

You can set the system variables _SerialSR.startchar_en and _SerialSR.startchar[4] to set the
receive start character function of the free protocol. The modified parameters take effect next time
data receiving is triggered. When _SerialSR.startchar_en is set to a value that falls within the range
of 1 to 4 and equals to or smaller than RcvSize, the receive start character function is enabled. The
start character length is specified by _SerialSR.startchar_en, and the start character content is
specified by _SerialSR.startchar[4].

You can set the system variables _SerialSR.endchar_en and _SerialSR.endchar[4] to set the receive
end character function of the free protocol. The modified parameters take effect next time data
receiving is triggered. When _SerialSR.endchar_en is set to a value that falls within the range of 1 to
4, the receive end character function is enabled. The end character length is specified by _SerialSR.
endchar_en, and the start character content is specified by _SerialSR.endchar[4].

You can set the system variables_SerialSR.Bytetimeout_en and _SerialSR.Bytetimeout to set the
receive byte timeout function of the free protocol. The modified parameters take effect next time
data receiving is triggered. When _SerialSR.Bytetimeout_en is set to ON, the receive byte timeout
function is enabled. The byte timer is specified by _SerialSR.Bytetimeout, and the minimum value is
1 (unit: ms*1). After the byte timeout function is enable and takes effect, the timer starts when the
start byte/frame start character is received. If the idle time between received bytes is greater than
the set time, the current receiving process is terminated and the Done signal is set.

Each serial port corresponds to an independent system variable: _ SerialSR corresponds to COM0,
and _SerialSR1 to _SerialSR15 correspond to COM1 to COM15.

● Description

■ S1: Port number (corresponding to the serial port. You need to set it to an actual serial port
number for communication.)

■ S2: TX buffer. It is recommended that you set the size of this buffer to a value greater than 128
word elements or 256 bytes.

■ S3: Number of bytes to transmit. The data length ranges from 1 byte to 256 bytes. When this
parameter is set to 0, no data is sent.

■ S4: RX buffer. It is recommended that you set the size of this buffer to a value greater than 128
word elements or 256 bytes.

■ S5: Number of bytes to receive. The data length ranges from 1 byte to 256 bytes. When this
parameter is set to 0, no data is received.

■ S6: Timeout time. If the specified time does not fall between 20 and 30000 (unit: ms[1]), it is
automatically adjusted to the allowable range. If the specified time is -1, the receive status
remains and never times out.

Instruction Description (LD & LiteST)

-631-

■ D2: Operation state. 0: Empty; 1: Triggering; 2: Transmitting; 3: Receiving; 16: Completed; 32:
Transmission error; 48: Reception error; 64: Other error.

Timing Diagram

Note
● The instruction is triggered and executed on the rising edge.
● The parameter D2 displays the operating state machine of the serial port, including normal and abnormal state

values. The error codes of the instruction are not displayed in D2, but in the error table as errors of standard
instructions.

● The timeout time refers to the total timeout duration for both transmission and reception.
● This instruction is executed only when the port is available, and only one instruction can be executed at the

same time on the same port. This instruction is not executed if a port conflict or protocol setting error occurs.
For details about the relevant error codes, see standard instruction errors.

3.15.3 SerialSend

SerialSend – Serial port free protocol transmission

This instruction is used to implement free protocol communication through the serial port.

Graphic Block

16-bit Instruction SerialSend: Triggered execution

32-bit Instruction -
Operand Name Description Range Data Type

S1 iPort Port number 0 to 15 INT
S2 iSendBuf TX buffer - BYTE[]/INT[]
S3 iSendSize Number of bytes to transmit 0 to 256 INT

D1 xDone Completion flag[1] ON/OFF BOOL

Instruction Description (LD & LiteST)

-632-

D2 xBusy Executing[1] ON/OFF BOOL

D3 xError Error flag[1] ON/OFF BOOL

D4 dwErrorID Error code[1] -[2] INT

Note
● [1]: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or

there is no output.
● [2]: See “3.15.5 Error Codes of Serial Port Free Protocol Communication Instructions” on page 636.

Table 3–324 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

D1 √ [3] √ √ - - √ - - -

D2 √[3] √ √ - - √ - - -

D3 √[3] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[3] The X element is not supported.

Function and Instruction Description

● Function description
This instruction implements data transmission of free protocols. After the instruction is triggered,
data of the specified length is sent through the specified port. The corresponding output is updated
during the transmission process.

● Description
S1: Port number (corresponding to the serial port. You need to set it to an actual serial port number
for communication.)

S2: TX buffer. It is recommended that you set the size of this buffer to a value greater than 128 word
elements or 256 bytes.

Instruction Description (LD & LiteST)

-633-

Timing Diagram

Note
● The instruction is triggered and executed on the rising edge.
● This instruction is executed only when the port is available, and only one instruction can be executed at the

same time on the same port. This instruction is not executed if a port conflict or protocol setting error occurs.
For details about the relevant error codes, see standard instruction errors.

3.15.4 SerialRcv

SerialRcv – Serial port free protocol reception and free protocol cancellation

This instruction is used to implement free protocol communication through the serial port.

Graphic Block

Instruction Description (LD & LiteST)

-634-

16-bit Instruction SerialRcv: Continuous execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 iPort Port number 0 to 15 INT
S2 iRcvBuf Data receiving area - BYTE[]/INT[]
S3 iRcvSize Maximum site of received data, in bytes 1 to 256 INT

S4 iTimeout Reception timeout time[1] - INT

D1 xDone Completion flag[1] ON/OFF BOOL

D2 xBusy Executing[1] ON/OFF BOOL

D3 xError Error flag[1] ON/OFF BOOL

D4 dwErrorID Error code[1] -[2] INT
D5 iReceived Size of received data[1] 0 to 256 INT

Note
● [1]: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or

there is no output.
● [2]: See “3.15.5 Error Codes of Serial Port Free Protocol Communication Instructions” on page 636.

Table 3–325 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

D1 √ [3] √ √ - - √ - - -

D2 √[3] √ √ - - √ - - -

D3 √[3] √ √ - - √ - - -

D4 - - - √ √ √ √ - -

D5 - - - √ √ √ √ - -

Note
[3] The X element is not supported.

Function and Instruction Description

● Function description
This instruction implements data reception of free protocols. After the instruction is triggered, data
of the specified length is received through the specified port. The corresponding output is updated
during the reception process.

When the SerialRcv instruction is in a receive waiting state, you can set the system variable
_SerialSR.abort to a non-zero value to terminate the current receiving process. One cycle after the
xDone signal is reset, the next receiving process starts. Parameter takes effect immediately after
modification.

Instruction Description (LD & LiteST)

-635-

You can set the system variables _SerialSR.startchar_en and _SerialSR.startchar[4] to set the
receive start character function of the free protocol. The modified parameters take effect next time
data receiving is triggered. When _SerialSR.startchar_en is set to a value that falls within the range
of 1 to 4 and equals to or smaller than iRcvSize, the receive start character function is enabled. The
start character length is specified by _SerialSR.startchar_en, and the start character content is
specified by _SerialSR.startchar[4].

You can set the system variables _SerialSR.endchar_en and _SerialSR.endchar[4] to set the receive
end character function of the free protocol. The modified parameters take effect next time data
receiving is triggered. When _SerialSR.endchar_en is set to a value that falls within the range of 1 to
4, the receive end character function is enabled. The end character length is specified by _SerialSR.
endchar_en, and the start character content is specified by _SerialSR.endchar[4].

You can set the system variables _SerialSR.Bytetimeout_en and _SerialSR.Bytetimeout to set the
receive byte timeout function of the free protocol. The modified parameters take effect next time
data receiving is triggered. When _SerialSR.Bytetimeout_en is set to ON, the receive byte timeout
function is enabled. The byte timer is specified by _SerialSR.Bytetimeout, and the minimum value is
1 (unit: ms*1). After the byte timeout function is enable and takes effect, the timer starts when the
start byte/frame start character is received. If the idle time between received bytes is greater than
the set time, the current receiving process is terminated. One cycle after the xDone signal is reset,
the next receiving process starts.

Each serial port corresponds to an independent system variable: _ SerialSR corresponds to COM0,
and _SerialSR1 to _SerialSR15 correspond to COM1 to COM15.

● Description

■ S1: Port number (corresponding to the serial port. You need to set it to an actual serial port
number for communication.)

■ S2: RX buffer. It is recommended that you set the size of this buffer to a value greater than 128
word elements or 256 bytes.

■ S4: Timeout time. If the specified time does not fall between 20 and 30000 (unit: ms[1]), it is
automatically adjusted to the allowable range. If the specified time is -1, the receive status
remains and never times out.

■ D1: Completion flag. When data of a specified length, a specified end character, or byte timeout
signal is received, the current reception will end, and the completion flag will be set to one scan
cycle.

Instruction Description (LD & LiteST)

-636-

Timing Diagram

Note
● The instruction is executed when the enable signal is at a high level.
● The reception timeout time refers to the frame timeout time, which is the total reception time.
● This instruction is executed only when the port is available, and only one instruction can be executed at the

same time on the same port. This instruction is not executed if a port conflict or protocol setting error occurs.
For details about the relevant error codes, see standard instruction errors.

3.15.5 Error Codes of Serial Port Free Protocol Communication Instructions

The following table lists the error codes of serial port free protocol communication instructions.

Table 3–326 Error codes of socket communication instructions
Error code Description

5601 The port number is out of range.

5602 Protocol error
5603 Port conflict
5604 The sent data length is out of range or smaller than 0.

5605 TX buffer error
5606 The received data length is out of range, or is equal to or

smaller than 0.
5607 RX buffer error
5620 Port number changed

5621 Reception timeout

3.15.6 MB_Master

MB_Master – Transmission and reception of serial Modbus protocol

This instruction is used to implement Modbus communication through the serial port.

Instruction Description (LD & LiteST)

-637-

Graphic Block

16-bit Instruction -

32-bit Instruction MB_Master: Triggered execution

Operand Name Description Range Data Type

S1 iPort Port number 0 to 15 INT
S2 iAddr Slave station ID 0 to 255 INT
S3 iFuncCode Function code 1 to 6, 15, or 16 INT
S4 diDataAddr Address of the slave station to be accessed 0 to 65535 DINT
S5 iDataNums Bits or words to be accessed - INT
S6 iDataBuf TX or RX buffer - BYTE[]/INT[]
D1 xDone Completion flag[1] ON/OFF BOOL

D2 xBusy Executing[1] ON/OFF BOOL

D3 xError Error flag[1] ON/OFF BOOL

D4 dwErrorID Error code[1] -[2] INT

Note
● [1]: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or

there is no output.
● [2]: See “3.15.8 Fault Codes of Modbus Communication Instructions” on page 642.

Table 3–327 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ √ √ - -

S6 - - - √ √ √ - - -

D1 √ [3] √ √ - - √ - - -

D2 √[3] √ √ - - √ - - -

D3 √[3] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[3] The X element is not supported.

Instruction Description (LD & LiteST)

-638-

Function and Instruction Description

● Function description
This instruction is used to implement Modbus communication through the serial port. After the
instruction is triggered, the Modbus instruction is sent through the specified port. After the sending
is completed, the master station waits for the response instruction from the slave station.

Before using this instruction, you must set the communication protocol of the corresponding serial
port to Modbus RTU or Modbus-ASC master station.

The system variable _MbMstEx.RetryTimes specifies the number of retransmissions. Its value range
is 1 to 15. If the set value is out of this valid range, it will automatically be adjusted to the allowed
range.

Each serial port corresponds to an independent system variable: _MbMstEx corresponds to COM0,
and _MbMstEx1 to _MbMstEx15 correspond to COM1 to COM15.

Before using the MB_Master instruction, you must set the communication protocol of the
corresponding COM port to Modbus RTU or Modbus-ASC master station. The MC_Master instruction
and Modbus serial port configuration table can be used simultaneously, and both share the timeout
configuration (default: 500 ms).

● Description

■ S1: Port number (corresponding to the serial port. You need to set it to an actual serial port
number for communication.)

■ S6: Buffer. You must set the buffer size to a value greater than 125 word elements or 250 bytes.

Timing Diagram

Instruction Description (LD & LiteST)

-639-

Note
● The instruction is triggered and executed on the rising edge.
● The MB_Master instruction and the Modbus configuration table for the same serial port share the same timeout

configuration, which is 500 ms by default.
● This instruction is executed only when the port is available, and only one instruction can be executed at the

same time on the same port. This instruction is not executed if a port conflict or protocol setting error occurs.
For details about the relevant error codes, see standard instruction errors.

3.15.7 MB_Client

MB_Client – Transmission and reception of the Modbus TCP protocol

This instruction is used to implement Modbus TCP communication.

Graphic Block

16-bit Instruction -

32-bit Instruction MB_Client: Triggered execution

Operand Name Description Range Data Type

S1 xDisconnect Disconnect[1] ON/OFF BOOL
S2 dwIPAddress IP address of the server - IP
S3 diPort Port number 1 to 65535 DINT
S4 iFuncCode Function code 1 to 6, 15, or 16 INT
S5 diDataAddr Address of data to be accessed 0 to 65535 DINT
S6 iDataNums Bits or words to be accessed - INT
S7 iDataBuf TX or RX buffer - BYTE[]/INT[]
S8 stConnectOpt Connection parameters and attributes - INT

D1 xDone Completion flag[1] ON/OFF BOOL

D2 xBusy Executing[1] ON/OFF BOOL

D3 xError Error flag[1] ON/OFF BOOL

D4 dwErrorID Error code[1] -[2] INT

Note
● [1]: The parameters of the instruction are not mandatory. If they are not specified, the default values are used or

there is no output.
● [2]: See “3.15.8 Fault Codes of Modbus Communication Instructions” on page 642.

Instruction Description (LD & LiteST)

-640-

Table 3–328 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 √ √ √ - - √ - - -

S2 - - - - - √ - - √
S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ √ √ - -

S6 - - - √ √ √ √ - -

S7 - - - √ √ √ - - -

S8 - - - √ √ √ - - -

D1 √[3] √ √ - - √ - - -

D2 √[3] √ √ - - √ - - -

D3 √[3] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[3] The X element is not supported.

Function and Instruction Description

● Function description
This instruction is used to implement client (master station) communication over Modbus TCP.
After the instruction is triggered, an attempt is made to connect to the slave station based on the IP
address and port number specified in the instruction. After the connection is set up, the Modbus
instruction is sent. After the sending is completed, the master station waits for the response
instruction from the slave station.

The MB_Client instruction supports up to 31 connections. When the number of connections exceeds
31, the instruction will report an error and the original connections need to be released.

The MB_Client instruction and Modbus TCP configuration table can be used simultaneously without
affecting each other.

● Description

■ S1: Release the connection (When this parameter is set and the flow is enabled, the current
connection is released.)

■ S7: Buffer. You must set the buffer size to a value greater than 125 word elements or 250 bytes.
■ S8: Connection parameters and attributes, such as the unit identifier, number of

retransmissions, receive timeout. For details, see the table below.

Instruction Description (LD & LiteST)

-641-

Address Data Type Range Default Value Unit Description
stConnectOpt INT 0 to 1 - - Configuration

enabling. 0: Use
the default
configuration, 1:
Use the
parameter
configuration.

stConnectOpt+1 INT 0 to 255 255 - Unit identifier
stConnectOpt+2 INT 1 to 15 1 Number of

retransmissions
stConnectOpt+3 INT 100 to 10000 500 ms Reception

timeout time

Timing Diagram

Note
● The instruction is triggered and executed on the rising edge.
● The MB_Client instruction has a default receive timeout of 500 ms and a retry count of 1.
● This instruction is only executed when the connection is available, and only one MB_Client instruction can be

executed for a connection at any given time. This instruction is not executed if a connection conflict occurs. For
details about the relevant error codes, see standard instruction errors.

Instruction Description (LD & LiteST)

-642-

3.15.8 Fault Codes of Modbus Communication Instructions

The following table lists the fault codes of Modbus communication instructions.

Table 3–329 Fault codes of socket communication instructions
Fault code Description

6000 Network connection failed
6001 Function code not supported

6002 Register/coil address out of range

6003 Improper data range

6004 Slave device fault
6128 Response station number and requested station number mismatch
6129 Response function code and requested function code mismatch

6130 Mismatched register/coil address in the response and request

6131 Mismatched response and request data
6240 Invalid mapping address in the configuration

6255 Slave station response timeout

6261 The port number is out of range.

6262 Protocol error
6263 Port conflict
6264 Incorrect slave station node
6280 Slave station disabled
6290 Network connection pool already full

6291 Network connection already occupied

6292 Incorrect response ID
6293 Incorrect received data length

6294 Non existing network connection

3.15.9 Connection-oriented Socket TCP Communication

The socket is a two-way communication interface. Hosts in the network transmits data through the
interface provided by the socket.

The Ethernet socket interface is provided. By using sockets, users can easily implement
communication between different devices with the TCP/IP network. The following table defines the
socket structure type (_sSOCKET).

Member Card Type Read/Write Parameter Function:

ID DINT Read-only ID

Type INT Read-only Socket type

1: TCP

2: UDP
LocalPort DINT Read-only Local port
RemoteIP DINT Read-only Remote IP address
RemotePort DINT Read-only Remote port

Active BOOL Read-only Active state

Connected BOOL Read-only Connected state

Instruction Description (LD & LiteST)

-643-

Member Card Type Read/Write Parameter Function:

Listening BOOL Read-only Listening state

Reserved0 BOOL[13] Read-only Reserved

Connections INT Read-only Number of current
connections

Reserved1 INT Read-only Reserved

Descriptor DINT Read-only Reserved

ListeningSocket DINT Read-only Reserved

Reserved2 DINT[2] Read-only Reserved

At present, AutoShop does not support system type custom variables, and structures are not supported as
instruction input parameters. Therefore, the _sSOCKET variable is temporarily replaced by an INT[20] array.

The Transmission Control Protocol (TCP) is a connection-oriented, reliable, byte stream-based
transport layer communication protocol.

An internetwork is very different from a single network because different parts of an internetwork can
have vastly different topologies, bandwidths, latency, packet sizes, and other parameters. TCP is
designed to dynamically adapt to these characteristics of the Internet and to demonstrate robustness
in the face of various failures.

The process of a connection-oriented socket TCP communication interface is shown in the following
figure.

3.15.10 TCP_Listen

TCP_Listen – TCP listening

The server must wait for the client's connection request. When working as a server, the local machine
uses the TCP_Listen instruction to listen to connection requests from clients.

Instruction Description (LD & LiteST)

-644-

Graphic Block

Table 3–330 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Listen: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket

S2 Port Local port to listen on*2 No - 1 to 65535 DINT

D1 Active Active state Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 Error Function block error flag Yes OFF ON/OFF BOOL
D4 ErrorID Error code Yes 0 *3 INT

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: System internal ports (23, 12939, and 12940) and the Modbus-TCP server port (502) cannot be used.
● *3: See “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–331 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The server must wait for the client's connection request. The TCP_Listen instruction is used to listen on
the specified local port to wait for client requests. Upon receiving a connection request from the client,
the server needs to use the TCP_Accept instruction to establish communication with the client.

Instruction Description (LD & LiteST)

-645-

Timing Diagram

3.15.11 TCP_Accept

TCP_Accept – TCP connection request accept

Upon receiving a connection request from the client, a server in listening state will put the client in the
waiting queue. When working as a server, the local machine uses the TCP_Accept instruction to receive
connection request from clients.

Graphic Block

Table 3–332 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Accept: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 ListeningSocket Listening socket*1 No - - _sSocket

D1 Connected Connected state Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 ConnectedSocket
Connection
socket*1

No - - _sSocket

D4 Error
Function block
error flag Yes OFF ON/OFF BOOL

D5 ErrorID Error code Yes 0 *2 INT

Instruction Description (LD & LiteST)

-646-

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–333 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ - - - -

D1 √[1] - √ - - √ - - -

D2 √[1] - √ - - √ - - -

D3 - - - √ √ - - - -

D4 √[1] - √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

Upon receiving a connection request from the client, a server in listening state needs to use the TCP_
Accept instruction to establish communication with the client. After communication is successfully
established, the server can transmit or receive data by using TCP_Send or TCP_Receive.

The server can establish communication with multiple clients through the same local port by executing
multiple TCP_Accept instructions.

Instruction Description (LD & LiteST)

-647-

Timing Diagram

3.15.12 TCP_Connect

TCP_Connect – TCP connection request initiation

To communication with the server, a client needs to initiate a connection request to the server. When
working as a client, the local machine uses the TCP_Connect instruction to initiate a connection
request.

Graphic Block

Table 3–334 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Connect: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket
S2 IPAddress IP Address No - - DINT
S3 Port port No - 1 to 65535 DINT
D1 Connected Connected state Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 Error
Function block
error flag Yes OFF ON/OFF BOOL

D4 ErrorID Error code Yes 0 *2 INT

Instruction Description (LD & LiteST)

-648-

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–335 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the local machine works as a client and needs to communicate with the server, it executes the
TCP_Connect instruction to connect to the specified port of the server. After the server accepts the
connection request, the client can transmit or receive data by using TCP_Send or TCP_Receive.

After sending a connection request to the server by using the TCP_Connect instruction, the client waits
at most 127 seconds. If the server does not respond, the connection fails.

Instruction Description (LD & LiteST)

-649-

Timing Diagram

3.15.13 TCP_Close

TCP_Close – TCP connection close

The TCP_Close instruction can be used to close the connection or listening after communication is
completed.

Graphic Block

Table 3–336 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Close: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 Error
Function block
error flag Yes OFF ON/OFF BOOL

D4 ErrorID Error code Yes 0 *2 INT

Instruction Description (LD & LiteST)

-650-

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–337 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

The TCP_Close instruction can be used to close the connection, stop listening, or terminate the
connecting socket after communication is completed.

Timing Diagram

3.15.14 TCP_Send

TCP_Send – TCP data transmission

After the connection between the server and the client is successfully established, data can be
transmitted to the remote host by using the TCP_Send instruction.

Instruction Description (LD & LiteST)

-651-

Graphic Block

Table 3–338 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Send: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket

S2 Buffer Data buffer No - - BYTE[]/INT[]
S3 Size Data size Yes 0 0 to 32767 INT
D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 SentSize Size of transmitted
data

Yes 0 ON/OFF INT

D4 Error
Function block error
flag Yes OFF ON/OFF BOOL

D5 ErrorID Error code Yes 0 *2 INT

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–339 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-652-

Function and Instruction Description

After the connection between the server and the client is successfully established, the local machine
uses the TCP_Send instruction to send the data in the buffer with the specified length to the remote
host.

The data size (size) must be less than or equal to the actual size of the data buffer (Buffer); otherwise,
there is a risk of out-of-bounds data access.

Timing Diagram

NoteIf this instruction is triggered again when the data frame of the instruction is still being sent, an error is re-

ported due to abnormal timing. To avoid this problem, it is recommended that the next transmission or instruction

be triggered upon the state change of the Done or Error signal.

3.15.15 TCP_Receive

TCP_Receive – TCP data reception

After the connection between the server and the client is successfully established, message data
transmitted by the remote host can be obtained from the specified socket by using the TCP_Receive
instruction.

Graphic Block

Table 3–340 Instruction format
16-bit
Instruction

-

32-bit
Instruction

TCP_Receive: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket

Instruction Description (LD & LiteST)

-653-

S2 Buffer Data buffer No - - BYTE[]/INT[]
S3 Size Data size No - 1 to 32767 INT
D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 ReceivedSize
Size of received
data

Yes 0 0 to 32767 INT

D4 Error
Function block
error flag Yes OFF ON/OFF BOOL

D5 ErrorID Error code Yes 0 *2 INT

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–341 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

When the data size parameter (size) is 0, data is transmitted as character strings. That is, the data
between the first byte and the terminator (excluding the terminator) in the data buffer (Buffer) is sent.
The ASCII code of the terminator is 0.

The data size (size) must be less than or equal to the actual size of the data buffer (Buffer); otherwise,
there is a risk of out-of-bounds data access.

After the connection between the server and the client is successfully established, message data
transmitted by the remote host to the local machine will be stored in the socket buffer area. The TCP_
Receive instruction is used to obtain the received message data from the specified socket buffer area.

Instruction Description (LD & LiteST)

-654-

Timing Diagram

3.15.16 TCP Server Communication Instance

Working as a TCP server, the H5U listens on TCP port 1000 by using the TCP_Listen instruction and
sends the data received from the client back to the client after accepting the connection request from
the client.
The instance is programmed as follows:

Instruction Description (LD & LiteST)

-655-

3.15.17 TCP Client Communication Instance

Working as a client, the H5U sends a connection request to the server at 10.44.53.20:1000. After the
connection is established successfully, it sends "Hello!" to the server periodically (at an interval of 1
second) and stops sending "Hello!" after receiving any data sent by the server.
The instance is programmed as follows:

Instruction Description (LD & LiteST)

-656-

Instruction Description (LD & LiteST)

-657-

3.15.18 Connectionless Socket UDP Communication

User Datagram Protocol (UDP) is a connectionless transport layer protocol, which is mainly used in
transmissions that do not require sequential arrival of packets. The check and sorting of packet trans-
mission sequence is completed by the application layer. UDP provides simple and unreliable transac-
tion oriented information transmission services.
UDP packets lack the QoS, sequence assurance, and flow control fields, resulting in poor reliability.
However, because UDP protocol has fewer control options, it has low latency and high data
transmission efficiency during data transmission. Therefore, UDP is suitable for applications with low
reliability requirements or applications that can ensure reliability.

The following figure shows the UDP communication socket process.

3.15.19 UDP_Bind

UDP_Bind – UDP socket binding

Before data transmission or reception through UDP, you need to bind the socket to a local port. The
UDP_Bind instruction is used to bind the socket to the specified UDP port.

Graphic Block

Table 3–342 Instruction format
16-bit
Instruction

-

32-bit
Instruction

UDP_BIND: Continuous execution

Operand Name Description Empty Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket
S2 Port Port*2 Yes 0 0 to 65535 DINT
D1 Active Active state Yes FASLE ON/OFF BOOL

D2 Busy Executing Yes FASLE ON/OFF BOOL

D3 Error
Function block
error flag Yes FASLE ON/OFF BOOL

D4 ErrorID Error code*3 Yes 0 - INT

Instruction Description (LD & LiteST)

-658-

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: System internal ports (12939 and 12940) cannot be used.
● *3: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–343 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

Before data transmission or reception through UDP, you need to bind the socket to a local port. The
UDP_Bind instruction is used to bind the socket to the specified UDP port. When the specified port ID is
0 or empty, UDP_Bind will automatically assign a random port ID, which is then indicated by LocalPort
of the socket.

Timing Diagram

3.15.20 UDP_Receive

UDP_Receive – UDP data reception

The UDP_Receive instruction is used to receive data sent by the remote host.

Instruction Description (LD & LiteST)

-659-

Graphic Block

Table 3–344 Instruction format
16-bit
Instruction

-

32-bit
Instruction

UDP_Receive: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket

S2 Buffer Data buffer No - - BYTE[]/INT[]
S3 Size Data size No - 1 to 32767 INT
D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL
D3 IPAddress IP Address Yes 0 - DINT
D4 Port Port Yes 0 1 to 65535 DINT
D5 ReceivedSize Size of received data Yes 0 0 to 32767 INT

D6 Error
Function block error
flag Yes OFF ON/OFF BOOL

D7 ErrorID Error code*2 Yes 0 - INT

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–345 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 - - - √ √ √ - - -

D5 - - - √ √ √ - - -

D6 √[1] √ √ - - √ - - -

D7 - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-660-

Note
[1] The X element is not supported.

Function and Instruction Description

Message data transmitted by the remote UDP host to the local machine will be stored in the socket
buffer area. The UDP_Receive instruction is used to obtain the received message data from the
specified socket buffer area.

The data size (size) must be less than or equal to the actual size of the data buffer (Buffer); otherwise,
there is a risk of out-of-bounds data access.

Timing Diagram

3.15.21 UDP_Send

UDP_Send – UDP data transmission

The UDP_Send instruction is used to send data to the specified remote host.

Graphic Block

Instruction Description (LD & LiteST)

-661-

Table 3–346 Instruction format
16-bit
Instruction

-

32-bit
Instruction

UDP_Send: Continuous execution

Operand Name Description Empty
Allowed Default Range Data Type

S1 Socket Socket*1 No - - _sSocket
S2 IPAddress IP Address No - - DINT
S3 Port port No - 1 to 65535 DINT
S4 Buffer Data buffer No - - BYTE[]/INT[]
S5 Size Data size Yes 0 0 to 32767 INT
D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Executing Yes OFF ON/OFF BOOL

D3 SentSize Size of transmitted
data

Yes 0 0 to 32767 INT

D4 Error
Function block error
flag Yes OFF ON/OFF BOOL

D5 ErrorID Error code Yes 0 *2 INT

Note
● *1: The parameters corresponding to the _sSocket data type are all input and output data types. At present,

definition of the _sSocket type variables is not supported, and an INT[20] array can be used instead.
● *2: For details, see “3.15.23 Error Codes of Socket Communication Instructions” on page 663.

Table 3–347 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ - - -

S2 - - - √ √ √ - - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ - - - -

S5 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-662-

Function and Instruction Description

When the data size parameter (size) is 0, data is transmitted as character strings. That is, the data
between the first byte and the terminator (excluding the terminator) in the data buffer (Buffer) is sent.
The ASCII code of the terminator is 0.

Timing Diagram

NoteIf this instruction is triggered again when the data frame of the instruction is still being sent, an error is re-

ported due to abnormal timing. To avoid this problem, it is recommended that the next transmission or instruction

be triggered upon the state change of the Done or Error signal.

3.15.22 UDP Communication Instance

When communicating with a remote host through the UDP free protocol, the H5U uses the UDP_Bind
instruction to bind UDP to port K2021, and after receiving data sent by the remote host, it sends the re-
ceived data back to the remote host.
The following figure shows the program.

Instruction Description (LD & LiteST)

-663-

3.15.23 Error Codes of Socket Communication Instructions

The following table lists the error codes of socket communication instructions.

Table 3–348 Error codes of socket communication instructions
Error Code Description

1 Operation not permitted

2 No such file or directory

3 No such process
4 Interrupted system call
5 I/O error
6 No such device or address
7 Arg list too long

8 Exec format error
9 Bad file number
10 No child subprocesses
11 Try again

12 Out of memory

13 Permission denied
14 Bad address
15 Block device required
16 Device or resource busy
17 File exists
18 Cross-device link
19 No such device
20 Not a directory

21 Is a directory

22 Invalid argument

23 File table overflow

Instruction Description (LD & LiteST)

-664-

Error Code Description
24 Too many open files

25 Not a typewriter

26 Text file busy

27 File too large

28 No space left on device
29 Illegal seek

30 Read-only file system

31 Too many links

32 Broken pipe
33 Math argument out of domain of func

34 Math result not representable

35 Resource deadlock would occur
36 File name too long

37 No record locks available
38 Function not implemented

39 Directory not empty

40 Too many symbolic links encountered
41 Operation would block
42 No message of desired type

43 Identifier removed
44 Channel number out of range

45 Level 2 not synchronized

46 Level 3 halted
47 Level 3 reset
48 Link number out of range

49 Protocol driver not attached
50 No CSI structure available
51 Level 2 halted
52 Invalid exchange

53 Invalid request descriptor
54 Exchange full

55 No anode
56 Invalid request code
57 Invalid slot
58 File locking deadlock error

59 Bad font file format
60 Device not a stream
61 No data available
62 Timer expired
63 Out of streams resources
64 Machine is not on the network
65 Package not installed

66 Object is remote

67 Link has been severed
68 Advertise error
69 Srmount error
70 Communication error on send

Instruction Description (LD & LiteST)

-665-

Error Code Description
71 Protocol error
72 Multihop attempted

73 RFS specific error
74 Not a data message

75 Value too large for defined data type

76 Name not unique on network
77 File descriptor in bad state
78 Remote address changed

79 Cannot access a needed shared library

80 Accessing a corrupted shared library

81 .lib section in a.out corrupted

82 Attempting to link in too many shared libraries

83 Cannot exec a shared library directly

84 Illegal byte sequence

85 Interrupted system call should be restarted

86 Streams pipe error
87 Too many users
88 Socket operation on non-socket
89 Destination address required

90 Message too long

91 Protocol wrong type for socket

92 Protocol not available
93 Protocol not supported
94 Socket type not supported

95 Operation not supported on transport endpoint

96 Protocol family not supported

97 Address family not supported by protocol
98 Address already in use
99 Cannot assign requested address

100 Network is down
101 Network is unreachable
102 Network dropped connection because of reset

103 Software caused connection abort
104 Connection reset by peer

105 No buffer space available
106 Transport endpoint is already connected
107 Transport endpoint is not connected
108 Cannot send after transport endpoint shutdown
109 Too many references: cannot splice

110 Connection times out.
111 Connection refused
112 Host is down
113 No route to host
114 Operation already in progress

115 Operation now in progress

500 Transmission timing triggering error. The previous data frame is still being sent

Instruction Description (LD & LiteST)

-666-

3.15.24 ETC_ReadParameter_CoE

ETC_ReadParameter_CoE – Reading SDO parameters of the slave

Graphic Block

Instruction Name LD Expression LiteST Expression

ETC_
ReadParameter_
CoE

Reading
SDO
parame-
ters of
Ether-
CAT
slave

ETC_ReadParameter_CoE(Execute := ???,

SlaveID := ???,

Index := ???,

SubIndex := ???,

DstLength := ???,

Done => ,

Busy => ,

RelLength => ,

Data => ,

AbortCode => ,

Error => ,

ErrorID =>);

Table 3–349 Instruction format
16-bit Instruction -
32-bit Instruction ETC_ReadParameter_CoE: Continuous execution
Operand Name Description Range Data Type

S1 SlaveID Slave address 0 to 71 INT
S2 Index Index - INT
S3 SubIndex Sub-index - INT
S4 DstLength Target length 1 to 4 INT

D1 Done Completion flag - BOOL

D2 Busy Busy flag - BOOL

D3 RelLength Actual length of the read data, in byte 1 to 4 INT

D4 data Read data - DINT
D5 AbortCode Abortion code when reading slave object

dictionary fails*1
- DINT

D6 Error Error flag - BOOL

D7 ErrorID Fault code*2 - INT

Note
● *1: See “ SDO AbortCode” on page 674.
● *2: See “ Instruction Fault Codes” on page 675.

Instruction Description (LD & LiteST)

-667-

Table 3–350 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 - - - √ √ √ - - -

D5 - - - √ √ √ - - -

D6 √[1] √ √ - - √ - - -

D7 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to read the object dictionary of an EtherCAT slave. It is active on the rising
edge.

● SlaveID specifies the configuration address of the EtherCAT slave.
● On the rising edge of Execute, the instruction latches the input parameters on the left and triggers

reading the object dictionary specified by Index and SubIndex.
● DstLength specifies the length (in byte) of the object dictionary to read.
● When reading is successful, the Done signal becomes active. Dtate displays the read value, and

RelLength displays the actual length of the read object dictionary. When reading fails, the Error
output becomes active, and you can determine the cause of the failure by checking AbortCode and
ErrorID.

● The parameter Data in this instruction is a DINT type parameter that occupies 4 bytes. When the
read object dictionary is SINT or INT data, the reading result is stored in the low-order 8 bits or 16
bits of Data, and the unused high-order 24 bits or 16 bits are filled with 0s. For example, when the
read data is the SINT-type or INT-type –8, the data actually stored in Data is 0x000000f8 or
0x0000fff8.

Instruction Description (LD & LiteST)

-668-

Timing Diagram

Fault Codes
Fault Code Cause Solution

8001 Failed to configure the master. Check whether the master
configuration parameters are
appropriate.

8002 Failed to configure the slave. Check whether the slave
configuration parameters are
appropriate.

8003 Reserved -
8200 Failed to write the slave startup

parameters to the SDO.
Check whether the SDO of the
startup parameter list is
appropriate.

3.15.25 ETC_WriteParameter_CoE

ETC_WriteParameter_CoE – Writing SDO parameters of the slave

Instruction Description (LD & LiteST)

-669-

Graphic Block

Instruction Name LD Expression LiteST Expression

ETC_
WriteParameter_
CoE

Writing
SDO
parame-
ters of
EtherCAT
slave

ETC_WriteParameter_CoE(Execute := ???,

SlaveID := ???,

Index := ???,

SubIndex := ???,

DstLength := ???,

Data := ???,

Done => ,

Busy => ,

AbortCode => ,

Error => ,

ErrorID =>);

Table 3–351 Instruction format
16-bit
Instruction

-

32-bit
Instruction

ETC_WriteParameter_CoE: Continuous execution

Operand Name Description Range Data Type

S1 SlaveID
Slave ID (Only the configuration address
of the slave is allowed.) 0 to 71 INT

S2 Index Index - INT
S3 SubIndex Sub-index - INT
S4 DstLength Target length 1 to 4 INT

S5 Data Target data - DINT

D1 Done Completion flag - BOOL

D2 Busy Busy flag - BOOL
D3 AbortCode Abortion code - DINT
D4 Error Error flag - BOOL
D5 ErrorID Fault code*1 - INT

Note
*1: See “ Instruction Fault Codes” on page 675.

Table 3–352 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

Instruction Description (LD & LiteST)

-670-

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S5 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 - - - √ √ √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to write to the object dictionary of an EtherCAT slave. It is active on the rising
edge.

● SlaveID specifies the configuration address of the EtherCAT slave.
● On the rising edge of Execute, the instruction latches the input parameters on the left and writes

the data in Data to the object dictionary specified by Index and SubIndex.
● DstLength specifies the length (in byte) of the object dictionary to write to.
● When writing is successful, the Done signal becomes active. When writing fails, the Error output

becomes active, and you can determine the cause of the failure by checking AbortCode and ErrorID.

Timing Diagram

Instruction Description (LD & LiteST)

-671-

Fault Codes
Fault Code Cause Solution

8001 Failed to configure the master. Check whether the master configuration
parameters are appropriate.

8002 Failed to configure the slave. Check whether the slave configuration
parameters are appropriate.

8003 Reserved -
8200 Failed to write the slave startup parameters to

the SDO.
Check whether the SDO of the startup
parameter list is appropriate.

3.15.26 ETC_RestartMaster

ETC_RestartMaster – Restarting EtherCAT master

Instruction Name LD Expression LiteST Expression

ETC_
RestartMaster

Restarting
EtherCAT
master

ETC_RestartMaster(Execute := ???,

Master := ,

Done => ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);

16-bit
Instruction

ETC_RestartMaster: Continuous execution

32-bit
Instruction

-

Operand Name Description Empty Allowed Default Range Data Type

S1 Master EtherCAT
master

Yes - - -

D1 Done Completion flag Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

D3 CommandAbort-
ed

Abortion of
execution

Yes OFF ON/OFF BOOL

D4 Error Error flag Yes OFF ON/OFF BOOL

D5 ErrorID Fault code*1 Yes 0 - INT16

Note
*1: See “ Instruction Fault Codes” on page 675.

Instruction Description (LD & LiteST)

-672-

Table 3–353 List of elements

Operand

Bit Word Pointer Constant

OthersX, Y, M, S, B Bits of Word
Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 √[1] √ √ - - √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

This instruction is used to restart the EtherCAT bus.

Timing Diagram

● If the bus is restarted successfully, the Done output becomes active.

● If the bus fails to restart, the Error output becomes active, and ErrorID indicates the fault code.

Instruction Description (LD & LiteST)

-673-

● Re-execution
The same restart instruction can be re-triggered.

● Multi-execution
This instruction does not support multi-execution. If a second instruction is triggered during
execution of an instruction, the second instruction reports a fault, and the first instruction
continues execution.

Instruction Description (LD & LiteST)

-674-

3.15.27 Instruction Codes

SDO AbortCode
Value Description

0x05 03 00 00 Toggle bit not changed

0x05 04 00 00 SDO protocol timed out

0x05 04 00 01 Client/server instruction qualifier invalid or unknown
0x05 04 00 05 Memory overflow

0x06 01 00 00 Unsupported access object

0x06 01 00 01 Attempting to read a write-only object

0x06 01 00 02 Attempting to write to a read-only object

0x06 02 00 00 No such object in the object directory

0x06 04 00 41 The object cannot be mapped to the PDO.

Instruction Description (LD & LiteST)

-675-

Value Description
0x06 04 00 42 The quantity and length of objects to be mapped exceed the allowable range of the

PDO.
0x06 04 00 43 General parameter incompatibility

0x06 04 00 47 General internal incompatibility in the device

0x06 06 00 00 Access failed due to a hardware error.
0x06 07 00 10 Data type mismatch: service parameter length mismatch

0x06 07 00 12 Data type mismatch: service parameter too long

0x06 07 00 13 Data type mismatch: service parameter too short

0x06 09 00 11 Sub-index does not exist
0x06 09 00 30 Parameter value out of range (write access)

0x06 09 00 31 Written parameter value too large

0x06 09 00 32 Written parameter value too small
0x06 09 00 36 Maximum value is smaller than minimum value
0x08 00 00 00 General error
0x08 00 00 20 Data cannot be transmitted or stored to the application.
0x08 00 00 21 Data cannot be transmitted or stored to the application due to local control.

0x08 00 00 22 Data cannot be transmitted or stored to the application due to the current device
state.

0x08 00 00 23 Failed to generate the object dictionary dynamically to there is currently no object
dictionary.

Instruction Fault Codes
Fault Code Cause Solution

0x0500 The master is not found.
Check whether EtherCAT bus
communication is enabled.

0x0501 The slave is not found.
Check whether the slave exists in
configuration.

0x0502
The length of the SDO to read or
write to is 0 or greater than 4.

Check whether the length specified
in the SDO read or write function is
correct.

0x0503 The master is not found.
Check whether the master
configuration parameters are
correct.

0x0504

Reading or writing fails.

1. The SDO read or write operation
times out.

2. The SDO does not exist.

3. Reading or writing to the SDO is
not allowed by the slave state.

4. The length of the SDO to read or
write to is incorrect.

Check whether the SDO operation is
allowed by the slave state machine.

Check whether the SDO to read or
write to exists.

Check whether the length of the
SDO to read or write to is correct.

0x0505 Failed to request the memory.
1. Check whether the PLC memory
runs out.

2. Contact the manufacturer.

0x0506 The master is in Stopping state.
Do not call this instruction when the
master is in Stopping state.

Instruction Description (LD & LiteST)

-676-

3.15.28 EIP_Generic_Service

EIP_Generic_Service – Calling the "Generic" service of a specific instance of the EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Generic_Service: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP
address*1

No - - IP

S2 Service Service
code

No - 0 to 255 INT

S3 Class Class
code

No - - DINT

S4 Instance Instance
code

No - - DINT

S5 Attribute Attribute
code

No - - DINT

S6 WriteData Written data
buffer area

No - - BYTE[]/INT[]

S7 WriteDataSize Written data
size (in bytes)

No - 0 to 1502 INT

S8 ReadData Read data
buffer area

No - - BYTE[]/INT[]

S9 ReadDataSize Read data size
(in bytes)

No - 0 to 1502 INT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-677-

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

D5 ReceivedData-
Size

Received data
size

Yes 0 0 to 1502 INT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–354 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ √ √ - -

S6 - - - √ √ - - - -

S7 - - - √ √ √ √ - -

S8 - - - √ √ - - - -

S9 - - - √ √ √ √ - -

D1 ✓ [1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values, and the ReadData buffer area is cleared.
● When execution of the instruction is successful, Done is set to ON, the size of the service response

data is saved to ReceivedDataSize, and the service response data is written to the ReadData buffer
area.

● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Instruction Description (LD & LiteST)

-678-

Timing Diagram

3.15.29 EIP_Get_Attributes_All

EIP_Get_Attributes_All – Calling the "Get_Attributes_All" service for a specific instance of the EtherNet/
IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Get_Attributes_All: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP
address*1

No - - IP

Instruction Description (LD & LiteST)

-679-

S2 Class Class
code

No - - DINT

S3 Instance Instance
code

No - - DINT

S4 ReadData Read data
buffer area

No - - BYTE[]/INT[]

S5 ReadDataSize Read data size
(in bytes)

No - 0 to 1502 INT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

D5 ReceivedData-
Size

Received data
size

Yes 0 0 to 1502 INT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–355 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ - - - -

S5 - - - √ √ √ √ - -

D1 ✓ [1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values, and the ReadData buffer area is cleared.

Instruction Description (LD & LiteST)

-680-

● When execution of the instruction is successful, Done is set to ON, the size of the service response
data is saved to ReceivedDataSize, and the service response data is written to the ReadData buffer
area.

● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.30 EIP_Get_Attribute_Single

EIP_Get_Attribute_Single – Calling the "Get_Attribute_Single" service for a specific instance of the
EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Get_Attribute_Single: Continuous execution

Instruction Description (LD & LiteST)

-681-

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

S4 Attribute Attribute
code

No - - DINT

S5 ReadData Read data
buffer area

No - - BYTE[]/INT[]

S6 ReadDataSize Read data size
(in bytes)

No - 0 to 1502 INT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

D5 ReceivedData-
Size

Received data
size

Yes 0 0 to 1502 INT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–356 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ - - - -

S6 - - - √ √ √ √ - -

D1 ✓ [1] √ √ - - √ - - -

D2 ✓ [1] √ √ - - √ - - -

D3 ✓ [1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

D5 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-682-

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values, and the ReadData buffer area is cleared.
● When execution of the instruction is successful, Done is set to ON, the size of the service response

data is saved to ReceivedDataSize, and the service response data is written to the ReadData buffer
area.

● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.31 EIP_Set_Attributes_All

EIP_Set_Attributes_All – Calling the "Set_Attributes_All" service for a specific instance of the EtherNet/
IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Instruction Description (LD & LiteST)

-683-

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Set_Attributes_All: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

S4 WriteData Written data
buffer area

No - - BYTE[]/INT[]

S5 WriteDataSize Written data
size (in bytes)

No - 0 to 1502 INT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–357 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ - - - -

S5 - - - √ √ √ √ - -

D1 ✓ [1] √ √ - - √ - - -

D2 ✓ [1] √ √ - - √ - - -

D3 ✓ [1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-684-

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.32 EIP_Set_Attribute_Single

EIP_Set_Attribute_Single – Calling the "Set_Attribute_Single" service for a specific instance of the
EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Instruction Description (LD & LiteST)

-685-

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Set_Attribute_Single: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

S4 Attribute Attribute
code

No - - DINT

S5 WriteData Written data
buffer area

No - - BYTE[]/INT[]

S6 WriteDataSize Written data
size (in bytes)

No - 0 to 1502 INT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–358 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ √ √ - -

S5 - - - √ √ - - - -

S6 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

Instruction Description (LD & LiteST)

-686-

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.33 EIP_Apply_Attributes

EIP_Apply_Attributes – Calling the "Apply_Attributes" service for a specific instance of the EtherNet/IP
object

The adapter adopts and saves attributes set by "Get_Attribute_Single" or "Get_Attribute_All".

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Instruction Description (LD & LiteST)

-687-

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Apply_Attributes: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–359 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Instruction Description (LD & LiteST)

-688-

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.34 EIP_NOP

EIP_NOP – Calling the "NOP" (No Operation) service for a specific instance of the EtherNet/IP object

It is often used to check whether the adapter is still available in the network.

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Instruction Description (LD & LiteST)

-689-

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_NOP: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–360 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 ✓ [1] √ √ - - √ - - -

D2 ✓ [1] √ √ - - √ - - -

D3 ✓ [1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description (LD & LiteST)

-690-

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Timing Diagram

3.15.35 EIP_Reset

EIP_Generic_Service – Calling the "Reset" service of a specific instance of the EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

Instruction Description (LD & LiteST)

-691-

16-bit
Instruction

-

32-bit
Instruction

EIP_Reset: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class

code
No - - DINT

S3 Instance Instance
code

No - - DINT

D1 Done Completion
flag

Yes OFF ON/OFF BOOL

D2 Busy Busy
flag

Yes OFF ON/OFF BOOL

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault
code

Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–361 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Instruction Description (LD & LiteST)

-692-

Timing Diagram

3.15.36 EIP_Start

EIP_Start – Calling the "Start" service of a specific instance of the EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

16-Bit
Instruction

-

32-bit
Instruction

EIP_Start: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class code No - - DINT
S3 Instance Instance code No - - DINT
D1 Done Completion

flag
Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-693-

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault code Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–362 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Instruction Description (LD & LiteST)

-694-

Timing Diagram

3.15.37 EIP_Stop

EIP_Stop – Calling the "Stop" service of a specific instance of the EtherNet/IP object

This function is programmed on the EtherNet/IP scanner. The EtherNet/IP scanner sends an
"Unconnected Explicit Message" service request to the EtherNet/IP adapter. The EtherNet/IP adapter
accepts and processes the request, and sends a service response to the EtherNet/IP scanner.

Graphic Block

16-bit
Instruction

-

32-bit
Instruction

EIP_Stop: Continuous execution

Operand Name Description Empty
Allowed

Default Range Data Type

S1 IPAddress IP address*1 No - - IP
S2 Class Class code No - - DINT
S3 Instance Instance code No - - DINT
D1 Done Completion

flag
Yes OFF ON/OFF BOOL

D2 Busy Busy flag Yes OFF ON/OFF BOOL

Instruction Description (LD & LiteST)

-695-

D3 Error Error flag Yes OFF ON/OFF BOOL

D4 ErrorCode Fault code Yes 0 - DINT

Note
*1: A parameter of which the data type is IP is a dotted decimal IP address. For example, if the adapter IP address is
192.168.1.88, the operand IPAddress should be set to 192.168.1.88.

Table 3–363 List of elements

Oper
and

Bit Word Pointer Constant

OthersX, Y, M, S, B
Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - - - √ - - √
S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

D1 √[1] √ √ - - √ - - -

D2 √[1] √ √ - - √ - - -

D3 √[1] √ √ - - √ - - -

D4 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Function and Instruction Description

● Obtain the EtherNet/IP service provided by the specified manufacturer by setting parameters such
as the adapter IPAddress, Class, and Instance.

● On the rising edge of the flow, Busy is set to ON, indicating that the instruction is being executed.
● On the falling edge of the flow, if Busy is ON, execution of the instruction continues. Otherwise,

Done, Error, and ErrorCode are set to default values.
● When execution of the instruction is successful, Done is set to ON.
● When an error occurs during execution, Error is set to ON, and the error code is saved to ErrorCode.

Instruction Description (LD & LiteST)

-696-

Timing Diagram

3.16 Other Instructions

3.16.1 PID

The PID instruction performs PID calculation to control the parameters of a close-loop control system.
PID – PID calculation

16-bit Instruction PID: Continuous execution
32-bit Instruction -
Operand Name Description Range Data Type

S1 Setpoint Set target control value. Unit: 0.1°C - INT16

S2 Input Measured feedback value. The user
program needs to read the actual
value of the device and update this
parameter. Unit: 0.1°C.

- INT16

S3 Mode PID working mode, that is,
algorithm selection It is
recommended that the variable
retentive at power failure be used.

- INT16

S4 Paras Settings of parameters required for
PID calculation or buffer of
intermediate results

- INT16, VOID*n

D1 Output PID analog output percentage in
0.1%. For example, 1000 represents
100%.

- INT16

Instruction Description (LD & LiteST)

-697-

D2 Error Error flag - BOOL

D3 ErrorID Error code - INT16

Table 3–364 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B Bits of Word

Element
Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

K, H E

S1 - - - √ √ √ √ - -

S2 - - - √ √ √ √ - -

S3 - - - √ √ √ √ - -

S4 - - - √ √ - - - -

D1 - - - √ √ √ - - -

D2 ✓[1] - √ - - √ - - -

D3 - - - √ √ √ - - -

Note
[1] The X element is not supported.

Instruction Description

S3 specifies the PID mode, which is described as follows:

Para. Mode Description

S3

0 Incremental PID
1 Position PID
2 Special PID
3 Temperature control PID
4 MPC control PID (used for process control in the air compressor industry)
5 Large-inertia temperature control PID (used for process control in the

injection molding machine industry)

6 Auto-tuning PID

Instruction Description (LD & LiteST)

-698-

Mode 0: Incremental PID Instruction
Unit Parameter Description

S4 Sampling time (TS) The maximum sampling time is 132767 ms and the sampling
time must be greater than the PLC's scan cycle.

S4+1 Action direction (ACT)

Bit0 = 0: forward action; bit0 = 1: reverse action

Bit1 = 0: input variable alarm disabled; bit1 = 1: input variable
alarm enabled

Bit2 = 0: output variable alarm disabled; bit2 = 1: output
variable alarm enabled

Bit3: unavailable

Bit4 = 0: auto-tuning not executed; bit4 = 1: auto-tuning
executed (The current version does not provide auto-tuning for
the moment.)

Bit5 = 0: upper/lower output limits invalid; bit5 = 1: upper/lower
output limits valid

Bit6 to bit15: unavailable

Do not set both bit5 and bit2 to ON.
S4+2 Input filter constant (α) Value range: 0 to 99, in percent. When it is set to 0, no input

filter is processed.
S4+3 Proportional gain (Kp) Value range: 1 to 32767, in percent.

S4+4 Integral time (T1) Value range: 0 to 32767 (x 100 ms). When it is set to 0, it is
processed as ∞ (no integral).

S4+5 Differential gain (KD) Value range: 0 to 100, in percent. When it is set to 0, no
differential gain is processed.

S4+6 Differential time (TD) Value range: 0 to 32767 (x 10 ms). When it is set to 0, no
differential is processed.

S4+(7–19) Occupied by internal processing of PID calculation. Clear these units before initial running.

When bit1 is 1 and bit2 or bit5 is 1 in <ACT>, S4+(20–24) are occupied and defined as follows:

S4+20 Input variable (incremental)
alarm value

Value range: 0 to 32767. This parameter is valid when bit1 is 1 in
<ACT>.

S4+21 Input variable (decremental)
alarm value

Value range: 0 to 32767. This parameter is valid when bit1 is 1 in
<ACT>.

S4+22
Output variable
(incremental) alarm value

Value range: 0 to 32767. This parameter is valid when bit2 is 1
and bit5 is 0 in <ACT>.
The upper output limit ranges from -32768 to +32767. This
parameter is valid when bit1 is 0 and bit5 is 1 in <ACT>.

S4+23
Output variable
(decremental) alarm value

Value range: 0 to 32767. This parameter is valid when bit2 is 1
and bit5 is 0 in <ACT> of S4+1.
The lower output limit ranges from -32768 to +32767. This
parameter is valid when bit1 is 0 and bit5 is 1 in <ACT>.

S4+24 Alarm output

Bit0 input variable (incremental) overflow

Bit1 input variable (decremental) overflow

Bit2 output variable (incremental) overflow

Bit3 output variable (decremental) overflow

This parameter is valid when bit1 is 1 or bit2 is 1 in <ACT>.
S4+25 Occupied by internal processing of PID calculation

Instruction Description (LD & LiteST)

-699-

Mode 1: Position PID Instruction

The following table lists the functions and setting methods of the parameters in each unit.

Address Name Value Range Description

S4 + 0 Sampling cycle 1 to 32767, in ms PID calculation cycle, which is 10 by default

S4 + 1 Control mode - 0: Forward (default) 1: Reverse

S4 + 2
Proportional gain
Kp1

0 to 32767, in
percent Proportional gain (Default value: 0)

S4 + 3 Integral gain Ki1
0 to 32767, in
percent

Integral gain (Default value: 0)

S4 + 4 Differential gain Kp1
0 to 32767, in
percent Differential gain (Default value: 0)

S4 + 5 Deviation dead zone 0 to 32767
0: Disabled Non-0: Deviation is zero if the
deviation value is less than the specified value.
(Default value: 0)

S4 + 6 Upper output limit -32768 to 32767 Maximum output value

S4 + 7 Lower output limit -32768 to 32767 Minimum output value

S4 + 8 Upper integral limit -32768 to 32767 Maximum cumulative integral value ※1

S4 + 9 Lower integral limit -32768 to 32767 Minimum cumulative integral value ※1

S4 + 10 Cumulative integral - 32-bit floating-point number
S4 + 11
S4 + 12 Last output -32768 to 32767 Used for differential calculation

S4 + 13 Kp2
0 to 32767, in
percent (Default value: 0)

S4 + 14 Ki2
0 to 32767, in
percent (Default value: 0)

S4 + 15 Kd2
0 to 32767, in
percent (Default value: 0)

S4 + 16 Parameter switching
condition

- 0: No switching 1: Switching based on deviation
2: User-defined ※2

S4 + 17 Lower deviation
limit E1

-32768 to 32767
Deviation start point or user-defined switching
start point

S4 + 18 Upper deviation
limit E2

-32768 to 32767
Deviation end point or user-defined switching
end point

S4 + 19
User-defined
switching reference -32768 to 32767

Switching reference when the parameter
switching condition is set to 2

S4 + 20

Occupied by internal
operation - -

S4 + 21
S4 + 22
S4 + 23
S4 + 24
S4 + 25
S4 + 26

● ※1: When both the upper and lower integral limits are set to 0, the upper limit +32,737 and lower limit –32,768
take effect.

● ※2: When (S4+16) is 0, (S4+17) to (S4+19) are invalid.

Principles of position PID calculation

The PID calculation formula is as follows:

Instruction Description (LD & LiteST)

-700-

u(k) = Kp x e(k) + Ki x T x ∑e(i) + (Kd/T) x [Pv(k) – Pv(k-1)]

u(k) Current output value Pv(k-1) Feedback value at the last
time point

e(k) Current deviation T Sampling time

∑e(i) Current cumulative
integral

Kp Proportional gain

Sv(k) Current setpoint Ki Integral gain

Pv(k) Current feedback value Kd Differential gain

Forward direction: e(k) = Sv(k) – Pv(k)

Reverse direction: e(k) = Pv(k) – Sv(k)

Principles of parameter switching (proportional gain Kp used an as example)

Kp

E0

Kp1

Kp2

E1 E2

Kp1 (S4 + 2)
Kp2 (S4 + 13)
E1 (S4 + 17)
E2 (S4 + 18)
E Switching reference

E ≤ E1: Kp = Kp1

E1 < E < E2: Kp = (Kp2 – Kp1) x E/(E2 – E1)

E ≥ E2: Kp = Kp2

S4 + 16
0 No switching

1 E = |Sv – Pv|

2 E = S4+19

Mode 2: Special PID Instruction (operation principles same as those of customized Inov-
ance 307 series AC drive)

The following table lists the functions and setting methods of the parameters in each unit.

Instruction Description (LD & LiteST)

-701-

Address Name Value Range Description
AC Drive
Function
Code

Winding
Parame

ter

Unwinding
Parameter

Wire
Drawing
Machine
Parame

ter

S4 + 0 Sampling
time

1 to 32767,
in ms

PID calculation cycle - 10 10 10

S4 + 1
Mode
setting -

0: Forward

1: Reverse
- - - -

S4 + 2
Default
parameter
selection

-

0: No initialization

1: Winding parameter

2: Unwinding parameter

3: Wire drawing machine
parameter

- 1 2 3

S4 + 3
Feedback
range
setting

0 to 32767
AND feedback range
setting FA-04 1000 1000 1000

S4 + 4
Output
range 0 to 32767 Output range - 10000 10000 10000

S4 + 5
Maximum
reverse
output

0 to 32767 Maximum reverse output
※1

- 10000 10000 10000

S4 + 6
Output
range
selection

-

0: Relative to the
maximum range

1: Relative to the main
output (D+1)

F0-05 0 0 1

S4 + 7
Auxiliary
output
range

0 to 32767,
in percent Valid when (S4+6) is 1 F0-06 - - 70

S4 + 8
Proportional
gain Kp1

0 to 32767,
in 0.1%

Proportional gain
(Default value: 0) FA-05 100 150 45

S4 + 9 Integral
time Ti1

0 to 32767,
in 0.01s

Integral gain (Default
value: 0) FA-06 120 130 200

S4 + 10 Differential
time Td1

0 to 32767,
in 0.001s

Differential gain (Default
value: 0) FA-07 150 0 0

S4 + 11
Deviation
limit

0 to 32767,
in 0.1%

Maximum calculation
deviation

FA-09 0 0 0

S4 + 12 Differential
limit

0 to 32767,
in 0.01%

Maximum differential
limit

FA-10 50 - -

S4 + 13
PID
reference
change time

0 to 32767,
in ms

After startup, the
reference value reaches
the setpoint after the
specified time elapses.

FA-11 5000 0 0

S4 + 14
Proportional
gain Kp2

0 to 32767,
in 0.1%

(Default value: 0) FA-15 - - -

S4 + 15 Integral
time Ti2

0 to 32767,
in 0.01s

(Default value: 0) FA-16 - - -

S4 + 16 Differential
time Td2

0 to 32767,
in 0.001s

(Default value: 0) FA-17 - - -

Instruction Description (LD & LiteST)

-702-

Address Name Value Range Description
AC Drive
Function
Code

Winding
Parame

ter

Unwinding
Parameter

Wire
Drawing
Machine
Parame

ter

S4 + 17
Parameter
switching
condition

-

0: No switching

1: Switching based on
deviation

2: User-defined ※2

FA-18 - - -

S4 + 18
Lower
deviation
limit

0 to 32767,
in 0.1%

Deviation start point or
user-defined switching
start point

FA-19 - - -

S4 + 19
Upper
deviation
limit

0 to 32767,
in 0.1%

Deviation end point or
user-defined switching
end point

FA-20 - - -

S4 + 20

User-
defined
switching
reference

0 to 32767,
in 0.1%

Switching reference
when the parameter
switching condition is set
to 2

- - - -

S4 + 21
Initial
output

0 to 32767,
in 0.1%

Initial value after PID
startup FA-21 0 0 0

S4 + 22
Initial
output hold
time

0 to 32767,
in ms

Time during which the
initial value remains
unchanged

FA-22 0 0 0

S4 + 23
Output
deviation
limit

0 to 32767,
in 0.1%

Range of every deviation
change - 0 0 0

S4 + 24

...

S4 + 30

Internal
operation - - - - - -

Address Name Description

D1 + 0 Total output PID calculation component + (D1+1)

D1 + 1 Main output User-designated main output (AC drive dominant frequency) This value is
set to 0 for pure PID.

● ※1: Maximum negative value of PID output. The following are two examples. If this parameter is set to 100, the
maximum negative output is –100.

● ※2: See the parameter switching principle of the position-type PID instruction.

PID calculation formula

u(k) = Kp {e(k) + T/Ti x ∑e(i) + Td/T x [e(k) – e(k-1)]}

u(k) Current output value ∑e(i) Current cumulative
integral

Kp Proportional gain T Sampling time

e(k) Current deviation Ti Integral time

e(k-1) Deviation at the last time
point

Td Differential time

Sv(k) Current setpoint Ki Integral gain

Pv(k) Current feedback value Kd Differential gain

Instruction Description (LD & LiteST)

-703-

Forward direction: e(k) = Sv(k) – Pv(k); reverse direction: e(k) = Pv(k) – Sv(k)

For details about parameter switching, see the position PID description.

Main output application

When (S4+6) is 0, (D1+1) is forcibly set to 0.

When (S4+6) is 1, (S4+7) is enabled. The maximum PID component is equal to (S4+7) percent of (D1+1).

Final (D1+0) = PID component + Main output (D1+1)

Mode 3: Temperature Control PID Instruction

The following table lists the functions and setting methods of the parameters in each unit.

Unit Parameter Description

S4 Sampling cycle
The sampling cycle ranges from 1 ms to 32767 ms and must be greater
than the PLC's scan cycle.

S4+1 Mode

Bit8 to bit15: unavailable

Bit5 to bit7: unavailable

Bit4 = 0: auto-tuning not executed; bit4 = 1: auto-tuning executed, auto
reset after auto-tuning is completed Bit1 to bit3: unavailable

Bit0 = 0: forward action; bit0 = 1: reverse action

S4+2 Auto-tuning rule

0: common mode, moderate overshoot

1: Slow mode, small overshoot but slow temperature rise

2: Fast mode, fast temperature rise but large overshoot

S4+3 Scaling band

Auto-tuning result scaling band output. The value range is 1 to 32767.
The smaller the value of the scaling band, the stronger the scaling
effect. After self-tuning, the scaling band will be automatically adjusted
to the value after self-tuning.

S4+4 Integral time
Auto-tuning result integral band output. The value range is 0 to 32767,
in second. 0 indicates no integral processing.

S4+5 Differential time
Auto-tuning result differential band output. The value range is 0 to
32767, in second. 0 indicates no differential processing.

S4+6 Upper output limit
The upper output limit ranges from -32768 to +32767 and must be
greater than the lower output limit.

S4+7 Lower output limit
The lower output limit ranges from –32768 to +32767 and must be less
than sign than the upper output limit.

S4+8 Reserved Occupied by internal processing of PID calculation

S4+9 Scaling output Current scaling output

S4+10 Integral output Current integral output

S4+11 Differential output Current differential output

S4+(12 to 29) Reserved Occupied by internal processing of auto-tuning calculation

Instruction example:

M0: Temperature control enable/disable; M1: Auto-tuning start/stop (auto reset after auto-tuning is
completed)

Instruction Description (LD & LiteST)

-704-

Mode 4: Special PID Instruction for Air Compressors

Note the following:

● Only one special PID is supported.
● You need to control the relevant logic and process of the air compressor by using the user program,

such as determining whether to enable certain functions and controlling parameter modification
(the instruction flow needs to be re-controlled) and air compressor feedback.

● Before calling the instruction, you must preset the parameters related to the special PID, including
the default values of PID parameters. For example, you can use M8002 to assign values for PID
parameters, AC drive parameters, and air compressor parameters. Basically, the control effect is
good when the default values are used.

Description of parameters:

S1 specifies the set target value of the PID (in 0.01 Mpa).

S2 is the measured feedback value (in 0.01 Mpa). The user program needs to read the actual value of
the device and update this parameter.

Instruction Description (LD & LiteST)

-705-

S4 is the start unit for storing the operation result. It occupies 60 consecutive D elements or 16-bit
word variable arrays. S4 is used for user parameter setting and control.

D1 specifies the PID output value (in 0.01 Hz).

The following table lists the functions and setting methods of the parameters in each unit.

Instruction Description (LD & LiteST)

-706-

Category Address Range Default
Value

Unit Description

PID parameter
setting

30 Ds

S4+0 - - - For system use, not writable!

S4+1 - - - For system use, not writable!

S4+2 0 and 1 1 - Whether there is an air tank 0:
No 1: Yes

S4+3 0 and 1 0 - Model coefficient calculation
enable 0: Hold 1: Re-calculate

S4+4 0 and 1 0 - PID direction 0: Forward 1:
Reverse

S4+5 0 and 10000 3000 ms
Control pressure filter time,
setting not required

S4+6 20 and 60 45 %
Percentage of model switching
frequency

S4+7 100 and 30000 1000 ms PID control calculation interval

S4+8 0 and 3000 6 s
Motor acceleration/
deceleration and pipeline
delay time constant

S4+9 - - - For system use, not writable!

S4+10 -32767 and 32767 150 0.01 Model scale factor
S4+11 -32767 and 32767 300 s Model time constant
S4+12 0 and 50 25 1 Fast prediction step 1

S4+13 0 and 30000 1 1 Fast output weighting factor 1

S4+14 0 and 50 25 1 Fast prediction step 2

S4+15 0 and 30000 2 1 Fast output weighting factor 2

S4+16 0 and 50 35 1 Fast prediction step 3

S4+17 0 and 30000 5 1 Fast output weighting factor 3

S4+18 0 and 50 40 1 Fast prediction step 4

S4+19 0 and 30000 15 1 Fast output weighting factor 4

S4+20 -32767 and 32767 150 0.01 Non-air tank model scale
factor

S4+21 -32767 and 32767 30 s Air tank model time constant
S4+22 0 and 50 9 1 Non-air tank control step

S4+23 0 and 30000 5 1 Non-air tank output weighting
factor

S4+24 0 and 50 9 1 Slow non-air tank control step

S4+25 0 and 30000 5 1
Slow non-air tank output
weighting factor

S4+26 - - - For system use, not writable!

S4+27 - - - For system use, not writable!

S4+28 - - - For system use, not writable!

S4+29 - - - For system use, not writable!

Instruction Description (LD & LiteST)

-707-

Category Address Range Default
Value

Unit Description

Air compressor
and AC drive
parameter
setting

(30 D elements)

S4+30 1 and 30000 - 0.01 Hz Maximum frequency of the AC
drive

S4+31 1 and 30000 - 0.01 Hz Upper output frequency of the
AC drive

S4+32 0 and 30000 - 0.01 Hz Lower output frequency of the
AC drive

S4+33 0 and 30000 - 0.01 Hz Pre-run frequency of the AC
drive

S4+34 - - 0.01 Hz

Current running frequency of
the AC drive, updated in real
time. The user program needs
to read the AC drive and
update this parameter.

S4+35 0 and 1000 160 0.01Mpa

Maximum pressure of the air
compressor, used for
calibration. The output
frequency must be less than
the value of this parameter.

S4+36 - - - For system use, not writable!

S4+37 - - - For system use, not writable!

S4+38 - - - For system use, not writable!

S4+39 - - - For system use, not writable!

S4+40 - - - For system use, not writable!

S4+41 - - 1 Target calibration value

S4+42 - - - For system use, not writable!

S4+43 - - 1 Feedback calibration value
S4+44 - - - For system use, not writable!

S4+45 - - - For system use, not writable!

S4+46 0 to the maximum
value

- 0.01Mpa Pressure feedback value

S4+47 0 to the maximum
value

- 0.01Mpa Pressure protection value

S4+48 0 to the maximum
value

- 0.01 Hz Actual value of the output
result

S4+49 - - 1 Calibration value of the output
result

S4+50 - - - For system use, not writable!

S4+51 - - - For system use, not writable!

S4+52 - - - For system use, not writable!

S4+53 - - - For system use, not writable!

S4+54 - - - For system use, not writable!

S4+55 - - - For system use, not writable!

S4+56 - - - For system use, not writable!

S4+57 - - - For system use, not writable!

S4+58 - - - For system use, not writable!

S4+59 - - - For system use, not writable!

Do not occupy 60 consecutive elements in the program.

Instruction Description (LD & LiteST)

-708-

Mode 5: Large-inertia Temperature Control PID Instruction

Note the following:

● This instruction is applicable to long-term temperature control applications with large inertia, in
which the control cycle is long and the heating time is more than 100s (typically 200s to 500s).

● You are advised to enable this instruction all the time. Before the first startup, ensure that the
temperature difference is 100 degrees. You are advised to clear the user program and re-download
and start the target program.

● Before calling this instruction, you need to preset relevant parameters. The M8002 is recommended
for value assignment. The parameters to configure include the ambient temperature (S4+13) (which
is 0 if it is not specified) and output control parameters such as the output status word (S4+7)
(which needs to be implemented by the program). As some states (such as the auto-tuning state)
and parameters need to be saved and take effect all the time, the S4 parameter area will not be
completely cleared.

● Note in the program that the S4 parameters occupy 90 word elements. Do not reuse these 90 word
elements in the program.

● Bit0 of the parameter in S4+6 is used by the user to enable and disable temperature control. Pay
attention to it in the program.

● S4+7 stores the output bits. You need to associate the output bits with the external temperature
control I/O by programming.

● Retentive registers or variables are strongly recommended to store the S4 parameters.

Description of parameters:

● S1 specifies the set target value of the PID (in 0.1°C).
● S2 is the measured feedback value (in 0.1°C). The user program needs to read the actual value of

the device and update this parameter.
● S4 is the start unit for storing the operation result. It occupies 90 consecutive D elements or 16-bit

word variable arrays. S4 is used for user parameter setting and control.
● D1 specifies the PID output value (in ms).

The following table lists the functions and setting methods of the parameters in each unit.

Instruction Description (LD & LiteST)

-709-

Category Address Range Default
Value

Unit Description

PID parameter
setting

S4+0 - - - For system use, not writable!

S4+1 - - - For system use, not writable!

S4+2 - 5000 ms Sampling time

S4+3 0 and 4 0 - Sampling cycle

S4+4 - - - Updated target value

S4+5 - - - Running phase

S4+6 - - -

Status word:

Bit0: Temperature control mode enable
(user control required)

Bit1 to bit4: State control

Bit8: Heat charging area (no control
required)

Bit9: Linear area (no control required)

Bit10: Heat discharging area (no control
required)

Bit12: Auto-tuning completed

Bit13: Auto-tuning in progress

Bit14: Heating auto-tuning in progress

Bit15: Heat dissipation auto-tuning in
progress

Other bits: For system use, not writable!

S4+7 - - -

Output control word:

Bit0: Heating output

Bit1: Natural heat dissipation

Bit2: Heat dissipation by ventilation

Bit8 to bit12: System flag

Other bits: For system use, not writable!

S4+8 - - - Reserved
S4+9 - - - Reserved
S4+10 - - 0.1°C Target value

S4+11 - - 0.1°C Sampling value

S4+12 - - 0.1°C
Difference between the sampling value
and target value

S4+13 - - 0.1°C
Ambient temperature (user control
required)

S4+14 - - 0.1°C Auto-tuning start temperature

S4+15 - - 0.1°C
Heat dissipation self-check start
temperature

S4+16 - - - Heat dissipation self-check procedure

S4+17 - - - Reserved

S4+18 - - -
Previous backup value of the average of
sampling differences

S4+19 - - - Average of sampling differences

S4+20 to
S4+29

- - - For system use, not writable!

S4+30 to
S4+39

- - -
Sampling data, sampling value, sampling
change value, and so on

Instruction Description (LD & LiteST)

-710-

Category Address Range Default
Value

Unit Description

PID parameter
setting

S4+40 - - 0.1°C Total temperature rise of the heat charging
area

S4+41 - - 0.1°C Start temperature of the heat charging
area

S4+42 - - 0.1°C/time
unit

Slope of the linear area, temperature rise
change rate

S4+43 - - 0.1°C
Total temperature rise of the heat
discharging area

S4+44 - - 0.1°C Start temperature of the heat discharging
area

S4+45 - - 0.1°C Predicted temperature

S4+46 - - 0.1°C
Heat discharging temperature rise caused
by this heat charging

S4+47 - - 0.1°C
Heat discharging temperature rise caused
by previous (before the current one) heat
charging

S4+48 - - 0.1°C
Previously accumulated heat discharging
temperature rise margin

S4+49 - - 0.1°C Reserved

S4+50 32-bit
data

- ms Total time spent in the heat charging area

S4+52 32-bit
data

- ms Start time of the heat charging area

S4+54 32-bit
data

- ms Total time spent in the heat discharging
area

S4+56 32-bit
data

- ms Start time of the heat discharging area

S4+58 32-bit
data

- ms
Total time for PID heat dissipation
compensation auto-tuning

S4+60 32-bit
data

- ms
Start time of PID heat dissipation
compensation auto-tuning

S4+62 32-bit
data

- ms
Heating start time during temperature
prediction

S4+64 32-bit
data

- ms Parameter self-test cycle start time

S4+66 32-bit
data

- ms
Heat dissipation start time during
parameter self-test

S4+68 32-bit
data

- ms Reserved

S4+70 to
S4+79

- - - PID calculation

PID parameter
output

S4+80 - - ms Switch base time
S4+81 - - ms Scaling output

S4+82 - - ms Integral output

S4+83 - - ms Differential output

S4+84 - - ms Total switch ON duration
S4+85 - - ms Timer for digital control

S4+86 to
S4+89

- - - Reserved

Instruction Description (LD & LiteST)

-711-

The following table lists the PID error codes in various modes.

PID Error Codes
Error Code Description

10 Sampling time (TS) less than 0 or out of range

11 Auto-tuning failed

12 Input filter constant object illegal

13 Input scaling coefficient illegal

14 Integral time illegal

15 Differential gain illegal

16 Differential time illegal

17 Range setting error

20 PID result illegal

21 Offset illegal

22 Scaling item illegal

23 Integral item illegal

24 Differential item illegal

100 Current PID mode not supported

Mode 6: Auto-tuning PID instruction

Note the following:

● Before calling the instruction, you must pre-set the relevant parameters. It is recommended that
you use values assigned by M8002. Main parameters include:

■ PID mode selection
■ Output period
■ Sampling time
■ Max./Min. output percentage
■ Auto-tuning coefficient
■ Scaling coefficient
■ Target temperature

● Paras occupies 90 word elements. Avoid reusing these word elements in the program.
● Bit0 of Paras+2 is used to start and stop temperature control, which requires user control. Be

careful not to operate other bits in the program.
● For Paras+25, compile a program to associate the output bit with the external temperature control

output I/O.
● Paras+26 is the percentage of PID digital output, that is, the ratio of output ON time to total output

period in percentage.
● For the Setpoint, Mode, and Paras parameters, it is strongly recommended that you use registers

retentive at power failure, such as D components after D200 and R components.

The following table lists the functions and setting methods of the parameters in each unit.

Instruction Description (LD & LiteST)

-712-

Category Address Range Default Unit Description

PID
parame-
ter setting

PARAS+0 - - - For system use, not writable!

PARAS+1 - - - Not in use

PARAS+2 0 to 1 0
Used to start or stop PID. 1: Start, 0:
Stop.

PARAS+3 0 and 1 0 -
Used to start or stop auto-tuning. 1:
Start, 0: Stop.

PARAS+4
32-bit data

1 to 1000000
1000 ms Output period in ms

PARAS+6
32-bit data

1 to 1000000
100 ms Sampling time in ms

PARAS+8
32-bit data

1 to 1000000
10 -

Scaling coefficient Kp, with one decimal
place

PARAS+10
32-bit data

0 to 1000000
- 0.1s Integral time Ti, with one decimal place

PARAS+12
32-bit data

0 to 1000000
- 0.1s

Derivative time Td, with one decimal
place

PARAS+14 0 to 1000 100 0.1%

PID maximum output percentage, with
one decimal place. If there are no
special requirements, it is
recommended that you set this
parameter to 1000, that is, 100.0%.

PARAS+15 0 to 1000 0 0.1%

PID minimum output percentage, with
one decimal place. If there are no
special requirements, it is
recommended that you set this
parameter to 0, that is, 0.0%.

PARAS+16 1-10 5 -

PID auto-tuning coefficient, with one
decimal place. The value range is 0.1 to
1.0. The larger the value, the faster the
tuning, and the overshoot may be large.
If there are no special requirements, it
is recommended that you set this
parameter to 5, that is, 0.5.

PARAS+17 0 to 1 0 -
Used to enable or disable the manual
mode. TRUE: Manual mode,

FALSE: Auto mode.

PARAS+18 0 to 1000 0 0.1%
Output percentage in manual mode,
with one decimal place.

PARAS+19 0 to 1 0 -
The value 1 indicates that integral
separation is canceled.

PARAS+20 - - - Reserved
PARAS+21 - - - Reserved
PARAS+22 - - - Reserved
PARAS+23 - - - Reserved
PARAS+24 - - - Reserved

Instruction Description (LD & LiteST)

-713-

Category Address Range Default Unit Description

PID
parame-
ter output

PARAS+25 0 to 1 - -
DO output status. 1: Heating enabled, 0:
Heating disabled.

PARAS+26 0 to 1000 - 0.1% DO output percentage

PARAS+27 - - 0.1°C Measured value
PARAS+28 - - 0.1°C Setpoint

PARAS+29 0 to 1000 0.1% Analog AO output percentage

PARAS+30 32-bit data - 0.1 Integral coefficient Ki

PARAS+32 32-bit data - 0.1 Differential coefficient Kd
PARAS+34 to

PARAS+35
- - - Reserved

PARAS+36 32-bit data - 0.1 Scaling calculation result

PARAS+38 32-bit data - 0.1 Integral calculation result

PARAS+40 32-bit data - 0.1 Differential calculation result
PARAS+42 - - 0.1 Deviation
PARAS+43 - - 0.1 Previous deviation
PARAS+44 - - - Reserved.
PARAS+45 - - - Max. Pv
PARAS+46 32-bit data - - Ti time
PARAS+48 32-bit data - - Kd_AO
PARAS+50 to
PARAS+89

- - - Reserved

Program Example

For the default of Kp, you can first set a value greater than 0. After parameter auto-tuning is
completed, set appropriate defaults for Kp, Ti and Td according to the setting results.

Function and Instruction Description

● Before running the PID, check the defaults to ensure that they are reasonable, otherwise the
program may encounter a running error.

Instruction Description (LD & LiteST)

-714-

● Enable the auto-tuning function at room temperature. When auto-tuning is completed, you can
obtain the set Kp, Ti and Td values. Let the program continue to run and check whether the
controlled object can reach steady state.

● If the current usage needs are met after the controlled object reaches steady state, record the
values of Kp, Ti, and Td, and write these values into the program as defaults.

● You can manually adjust the Kp, Ti, and Td values to meet your usage needs.
● Note that if you use the DO output, associate the value of PARAS+25 with the DO output.
● If you use the AO analog output, associate the output percentage with the AO output and perform

numerical conversion.
● The larger the auto-tuning coefficient, the faster the set temperature can be reached, but it may

cause greater overshoot. The smaller the auto-tuning coefficient, the slower the set temperature
can be reached, and the temperature curve will be very smooth, without overshoot or with very
small overshoot. Unless otherwise required, use the default 5.
If the customer requires to reach the set temperature faster, increase the auto-tuning coefficient
Paras+16 and reset it.

If the customer needs a smooth curve and small overshoot, decrease the auto-tuning coefficient
Paras+16 and reset it.

Instruction Description (LiteST)

-715-

4 Instruction Description (LiteST)

4.1 Data Operation Instructions

4.1.1 Trigonometric Function Instructions

4.1.1.1 Instruction List

The following table lists the trigonometric function instructions.

Instruction Category Instruction Function

Trigonometric function

SIN Sine operation instruction
COS Cosine operation instruction
TAN Tangent operation instruction

ASIN Arcsine operation instruction
ACOS Arccosine operation instruction
ATAN Arctangent operation instruction

4.1.1.2 SIN

Return Value Type
Sine operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the sine value needs to
be evaluated

- BYTE/INT/REAL

Table 4–1 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate the sine value of the specified angle (in RAD), where:

● S is the angle variable (in RAD), of which the sine value needs to be evaluated. It is expressed as an
integer or floating number.

● The return value is the sine calculation result after conversion.

Instruction Example

Evaluate the sine value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

Instruction Description (LiteST)

-716-

4.1.1.3 COS

Return Value Type
Cosine operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the cosine value needs
to be evaluated

- BYTE/INT/REAL

Table 4–2 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate the cosine value of the specified angle (in RAD), where:

● S is the angle variable (in RAD), of which the cosine value needs to be evaluated. It is expressed as
an integer or floating number.

● The return value is the cosine calculation result after conversion.

Instruction Example

Evaluate the cosine value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

4.1.1.4 TAN

Return Value Type
Tangent operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the tangent value needs
to be evaluated

- BYTE/INT/REAL

Table 4–3 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate the tangent value of the specified angle (in RAD), where:

Instruction Description (LiteST)

-717-

● S is the angle variable (in RAD), of which the tangent value needs to be evaluated. It is expressed as
an integer or floating number.

● The return value is the tangent calculation result after conversion.

Instruction Example

Evaluate the tangent value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

4.1.1.5 ASIN

Return Value Type
Arcsine operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the arsine value needs
to be evaluated

- BYTE/INT/REAL

Table 4–4 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate the arcsine value of the specified angle (in RAD), where:

● S is the angle variable (in RAD), of which the arcsine value needs to be evaluated. It is expressed as
an integer or floating number.

● The return value is the arcsine calculation result after conversion.

Note
An operation error will occur if the value in S falls beyond the range of –1.0 to +1.0.

Instruction Example

Evaluate the arcsine value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

Instruction Description (LiteST)

-718-

4.1.1.6 ACOS

Return Value Type
Arccosine operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the arccosine value
needs to be evaluated

- BYTE/INT/REAL

Table 4–5 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate the arccosine value of the specified angle (in RAD), where:

● S is the angle variable (in RAD), of which the arccosine value needs to be evaluated. It is expressed
as an integer or floating number.

● The return value is the arccosine calculation result after conversion.

Note
An operation error will occur if the value in S falls beyond the range of –1.0 to +1.0.

Instruction Example

Evaluate the arccosine value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

4.1.1.7 ATAN

Return Value Type
Arctangent operation instruction

REAL
Operand Description Range Data Type

S
Angle variable (in RAD), of
which the arctangent value
needs to be evaluated

- BYTE/INT/REAL

Table 4–6 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Instruction Description (LiteST)

-719-

Function and Instruction Description

This instruction is used to evaluate the arctangent value of the specified angle (in RAD), where:

● S is the angle variable (in RAD), of which the arctangent value needs to be evaluated. It is expressed
as an integer or floating number.

● The return value is the arctangent calculation result after conversion.

Instruction Example

Evaluate the arctangent value of real1 and store the result in real0.

According to the equation Angle in radians = Angle in degrees x π/180°, an angle of 360° is converted to
radians as follows: 360° x π/180° = 2π.

4.1.2 Exponent Operation Instructions

4.1.2.1 Instruction List

The exponent function instructions are listed below.

Instruction Category Instruction Function

Exponent operation instruction

LOG Base-10 logarithm

LN Base-e (2.71828) logarithm

SQRT Square root operation instruction

EXPT Power operation instruction

4.1.2.2 LOG

Return Value Type
Base-10 logarithm

REAL
Operand Description Range Data Type

S Variable to be logarithmic - BYTE/INT/REAL

Table 4–7 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BOO
L

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to perform the common logarithm operation on data with the base 10. where:

● S is the variable to be logarithmic.
● The return value is the result of the logarithm operation.

Instruction Description (LiteST)

-720-

Note
The value in S must be positive. If it is 0 or negative, an operation error will occur.

Example

Perform the base-10 logarithm operation on real1 and store the result in real0.

4.1.2.3 LN

Return Value Type
Base e (2.71828) logarithm

REAL
Operand Description Range Data Type

S Variable to be logarithmic - BYTE/INT/REAL

Table 4–8 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to perform the natural logarithm operation on data with the base e (2.71828),
where:

● S is the variable to be logarithmic.
● The return value is the result of the logarithm operation.

Note
The value in S must be positive. If it is 0 or negative, an operation error will occur.

Example

Perform the base-e logarithm operation on real1 and store the result in real0.

4.1.2.4 SQRT

Return Value Type
Square root operation instruction

REAL
Operand Description Range Data Type

S Data to be square rooted - BYTE/INT/REAL

Instruction Description (LiteST)

-721-

Table 4–9 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to take the square root of S, where:

● S is the data to be square rooted.
● The return value is the calculation result of the square root operation.

Note
The value in S1 must be positive. If it is negative, an operation error occurs.

Example

Take the square root of real1 and store the result in real0.

4.1.2.5 EXPT

Return Value Type
Power operation instruction

REAL
Operand Description Range Data Type

S1 Data to be powered - BYTE/INT/REAL

S2 Power - BYTE/INT/DINT/REAL

Table 4–10 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 - - - √ √ - √ √ √ √ - -

S2 - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to evaluate S1 to the power S2, where:

● S1 is the data to be powered.
● S2 is the power.
● The return value is the calculation result of the power operation.

Example

Evaluate real1 to the power real2 and store the result in real0.

Instruction Description (LiteST)

-722-

4.1.3 Explicit Conversion Instructions

4.1.3.1 Instruction List

The explicit conversion function instructions are listed below.

Instruction Category Instruction Function

Explicit conversion

INT_TO_<TYPE> Convert the INT type into the type
specified by<TYPE>.

DINT_TO_<TYPE> Convert the DINT type into the type
specified by<TYPE>.

BOOL_TO_<TYPE> Convert the BOOL type into the type
specified by<TYPE>.

REAL_TO_<TYPE> Convert the REAL type into the type
specified by<TYPE>.

BYTE_TO_<TYPE> Convert the BYTE type into the type
specified by<TYPE>.

TO_<TYPE> Convert the variable into the type
specified by<TYPE>.

4.1.3.2 INT_TO_<TYPE>

Return Value Type
Convert the INT type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BYTE/INT

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- √ - √ √ √ - - -

Table 4–11 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Varia
ble

BYTE INT DINT REAL
BOO
L

S - - - √ √ - √ √ - - - -

Function and Instruction Description

This instruction is used to explicitly convert the variable of the INT type into the variable of the type
specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Example

LiteST Code Result
bool0 := INT_TO_BOOL(10) TRUE

byte0 := INT_TO_BYTE(10) 10

Instruction Description (LiteST)

-723-

LiteST Code Result
dint0 := INT_TO_DINT(10) 10

real0 := INT_TO_REAL(10) 10.0

Note
● For the boolean type, if the operand is 0, the conversion result is FALSE. If the operand is any other value, the

result is TRUE.
● When S is an expression, its result will be implicitly converted into the INT type and then converted again by

using INT_TO_<TYPE>.

4.1.3.3 DINT_TO_<TYPE>

Return Value Type
Convert the DINT type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BYTE/INT/DINT

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- √ √ - √ √ - - -

Table 4–12 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYT
E

INT
DIN
T

RE
AL

BO
OL

S - - - √ √ - √ √ √ - - -

Function and Instruction Description

This instruction is used to explicitly convert the variable of the DINT type into the variable of the type
specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Example

LiteST Code Result
bool0 := DINT_TO_BOOL(10) TRUE

byte0 := DINT_TO_BYTE(10) 10

int0 := DINT_TO_INT(10) 10

real0 := DINT_TO_REAL(10) 10.0

Note
● For the boolean type, if the operand is 0, the conversion result is FALSE. If the operand is any other value, the

result is TRUE.
● When S is an expression, its result will be implicitly converted into the DINT type and then converted again by

using DINT_TO_<TYPE>.

Instruction Description (LiteST)

-724-

4.1.3.4 BOOL_TO_<TYPE>

Return Value Type
Convert the BOOL type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BOOL

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- √ √ √ √ - - - -

Table 4–13 List of elements

Oper
and

Bit Word
Point
er

Constant

Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Point
er

Varia
ble

BYTE INT DINT REAL BOOL

S √ √ √ - - - - - - - √ -

Function and Instruction Description

This instruction is used to explicitly convert the variable of the BOOL type into the variable of the type
specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Example

LiteST Code Result
byte0 := BOOL_TO_BYTE(TRUE) 1

int0 := BOOL_TO_INT(TRUE) 1

dint0 := BOOL_TO_DINT(TRUE) 1

real0 := BOOL_TO_REAL(TRUE) 1.0

Note
● For the numeric type, if the operand is TRUE, the conversion result is 1. If the operand is FALSE, the result is 0.
● When S is an expression, its result will be implicitly converted into the BOOL type and then converted again by

using BOOL_TO_<TYPE>.

4.1.3.5 REAL_TO_<TYPE>

Return Value Type
Convert the REAL type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BYTE/INT/REAL

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- √ √ √ - √ - - -

Instruction Description (LiteST)

-725-

Table 4–14 List of elements

Oper
and

Bit Word
Point
er

Constant

Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W

Custom
Word
Varia
ble

Point
er

Varia
ble

BYTE INT DINT REAL BOOL

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to explicitly convert the variable of the REAL type into the variable of the type
specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Example

LiteST Code Result
bool0 := REAL_TO_BOOL(11.2) TRUE

byte0 := REAL_TO_BYTE(11.2) 11

int0 := REAL_TO_INT(11.2) 11

dint0 := REAL_TO_DINT(11.2) 11

Note
● For the boolean type, if the operand is 0, the conversion result is FALSE. If the operand is any other value, the

result is TRUE.
● For the numeric type, the general rule for rounding applies during conversion.
● When S is an expression, its result will be implicitly converted into the REAL type and then converted again by

using REAL_TO_<TYPE>.

4.1.3.6 BYTE_TO_TYPE

Return Value Type
Convert the BYTE type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BYTE

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- - √ √ √ √ √ - -

Table 4–15 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S - - - - √ - √ - - - - -

Instruction Description (LiteST)

-726-

Function and Instruction Description

This instruction is used to explicitly convert the variable of the BYTE type into the variable of the type
specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Example

LiteST Code Result
bool0 := BYTE_TO_BOOL(10) TRUE

int0 := BYTE_TO_INT(10) 10

dint0 := BYTE_TO_DINT(10) 10

real0 := BYTE_TO_REAL(10) 10.0

string0 := BYTE_TO_STRING(10) '10'

Note
● For the boolean type, if the operand is 0, the conversion result is FALSE. If the operand is any other value, the

result is TRUE.
● When S is an expression, its result will be implicitly converted into the BYTE type and then converted again by

using BYTE_TO_<TYPE>.

4.1.3.7 TO_<TYPE>

Return Value Type
Convert the INT, DINT, REAL, or BOOL type into the type specified by<TYPE>.

<TYPE>
Operand Description Range Data Type

S Variable to be converted - BYTE/INT/DINT/REAL/BOOL

The following <TYPE> options are supported:

ARRAY BYTE INT DINT REAL BOOL STRING IP POINTER
- √ √ √ √ √ - - -

Table 4–16 List of elements

Oper
and

Bit Word
Point
er

Constant

Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W

Cus
tom
Word
Varia
ble

Point
er

Varia
ble

BYTE INT DINT REAL BOOL

S √ √ √ √ √ - √ √ √ √ √ -

Function and Instruction Description

This instruction is used to explicitly convert the variable of the INT, DINT, REAL, or BOOL type into the
variable of the type specified by <TYPE>, where:

● S is the variable to be converted.
● The return value is the conversion result.

Instruction Description (LiteST)

-727-

Example

LiteST Code Result
bool0 := TO_BOOL(11.2) TRUE

byte0 := TO_BYTE(15) 15

int0 := TO_INT(11.2) 11

dint0 := TO_DINT(TRUE) 1

real0 := TO_REAL(11) 11.0

4.1.4 Comparison Instructions

4.1.4.1 Instruction List

The comparison instructions are listed below.

Instruction Category Instruction Function

Comparison instruction
MAX Max operation

MIN Min operation

4.1.4.2 MAX

Return Value Type
Max operation

BYTE/INT/DINT/REAL
Operand Description Range Data Type

S1 Variable 1 for comparison - BYTE/INT/DINT/REAL

S2 Variable 2 for comparison - BYTE/INT/DINT/REAL

Table 4–17 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 - - - √ √ - √ √ √ √ - -

S2 - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to compare the values of two BYTE, INT, DINT, or REAL variables and return the
larger value, where:

● S1 is variable 1 for comparison.
● S2 is variable 2 for comparison.
● The return value is the larger one of two values.
● The return value type is consistent with the input type.

Instruction Description (LiteST)

-728-

Note
1. The data types of S1 and S2 must be consistent, or the type of one variable in S1 and S2 can be implicitly

converted into the type of the other variable.
2. When the type of one variable in S1 and S2 is implicitly converted into the type of another variable, the return

value is the type after the implicit conversion.
3. When the type of one variable in S1 or S2 is the result of a bit operation, the other variable must also be the result

of a bit operation, or be a single variable.

Example

Obtain the larger value of real1 and real2 and store the result in real0.

4.1.4.3 MIN

Return Value Type
Min operation

BYTE/INT/DINT/REAL
Operand Description Range Data Type

S1 Variable 1 for comparison - BYTE/INT/DINT/REAL

S2 Variable 2 for comparison - BYTE/INT/DINT/REAL

Table 4–18 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 - - - √ √ - √ √ √ √ - -

S2 - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to compare the values of two BYTE, INT, DINT, or REAL variables and return the
smaller value, where:

● S1 is variable 1 for comparison.
● S2 is variable 2 for comparison.
● The return value is the smaller one of two values.
● The return value type is consistent with the input type.

Note
1. The data types of S1 and S2 must be consistent, or the type of one variable in S1 and S2 can be implicitly

converted into the type of the other variable.
2. When the type of one variable in S1 and S2 is implicitly converted into the type of another variable, the return

value is the type after the implicit conversion.
3. When the type of one variable in S1 or S2 is the result of a bit operation, the other variable must also be the result

of a bit operation, or be a single variable.

Example

Instruction Description (LiteST)

-729-

Obtain the smaller value of real1 and real2 and store the result in real0.

4.1.5 Shift Instructions

4.1.5.1 Instruction List

The shift instructions are listed below.
Instruction Category Instruction Function

Shift instruction
SHL Shift left operation

SHR Shift right operation

4.1.5.2 SHL

Return Value Type
Shift left operation

BYTE/INT/DINT
Operand Description Range Data Type

S1 Shift operation variable - BYTE/INT/DINT

S2 Number of shifted bits - BYTE/INT/DINT

Table 4–19 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 - - - √ √ - √ - - - - -

S2 - - - √ √ - √ √ √ - - -

Function and Instruction Description

This instruction is used to shift the variable S1 in binary form to the left by S2 bits and return the shift
result, where:

● S1 is the variable to be shifted.
● S2 is the number of shifted bits.
● The return value is the shift result.
● The type and length of the return value are consistent with those of S1.

Note
1. SHL is a bit operation instruction, and the result it returns can only be used with bit operation results, binary

constants, octal constants, or hexadecimal constants in an operation.
2. The result returned by SHL can be used in an explicit conversion operation TO_XXX, such as TO_REAL.
3. When the value of S2 is greater than the number of bits in the data type of S1, no exception will occur, and the

return value is 16#0.
4. When S1 is an expression, it will be implicitly converted into the type with the maximum length in the expression

before the shift operation is performed.
5. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Instruction Description (LiteST)

-730-

Example

Shift dint1 to the left by 2 bits and store the result in dint0.

4.1.5.3 SHR

Return Value Type
Shift right operation

BYTE/INT/DINT
Operand Description Range Data Type

S1 Shift operation variable - BYTE/INT/DINT

S2 Number of shifted bits - BYTE/INT/DINT

Table 4–20 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 - - - √ √ - √ - - - - -

S2 - - - √ √ - √ √ √ - - -

Function and Instruction Description

This instruction is used to shift the variable S1 in binary form to the right by S2 bits and return the shift
result, where:

● S1 is the variable to be shifted.
● S2 is the number of shifted bits.
● The return value is the shift result.
● The type and length of the return value are consistent with those of S1.

Note
1. SHR is a bit operation instruction, and the result it returns can only be used with bit operation results, binary

constants, octal constants, or hexadecimal constants in an operation.
2. The result returned by SHR can be used in an explicit conversion operation TO_XXX, such as TO_REAL.
3. When the value of S2 is greater than the number of bits in the data type of S1, no exception will occur, and the

return value is 16#0.
4. When S1 is an expression, it will be implicitly converted into the type with the maximum length in the expression

before the shift operation is performed.
5. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Example

Shift dint1 to the right by 2 bits and store the result in dint0.

Instruction Description (LiteST)

-731-

4.1.6 Absolute Value Operation Instruction

4.1.6.1 ABS

Return Value Type
Obtain the absolute value of a variable.

BYTE/INT/DINT/REAL
Operand Description Range Data Type

S Variable, of which the
absolute value is obtained

- BYTE/INT/DINT/REAL

Table 4–21 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S - - - √ √ - √ √ √ √ - -

Function and Instruction Description

This instruction is used to obtain the absolute value of a variable, where:

● S is the variable, of which the absolute value is obtained.
● The return value is the absolute value of S.
● The return value type is consistent with the input type.

Example

Obtain the absolute value of int1 and store the result in int0.

4.1.7 Bit Operators

4.1.7.1 Instruction List

The bit operators are listed below.

Instruction Category Instruction Function

Bit operator

AND AND operation
OR OR operation
XOR XOR operation

NOT NOT operation

4.1.7.2 AND

Return Value Type
AND operation

BYTE/INT/DINT/BOOL
Operand Description Range Data Type

S1 AND operation variable 1 - BYTE/INT/DINT/BOOL

S2 AND operation variable 2 - BYTE/INT/DINT/BOOL

Instruction Description (LiteST)

-732-

Table 4–22 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 √ √ √ √ √ - √ √ √ - √ -

S2 √ √ √ √ √ - √ √ √ - √ -

Function and Instruction Description

This instruction is used to perform an AND operation on two variables and return the result of the AND
operation, where:

● S1 is operation variable 1 and expressed as an integer.
● S2 is operation variable 2 and expressed as an integer.
● The return value type is consistent with the input type.

Note
1. The data types of S1 and S2 must be consistent.
2. S1 and S2 can only be a single variable, the result of a bit operation, a binary constant, an octal constant, or a

hexadecimal constant.
3. AND is a bit operation instruction, and the result it returns can only be used with bit operation results, binary

constants, octal constants, or hexadecimal constants in an operation.
4. The data type of the return value of the AND operation is the same as that of the input value.
5. When both S1 and S2 are either constant 0 or constant 1, the return value is of type INT.
6. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Example

Perform an AND operation on int1 and int2 and store the result in int0.

4.1.7.3 OR

Return Value Type
OR operation

BYTE/IINT/DINT/BOOL
Operand Description Range Data Type

S1 OR operation variable 1 - BYTE/IINT/DINT/BOOL

S2 OR operation variable 2 - BYTE/IINT/DINT/BOOL

Table 4–23 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 √ √ √ √ √ - √ √ √ - √ -

S2 √ √ √ √ √ - √ √ √ - √ -

Instruction Description (LiteST)

-733-

Function and Instruction Description

This instruction is used to perform an OR operation on two variables and return the result of the OR
operation, where:

● S1 is operation variable 1 and expressed as an integer.
● S2 is operation variable 2 and expressed as an integer.
● The return value type is consistent with the input type.

Note
1. The data types of S1 and S2 must be consistent.
2. S1 and S2 can only be a single variable, the result of a bit operation, a binary constant, an octal constant, or a

hexadecimal constant.
3. OR is a bit operation instruction, and the result it returns can only be used with bit operation results, binary

constants, octal constants, or hexadecimal constants in an operation.
4. The data type of the return value of the OR operation is the same as that of the input value.
5. When both S1 and S2 are either constant 0 or constant 1, the return value is of type INT.
6. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Example

Perform an OR operation on int1 and int2 and store the result in int0.

4.1.7.4 XOR

Return Value Type
XOR operation

BYTE/INT/DINT/BOOL
Operand Description Range Data Type

S1 XOR operation variable 1 - BYTE/INT/DINT/BOOL

S2 XOR operation variable 2 - BYTE/INT/DINT/BOOL

Table 4–24 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 √ √ √ √ √ - √ √ √ - √ -

S2 √ √ √ √ √ - √ √ √ - √ -

Function and Instruction Description

This instruction is used to perform an XOR operation on two variables and return the result of the XOR
operation, where:

● S1 is operation variable 1 and expressed as an integer.
● S2 is operation variable 2 and expressed as an integer.
● The return value type is consistent with the input type.

Instruction Description (LiteST)

-734-

Note
1. The data types of S1 and S2 must be consistent.
2. S1 and S2 can only be a single variable, the result of a bit operation, a binary constant, an octal constant, or a

hexadecimal constant.
3. XOR is a bit operation instruction, and the result it returns can only be used with bit operation results, binary

constants, octal constants, or hexadecimal constants in an operation.
4. The data type of the return value of the XOR operation is the same as that of the input value.
5. When both S1 and S2 are either constant 0 or constant 1, the return value is of type INT.
6. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Example

Perform an XOR operation on int1 and int2 and store the result in int0.

4.1.7.5 NOT

Return Value Type
NOT operation

BYTE/INT/DINT/BOOL
Operand Description Range Data Type

S NOT operation variable 1 - BYTE/INT/DINT/BOOL

Table 4–25 List of elements

Oper
and

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S √ √ √ √ √ - √ √ √ - √ -

Function and Instruction Description

This instruction is used to perform a NOT operation on a variable and return the result of the NOT
operation, where:

● S1 is operation variable 1 and expressed as an integer.
● The return value type is consistent with the input type.

1. S1 can only be a single variable, the result of a bit operation, a binary constant, an octal constant, or a
hexadecimal constant.

2. NOT is a bit operation instruction, and the result it returns can only be used with bit operation results, binary
constants, octal constants, or hexadecimal constants in an operation.

3. The data type of the return value of the NOT operation is the same as that of the input value.
4. When S is either constant 0 or constant 1, the return value is of type INT.
5. After the returned result is assigned to a variable, the variable can be used for the operations allowed by the

variable.

Example

Perform a NOT operation on int1 and store the result in int0.

Instruction Description (LiteST)

-735-

4.2 Program Logic Instructions

4.2.1 Binary Operation Instruction

4.2.1.1 SEL

Return Value Type
Binary operation instruction

BYTE/INT/DINT/REAL/BOOL
Operand Description Range Data Type

S1 Conditional variable - BOOL
S2 Selection variable 1 - BYTE/INT/DINT/REAL/BOOL
S3 Selection variable 2 - BYTE/INT/DINT/REAL/BOOL

Table 4–26 List of elements

Operand

Bit Word Pointer Constant
Oth
ersX, Y, M, S, B

Bits of
Word

Element

Custom Bit
Variable

D, R, W
Custom
Word

Variable

Pointer
Variable

BYTE INT
DIN
T

RE
AL

BO
OL

S1 √ √ √ - - - - - - - √ -

S2 √ √ √ √ √ - √ √ √ √ √ -

S3 √ √ √ √ √ - √ √ √ √ √ -

Function and Instruction Description

This instruction is used to select one of the two INT, DINT, REAL, or BOOL variables. When S1 is TRUE,
return S3. When S1 is FALSE, return S2. Where:

● S1 is a conditional variable.
● S2 is selection variable 1.
● S3 is selection variable 2.
● The return value is S2 or S3.
● The return value type is consistent with the type of S2 or S3.

Note
1. The data types of S2 and S3 must be consistent, or the type of one variable in S2 and S3 can be implicitly

converted into the type of the other variable.
2. When the type of one variable in S2 and S3 is implicitly converted into the type of another variable, the return

value is the type after the implicit conversion.
3. When the type of one variable in S1 or S2 is the result of a bit operation, the other variable must also be the result

of a bit operation, or be a single variable.

Example

When bool0 is TRUE, obtain the value of dint2 and store it in dint0.

When bool0 is FALSE, obtain the value of dint1 and store it in dint0.

Appendix

-736-

5 Appendix

5.1 ASCII Code Conversion

The ASCII code conversion table is as follows:
Bin

(Binary)
Oct

(Octal)
Dec

(Decimal)
Hex

(Hexadecimal)
Abbreviation/Character Description

0000 0000 00 0 0x00 NUL (null) Null character

0000 0001 01 1 0x01 SOH (start of headline) Start of headline
0000 0010 02 2 0x02 STX (start of text) Start of text

0000 0011 03 3 0x03 ETX (end of text) End of text

0000 0100 04 4 0x04
EOT (end of
transmission) End of transmission

0000 0101 05 5 0x05 ENQ (enquiry) Enquiry

0000 0110 06 6 0x06 ACK (acknowledge) Acknowledgement

0000 0111 07 7 0x07 BEL (bell) Bell

0000 1000 010 8 0x08 BS (backspace) Backspace

0000 1001 011 9 0x09 HT (horizontal tab) Horizontal tab

0000 1010 012 10 0x0A
LF (NL line feed, new
line) Line feed

0000 1011 013 11 0x0B VT (vertical tab) Vertical tab

0000 1100 014 12 0x0C
FF (NP form feed, new
page) Form feed

0000 1101 015 13 0x0D CR (carriage return) Carriage return

0000 1110 016 14 0x0E SO (shift out) Shift out

0000 1111 017 15 0x0F SI (shift in) Shift in

0001 0000 020 16 0x10 DLE (data link escape) Data link escape

0001 0001 021 17 0x11 DC1 (device control 1) Device control 1

0001 0010 022 18 0x12 DC2 (device control 2) Device control 2

0001 0011 023 19 0x13 DC3 (device control 3) Device control 3

0001 0100 024 20 0x14 DC4 (device control 4) Device control 4

0001 0101 025 21 0x15
NAK (negative
acknowledge)

Negative
acknowledgement

0001 0110 026 22 0x16 SYN (synchronous idle) Synchronous idle

0001 0111 027 23 0x17
ETB (end-of-
transmission block)

End-of-transmission
block

0001 1000 030 24 0x18 CAN (cancel) Cancel

0001 1001 031 25 0x19 EM (end of medium) End of medium

0001 1010 032 26 0x1A SUB (substitute) Substitute

0001 1011 033 27 0x1B ESC (escape) Escape (overflow)

0001 1100 034 28 0x1C FS (file separator) File separator

0001 1101 035 29 0x1D GS (group separator) Group separator

0001 1110 036 30 0x1E RS (record separator) Record separator

0001 1111 037 31 0x1F US (unit separator) Unit separator

0010 0000 040 32 0x20 (space) Space

0010 0001 041 33 0x21 ! Exclamation mark

Appendix

-737-

Bin
(Binary)

Oct
(Octal)

Dec
(Decimal)

Hex
(Hexadecimal)

Abbreviation/Character Description

0010 0010 042 34 0x22 " Double quotes

0010 0011 043 35 0x23 # Hashtag

0010 0100 044 36 0x24 $ Dollar sign

0010 0101 045 37 0x25 % Percent sign

0010 0110 046 38 0x26 & Ampersand

0010 0111 047 39 0x27 ' Closed single quote

0010 1000 050 40 0x28 (Open bracket

0010 1001 051 41 0x29) Closing bracket

0010 1010 052 42 0x2A * Asterisk
0010 1011 053 43 0x2B + Plus
0010 1100 054 44 0x2C , Comma
0010 1101 055 45 0x2D - Minus/Dash
0010 1110 056 46 0x2E . Period
0010 1111 057 47 0x2F / Slash
0011 0000 060 48 0x30 0 Character 0
0011 0001 061 49 0x31 1 Character 1
0011 0010 062 50 0x32 2 Character 2
0011 0011 063 51 0x33 3 Character 3
0011 0100 064 52 0x34 4 Character 4
0011 0101 065 53 0x35 5 Character 5
0011 0110 066 54 0x36 6 Character 6
0011 0111 067 55 0x37 7 Character 7
0011 1000 070 56 0x38 8 Character 8
0011 1001 071 57 0x39 9 Character 9
0011 1010 072 58 0x3A : Colon
0011 1011 073 59 0x3B Semicolon
0011 1100 074 60 0x3C < Less than
0011 1101 075 61 0x3D = Equal sign

0011 1110 076 62 0x3E Greater than
0011 1111 077 63 0x3F ? Question mark

0100 0000 0100 64 0x40 @ Email symbol

0100 0001 0101 65 0x41 A Uppercase A

0100 0010 0102 66 0x42 B Uppercase B

0100 0011 0103 67 0x43 C Uppercase C

0100 0100 0104 68 0x44 D Uppercase D

0100 0101 0105 69 0x45 E Uppercase E

0100 0110 0106 70 0x46 F Uppercase F

0100 0111 0107 71 0x47 G Uppercase G

0100 1000 0110 72 0x48 H Uppercase H

0100 1001 0111 73 0x49 I Uppercase I

01001010 0112 74 0x4A J Uppercase J

0100 1011 0113 75 0x4B K Uppercase K

0100 1100 0114 76 0x4C L Uppercase L

0100 1101 0115 77 0x4D M Uppercase M

0100 1110 0116 78 0x4E N Uppercase N

0100 1111 0117 79 0x4F O Uppercase O

0101 0000 0120 80 0x50 P Uppercase P

Appendix

-738-

Bin
(Binary)

Oct
(Octal)

Dec
(Decimal)

Hex
(Hexadecimal)

Abbreviation/Character Description

0101 0001 0121 81 0x51 Q Uppercase Q

0101 0010 0122 82 0x52 R Uppercase R

0101 0011 0123 83 0x53 S Uppercase S

0101 0100 0124 84 0x54 T Uppercase T

0101 0101 0125 85 0x55 U Uppercase U

0101 0110 0126 86 0x56 V Uppercase V

0101 0111 0127 87 0x57 W Uppercase W

0101 1000 0130 88 0x58 X Uppercase X

0101 1001 0131 89 0x59 Y Uppercase Y

0101 1010 0132 90 0x5A Z Uppercase Z

0101 1011 0133 91 0x5B [Open square bracket

0101 1100 0134 92 0x5C \ Backslash

0101 1101 0135 93 0x5D] Closing square bracket

0101 1110 0136 94 0x5E ^ Caret
0101 1111 0137 95 0x5F _ Underscore
0110 0000 0140 96 0x60 ` Opening single quote

0110 0001 0141 97 0x61 a Lowercase a
0110 0010 0142 98 0x62 b Lowercase b
0110 0011 0143 99 0x63 c Lowercase c
0110 0100 0144 100 0x64 d Lowercase d
0110 0101 0145 101 0x65 e Lowercase e
0110 0110 0146 102 0x66 f Lowercase f
0110 0111 0147 103 0x67 g Lowercase g

0110 1000 0150 104 0x68 h Lowercase h
0110 1001 0151 105 0x69 i Lowercase i
0110 1010 0152 106 0x6A j Lowercase j

0110 1011 0153 107 0x6B k Lowercase k
0110 1100 0154 108 0x6C l Lowercase l
0110 1101 0155 109 0x6D m Lowercase m
0110 1110 0156 110 0x6E n Lowercase n
0110 1111 0157 111 0x6F o Lowercase o
0111 0000 0160 112 0x70 p Lowercase p

0111 0001 0161 113 0x71 q Lowercase q
0111 0010 0162 114 0x72 r Lowercase r
0111 0011 0163 115 0x73 s Lowercase s
0111 0100 0164 116 0x74 t Lowercase t
0111 0101 0165 117 0x75 u Lowercase u
0111 0110 0166 118 0x76 v Lowercase v
0111 0111 0167 119 0x77 w Lowercase w
0111 1000 0170 120 0x78 x Lowercase x
0111 1001 0171 121 0x79 y Lowercase y

0111 1010 0172 122 0x7A z Lowercase z
0111 1011 0173 123 0x7B { Opening curly bracket

0111 1100 0174 124 0x7C | Perpendicular

0111 1101 0175 125 0x7D } Closing curly bracket

0111 1110 0176 126 0x7E ~ Tilde
0111 1111 0177 127 0x7F DEL (delete) Delete

Appendix

-739-

5.2 Fault Codes

The software tool prompts various categories of fault codes when faults occur in user programming.
The following table lists the fault codes and corresponding solutions.

Table 5–1 Fault codes

Fault Code Message Description Troubleshooting

Program

1500 User program watchdog
timed out

The user program
execution time is too long
and has exceeded the set
program watchdog time.

Increase the watchdog time as appropriate, or check
whether there is a program block with unexpectedly
long execution time in the user program.

1501 Undefined instruction
The instruction is not
supported.

Upgrade the PLC firmware to the version that
supports the instruction.

1502
Incomplete user
program, length error

The user program is
incomplete, and the length
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1503

Program authorization
protection identifier
error. Check whether the
identifier matches.

The program authorization
protection identifier is
incorrect. Check whether
the authorization
protection identifier of the
device is set correctly.

Contact the equipment provider.

1504 User program empty The user program is empty.
There is no valid program.

Re-download the user program.

1505 Block POU identifier
error

The block POU identifier is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1510 Subprogram identifier
error

The subprogram identifier
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1511 Subprogram type error The subprogram type is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1512
Subprogram serial
number error or out of
range

The subprogram serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1513
Incorrect, duplicate, or
conflicting subprogram
address

The subprogram address is
incorrect, duplicated, or
conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1514
Interrupt subprogram
serial number error or
out of range

The interrupt subprogram
serial number is incorrect
or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1515
Incorrect, duplicate, or
conflicting interrupt
subprogram address

The interrupt subprogram
address is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1516
Interrupt subprogram
edge error (not rising
edge or falling edge)

The interrupt subprogram
edge is incorrect (not rising
edge or falling edge).

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

Appendix

-740-

Fault Code Message Description Troubleshooting

1517

Interrupt timing
duration range error in
the interrupt
subprogram timer

The interrupt timing
duration range of the
interrupt subprogram timer
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1520
OBprog program
identifier error

The OBprog program
identifier is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1521
OBprog program type
error

The OBprog program type
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1522
OBprog program serial
number error or out of
range

The OBprog program serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1523
Incorrect, duplicate, or
conflicting OBprog
program address

The OBprog program
address is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1524
OBprog program
variable quantity error

The variable quantity of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1525
OBprog program
variable length error

The variable length of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1526 OBprog program header
data error

The header data of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1530
CJ-LBL instruction LBL
serial number error or
out of range

The LBL serial number of
the CJ-LBL instruction is
incorrect or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1531
Incorrect, duplicate, or
conflicting LBL address
of CJ-LBL instruction

The LBL address of the CJ-
LBL instruction is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5001

Exception in user
program execution or
instruction return value
error, some instructions
not executed

Execution of the user
program is abnormal or the
return value of the
instruction is incorrect, and
some instructions are not
executed, causing program
execution to end
abnormally.

Check the logic of the user program for any
exception in execution process or execution logic.

5010

CALL instruction
subprogram serial
number error or out of
range

The subprogram serial
number of the CALL
instruction is incorrect or
out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5011
CALL instruction
subprogram non-
existent or not initialized

The subprogram of the
CALL instruction does not
exist or is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5012

CALL instruction
subprogram nesting
levels out of range or
less than or equal to 0

The number of subprogram
nesting levels of the CALL
instruction is out of range.

Modify the program logic to reduce the subprogram
nesting levels.

Appendix

-741-

Fault Code Message Description Troubleshooting

5013

Relationship error
returned by the
subprogram of the CALL
instruction

The subprogram of the
CALL instruction returns a
relationship error.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5014
Mismatch between
subprogram call and
subprogram return

Subprogram execution is
abnormal. The subprogram
call and subprogram return
do not match.

Check whether the subprogram call and return are
disordered due to the abnormal end of the user
program.

5015 Interrupt subprogram
undefined

The interrupt subprogram
is undefined or does not
exist.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5016

Interrupt queue full and
interrupt lost in the
interrupt subprogram
timer

The interrupt queue of the
interrupt subprogram timer
is full and the interrupt is
lost.

Modify the interrupt subprogram attributes or logic,
and reduce the number of interrupts as appropriate.

5020
FBFC program serial
number error or out of
range

The FBFC program serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5021
FBFC program non-
existent or not initialized

The FBFC program does not
exist or is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5022
FBFC program variable
non-existent or not
initialized

The variable of the FBFC
program does not exist or is
not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5023
FBFC program nesting
levels out of range or
less than or equal to 0

The number of FBFC
program nesting levels is
out of range.

Modify the program logic to reduce the FBFC
program nesting levels.

5024
Relationship error
returned by FBFC
program

The FBFC program returns
a relationship error.

Check whether the FBFC special instruction is used
in the wrong position, or recompile and download
the user program.

5025
Mismatch between
OBprog program call
and program return

OBprog program execution
is abnormal. The program
call and program return do
not match.

Check whether the program call and return are
disordered due to the abnormal end of the user
program.

5030
CJ-LBL instruction LBL
serial number error or
out of range

The LBL serial number of
the CJ-LBL instruction is
incorrect or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5031
CJ-LBL instruction LBL
non-existent or not
initialized

The LBL of the CJ-LBL
instruction does not exist or
is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5032

FOR-NEXT instruction
nesting levels out of
range or less than or
equal to 0

The number of nesting
levels of the FOR-NEXT
instruction is out of range.

Modify the program logic to reduce the FOR-NEXT
instruction nesting levels.

5033
FOR-NEXT instruction
loops out of range or
less than or equal to 0

The number of FOR-NEXT
instruction loops is out of
range or less than or equal
to 0.

Modify the program logic to change the number of
FOR-NEXT instruction loops.

5034
FOR-NEXT instruction
loops equal to 0

The number of FOR-NEXT
instruction loops is 0.

Modify the program logic to change the number of
FOR-NEXT instruction loops.

5035
FOR and NEXT not
paired

The FOR and NEXT
instructions are not paired.

Check whether the disorder is caused by abnormal
stop of the user program.

Appendix

-742-

Fault Code Message Description Troubleshooting

5080 Array subscript access
out of bounds

The array access subscript
is greater than the
maximum array subscript
value, and the subscript
value in use has been
changed to the maximum
array subscript value.

Double-click the fault code to go to the
corresponding program position to modify the
subscript value.

5081
Division-by-zero
protection, divisor 0
replaced by 1

The division-by-zero
protection is triggered and
the divisor 0 is replaced by
1 automatically.

Double-click the fault code to go to the
corresponding program position to modify the
divisor.

5082
Long-time no response
from program loop

The program loop has no
response for a long time.

Double-click the fault code to go to the
corresponding program position to modify the loop
statement.

5083 Array subscript access
out of bounds

The array access subscript
is less than 0, and the
subscript value in use has
been changed to 0.

Double-click the fault code to go to the
corresponding program position to modify the
subscript value.

5084 Invalid data
The floating-point data is
invalid.

Check whether the input values of functions such as
LN, LOG, SQRT are legal.

5101
Instruction parameter
variable address error,
or variable non-existent

The address of the
parameter variable of the
instruction is incorrect, or
the variable does not exist.

Check whether the address of the parameter
variable of the instruction is normal and whether the
variable exists.

5102

Instruction parameter
variable size error, or
variable non-existent or
out of range

The size of the parameter
variable of the instruction is
incorrect. The variable does
not exist or is out of range.

Check whether the data length of the parameter
variable of the instruction is out of range.

5103 xxxx0001 error xxxx0001 error occurs. Recompile and download the user program by using
the software tool.

5104
Instruction parameter
sequence error or
relationship error

The instruction parameter
sequence or relationship is
incorrect.

Check whether the parameter sequence or
relationship of the instruction is correct.

5105
String data error or
length error in string
instruction

The character string data or
length of the string
instruction is incorrect.

Check whether the character string data of the string
instruction is illegal.

5110
Pointer serial number
error or out of range

The serial number of the
Pointer is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5111
Pointer not initialized or
not pointing to a valid
data variable

The Pointer is not initialized
or does not point to a valid
data variable.

Check whether the Pointer is initialized and whether
it points to a valid variable address.

5112
Variable pointed to by
the Pointer non-existent
or out of range

The variable pointed to by
the Pointer does not exist
or is out of range.

Check the variable address pointed to by the Pointer
or initialize the Pointer again.

5113
Pointer offset out of
range

The offset of the Pointer is
out of range.

Check whether the offset of the Pointer is too large.
If yes, reduce the offset.

5114

Variable pointed to by
the Pointer execution
result non-existent or
out of range

The variable pointed to by
the execution result of the
Pointer does not exist or is
out of range.

Check whether the variable address pointed to by
the execution result of the Pointer exists and
whether it is out of range.

5120
Counter instruction
instantiation failed

Failed to instantiate the
counter instruction.

Recompile and download the user program.

Appendix

-743-

Fault Code Message Description Troubleshooting

5121
Counter instruction
comparand error or out
of range

The comparand of the
counter instruction is
incorrect or out of range.

Check whether the comparand of the counter
instruction is incorrect or out of range.

5130
Timer instruction
instantiation failed

Failed to instantiate the
timer instruction.

Recompile and download the user program.

5131
Timer instruction
comparand error or out
of range

The comparand of the
timer instruction is
incorrect or out of range.

Check whether the comparand of the timer
instruction is incorrect or out of range.

5140

Number of SFC STL
parallel branch/parallel
recombination/selective
branch/selective
recombination lines out
of range

The number of SFC STL
parallel branch/parallel
recombination/selective
branch/selective
recombination lines is out
of range.

Ensure that the number of SFC STL parallel branch/
parallel recombination/selective branch/selective
recombination lines is within the specified range.

5150
Function block
instruction instantiation
failed

Failed to instantiate the
function block instruction.

Recompile and download the user program.

5160
Array subscript variable
code error or non-
existent

The subscript variable code
of the array is incorrect or
does not exist.

Recompile and download the user program.

5161
Array subscript variable
data error or out of
range

The subscript variable of
the array is incorrect or out
of range.

Modify the value of the subscript variable so that the
array falls within the allowable range.

5600 SerialSR instruction
instantiation failed

Failed to instantiate the
SerialSR instruction.

Recompile and download the user program.

5601
SerialSR instruction port
ID out of range

The port ID of the SerialSR
instruction is out of range.

Modify the port ID of the SerialSR instruction.

5602
SerialSR instruction
protocol error

The protocol of the SerialSR
instruction is incorrect.

Set the free protocol for the serial port by using the
software tool.

5603 SerialSR instruction port
conflict

Multiple instructions call
the SerialSR instruction at
the same time, and the
instruction that fails to
preempt the port reports
an error.

Modify the instruction scheduling timing to
implement time division multiplexing.

5604
SerialSR instruction TX
data length out of range
or less than 0

The TX data length of the
SerialSR instruction is out
of range or less than 0.

Check whether the TX data length of the SerialSR
instruction is out of range or less than 0.

5605 SerialSR instruction TX
data buffer error

Failed to obtain the TX data
buffer of the SerialSR
instruction.

Enable this instruction again.

5606
SerialSR instruction RX
data length out of range
or less than 0

The RX data length of the
SerialSR instruction is out
of range or less than 0.

Check whether the RX data length of the SerialSR
instruction is out of range or less than 0.

5607 SerialSR instruction RX
data buffer error

Failed to obtain the RX data
buffer of the SerialSR
instruction.

Enable this instruction again.

6580
Invalid axis ID in the
CANopen axis instruction

The axis ID specified in the
CANopen axis instruction is
invalid.

Modify the axis ID.

Appendix

-744-

Fault Code Message Description Troubleshooting

6701
Invalid memory address:
element or variable non-
existent

The memory address is
invalid. The element or
variable to access does not
exist.

Modify the instruction parameter to use a valid
element or variable.

6705
Invalid memory size:
memory non-existent or
out of range

The memory size is invalid.
The number of elements or
variables to access is too
large or out of range.

Modify the instruction parameter to adjust the
number of elements or variables.

6706
Improper data or data
out of range

The instruction parameter
is improper or out of the
allowable range.

Refer to the instructions guide to modify the
instruction parameter value.

6711 Invalid variable address:
variable non-existent

The variable address is
invalid. The element or
variable to access does not
exist.

Modify the instruction parameter to use a valid
element or variable.

6712
Invalid variable size:
variable out of range

The variable size is invalid.
The number of elements or
variables to access is too
large or out of range.

Modify the instruction parameter to adjust the
number of elements or variables.

6713
Invalid variable
encoding

The variable encoding is
invalid.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

CPU

1011 FPGA initialization failed FPGA initialization failed.
The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

1012 Interrupt initialization
failed

Interrupt initialization
failed.

The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

1013
Timer interrupt
initialization failed

Failed to initialize the timer
interrupt of the user
program.

Restart the device and try again, or replace the
device and return the faulty device to the factory for
repair.

5200
Error in data retention
upon power failure

An error occurs to data
retention upon power
failure.

Check whether the function of data retention upon
power failure works properly.

5238
2038 problem
imminence warning

The device will not work
normally after 11:14:07 on
January 19, 2038 (UTC+8).

Change the device time.

5250 Low RTC battery voltage

The battery voltage of the
RTC clock is low. If the
device is powered off at this
time, the system time will
be restored to the initial
value.

Replace the battery of the RTC clock while keeping
the device powered on.

5900 Network down: Ethernet
IP address conflict

When the device connects
to the network or starts
running after stop, or when
its IP address is modified, it
detects whether its IP
address is used by other
devices in the current
network. If yes, the device
automatically shuts down
the network to avoid
conflict.

Change the device IP address.

Appendix

-745-

Fault Code Message Description Troubleshooting

Local I/O

5300 Initialization failed Initialization failed.
The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

5301
Invalid DI filter
parameter configuration

The DI filter parameter
configuration data is
invalid.

Modify the DI filter parameter configuration data.

Extension Module

5400
Failed to initialize
extension module
interface hardware

The hardware of the
extension module interface
is faulty, which causes the
initialization to fail.

The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

5401
Failed to parse extension
module configuration
data

The configuration data of
the extension module
cannot be parsed correctly
because its format does not
meet requirements.

Clear the compilation information using AutoShop
and recompile and download the program. If the
problem persists, delete the module configurations
and add modules and configurations again one by
one.

5402
Failed to initialize
extension module
interface slot

The slot of the extension
module interface is faulty,
which causes the
initialization to fail.

1. Check whether the extension module interface
slot is short-circuited. If yes, eliminate the short
circuit.

2. Check whether the installed module hardware
works properly. If not, replace the module.

5403 Extension module not
installed

The extension module is
configured but not
installed.

Install the extension module as required, or modify
the configuration of the extension module.

5404
Module installed
inconsistent with
module configured

The module installed in the
slot must be inconsistent
with the configured
module; otherwise, it
cannot work properly.

Install the extension module as required and modify
module configuration accordingly to ensure
consistency.

5405
Extension module
interface hardware
exception

The extension module
interface is abnormal.

1. Check whether the extension module interface
slot is short-circuited. If yes, eliminate the short
circuit.

2. Check whether the installed module hardware
works properly. If not, replace the module.

5406 Extension module
interface software error

The extension module
interface software is
abnormal.

1. Upgrade the PLC firmware.

2. If the problem persists after the firmware
upgrade, replace the device and return the faulty
device to the factory for repair.

5411
Module in the slot not
powered

The module requires
external power supply to
function properly, but the
external power supply is
not on.

Connect the external power supply correctly
according to the module specifications.

5412 Slot module hardware
fault

The module has an internal
fault and cannot work
properly.

Replace the module and return the faulty module to
the factory for repair.

5413
Slot module over-
temperature

The module detected a
high internal temperature
that may lead to
malfunction.

1. Do not install the module in an environment that
does not meet the relevant temperature
requirements.

2. Replace the module and return the faulty module
to the factory for repair.

Appendix

-746-

Fault Code Message Description Troubleshooting

5419
Slot module channel
input or output overflow

For the input channel, the
input signal has exceeded
the upper sampling
threshold. Sampling cannot
be performed properly, and
there is a possibility that
the input port may be
burned. For the output
channel, the output value
of the corresponding
channel has exceeded the
set upper threshold, and
signals cannot be output
properly.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Output channel: Check the set output value and
ensure that the set output is within the set range. If
the set range cannot meet requirements, modify it
as appropriate.

5420
Slot module channel
input or output
underflow

For the input channel, the
input signal has fallen
below the lower sampling
threshold, and sampling
cannot be performed
properly. For the output
channel, the output value
of the corresponding
channel has fallen below
the set lower threshold,
and signals cannot be
output properly.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Output channel: Check the set output value and
ensure that the set output is within the set range. If
the set range cannot meet requirements, modify it
as appropriate.

5421

Slot module channel
input upper limit
exceeded or current
output disconnected

For the input channel, the
input signal has exceeded
the upper sampling
threshold. At this time, the
signal can be sampled
normally but the accuracy
cannot be guaranteed. For
the current output channel,
the output port is not
connected to the load or
the impedance of the
connected load is too large,
so that the current cannot
be output normally.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Current output channel: Ensure that the load of the
output port is connected properly and reliably, and
that the load impedance is within the range
specified in the module specifications.

5422

Slot module channel
input lower limit
exceeded or voltage
output short-circuited

For the input channel, the
input signal has fallen
below the lower sampling
threshold. At this time, the
signal can be sampled
normally but the accuracy
cannot be guaranteed. For
the voltage output channel,
the output port is possibly
short-circuited or the
impedance of the
connected load is too
small, so that the voltage
cannot be output normally.

Input channel: Check the actual input signal value. If
the signal input to this channel has exceeded the set
sampling range under normal working conditions,
modify the sampling range as appropriate. If the
signal is abnormal, check the output device or
instrument of the signal. Voltage output channel:
Ensure that the load of the output port is connected
properly and reliably, and that the load impedance
is within the range specified in the module
specifications.

Appendix

-747-

Fault Code Message Description Troubleshooting

5423
Slot module channel
input disconnected or
output hardware faulty

For the input channel, no
input signal is connected to
the input port or the input
signal is too weak and
cannot be detected or
sampled. For the output
channel, the channel
hardware is faulty and may
have burned out.

Input channel: Ensure that the signal of the input
port is normal and valid and is connected properly
and reliably. Output channel: Replace the module
and return the faulty module to the factory for
repair.

Local Encoder Axis

6300
Input device not
assigned or assigned
input device invalid

The local encoder axis must
be assigned with a high-
speed counter, and each
high-speed counter can
only be assigned to one
axis, otherwise the axis
cannot work properly.

Assign a high-speed counter that has not been
assigned yet in "Input Device" on the "Basic
Settings" page of the axis.

6301
Axis unit conversion
configuration invalid

After a high-speed counter
is assigned to an axis, its
count value (pulse unit) is
converted into the
equivalent in user unit
(Unit) according to the unit
conversion setting
parameter. If the number of
pulses per revolution of the
encoder, the displacement
of the encoder per
revolution, or the gear ratio
of the transmission device
is set incorrectly, the axis
cannot work properly.

Check the settings on the "Unit Conversion Settings"
page of the axis and correct the parameter values.

6302
Axis software limit or
revolution cycle
configuration invalid

In linear mode, the negative
limit must be less than 0,
and the positive limit must
be greater than 0. In rotary
mode, the revolution cycle
must be greater than 0.
Since the high-speed
counter is a 32-bit counter,
the negative limit, positive
limit, and revolution cycle
must be 32-bit integers in
the range of [–2147483648,
+2147483647] after being
converted into pulse units.

Linear mode: Modify the positive and negative limits
to ensure that the negative limit is less than 0, the
positive limit is greater than 0, and they are 32-bit
integers in the range of [–2147483648, +2147483647]
after being converted into pulse units. Rotary mode:
Modify the revolution cycle to ensure that it is
greater than 0 and is a 32-bit integer in the range of
[–2147483648, +2147483647] after being converted
into pulse units.

Appendix

-748-

Fault Code Message Description Troubleshooting

6303
Axis counting mode or
signal source
configuration invalid

The high-speed counter
supports the following
counting modes and signal
sources: A/B phase
frequency multiplication by
1: X0-A phase, X1-B phase,
X2-A phase, X3-B phase A/B
phase frequency
multiplication by 2: X0-A
phase, X1-B phase, X2-A
phase, X3-B phase A/B
phase frequency
multiplication by 4: X0-A
phase, X1-B phase, X2-A
phase, X3-B phase CW/
CCW: X0-CW, X1-CCW, X2-
CW, X3-CCW Pulse
+direction: X0-pulse, X1-
direction, X2-pulse, X3-
direction

Select a supported counting mode and signal
source.

6304
Axis preset function:
input terminal invalid

The preset function
supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by the preset
function.

6305 Axis probe 1: input
terminal invalid

Probe 1 supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by probe 1.

6306 Axis probe 2: input
terminal invalid

Probe 2 supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by probe 2.

6307
Axis comparison output:
terminal invalid

The comparative output
supports the output
terminals Y0, Y1, Y2, and Y3.

Select an output terminal supported by the
comparison output.

6308
Axis comparison output:
pulse width invalid

When the unit is ms, the
time range is 0.1 ms to
6553.5 ms. When the unit is
Unit, the set value must fall
between 1 and 65535 after
being converted into pulse
units.

Modify the pulse width to ensure that it is within the
allowable range.

CANlink

6400
Station address conflict:
Station address already
exists in the network.

In CANlink communication,
the addresses of all stations
connected to the network
must be unique. Address
conflict detection is
performed after a device
node is powered on and
initialized or the station
address is modified. If the
address is duplicated, a
fault is reported and all
CANlink bus activities of the
node are stopped.

Change the station address to ensure that there are
no duplicate addresses in the network.

Appendix

-749-

Fault Code Message Description Troubleshooting

6401 Slave offline
Failed to communicate with
the slave because it is
offline.

Check whether the CAN network connection works
properly. Ensure that the connection is reliable
without short circuit or open circuit, CANH and CANL
are not reversely connected, and the terminal
resistance is normal.

6411

Slave configuration
exception response (1)
"Undefined encoding
used"

During configuration of a
slave, the slave returns
exception response (1)
"Undefined encoding
used".

Check whether the type/model of the connected
device is consistent with the configuration.

6412

Slave configuration
exception response (2)
"Configured index
exceeds the maximum
value supported by the
node"

During configuration of a
slave, the slave returns
exception response (2)
"Configured index exceeds
the maximum value
supported by the node".

Check whether the type/model of the connected
device is consistent with the configuration.

6413

Slave configuration
exception response (3)
"Register address non-
existent or inaccessible"

During configuration of a
slave, the slave returns
exception response (3)
"Register address non-
existent or inaccessible".

Check whether the type/model of the connected
device is consistent with the configuration.

6415

Slave configuration
exception response (5)
"Register data length
invalid"

During configuration of a
slave, the slave returns
exception response (5)
"Register data length
invalid".

Check whether the type/model of the connected
device is consistent with the configuration.

6416
Waiting for slave
configuration command
response timed out

During configuration of a
slave, waiting for slave
response timed out.

Check whether the type/model of the connected
device is consistent with the configuration.

6421
Slave synchronization
exception response (1)
"Illegal command code"

When a synchronization
command is sent to a slave,
the slave returns exception
response (1) "Illegal
command code".

Check whether the type/model of the connected
device is consistent with the configuration.

6422

Slave synchronization
exception response (2)
"Register address non-
existent or inaccessible"

When synchronization data
is sent to a slave, the slave
returns exception response
(2) "Register address non-
existent or inaccessible".

Check whether the type/model of the connected
device is consistent with the configuration.

6423

Slave synchronization
exception response (3)
"Value beyond allowable
range"

When synchronization data
is sent to a slave, the slave
returns exception response
(3) "Value beyond allowable
range".

1. Check whether the set value in the corresponding
register address has exceeded the allowed range.

2. Check whether the type/model of the connected
device is consistent with the configuration.

6424

Slave synchronization
exception response (4)
"Operation unreachable
or not allowed in the
current state"

When synchronization data
is sent to a slave, the slave
returns exception response
(4) "Operation unreachable
or not allowed in the
current state".

Check whether the type/model of the connected
device is consistent with the configuration.

6425
Slave synchronization
exception response (5)
"Data length invalid"

When synchronization data
is sent to a slave, the slave
returns exception response
(5) "Data length invalid".

Check whether the type/model of the connected
device is consistent with the configuration.

Appendix

-750-

Fault Code Message Description Troubleshooting

6426

Waiting for slave
synchronization
command response
timed out

Waiting for slave response
to a synchronization
command timed out.

Check whether the type/model of the connected
device is consistent with the configuration.

CANopen

6401 Node offline
Failed to communicate with
the node because it is
offline.

Check whether the CAN network connection works
properly. Ensure that the connection is reliable
without short circuit or open circuit, CANH and CANL
are not reversely connected, and the terminal
resistance is normal.

Modbus Master

5500
8-bit data required for
Modbus RTU serial port

The Modbus RTU serial port
only supports 8-bit data.

Use 8-bit data for Modbus RTU serial port.

6001
Slave returned exception
response (01) "Illegal
function code"

The function code received
in the query is not an
allowable action for the
server (or slave). This may
be because the function
code is only applicable to
new devices, and is not
implementable in the unit
selected. It could also
indicate that the server (or
slave) is in the wrong state
to process a request of this
type, for example, because
it is unconfigured and is
being asked to return
register values.

Check whether the server (or slave) supports the
function code.

6002
Slave returned exception
response (02) "Illegal
data address"

The data address received
in the query is not an
allowable address for the
server (or slave). More
specifically, the
combination of reference
number and transfer length
is invalid. For a controller
with 100 registers, a
request with the offset 96
and the length 4 will
succeed, but a request with
the offset 96 and the length
5 will result in exception
code 02.

Check whether the corresponding function code of
the server (or slave) supports all the addresses
accessed by this configuration.

Appendix

-751-

Fault Code Message Description Troubleshooting

6003
Slave returned exception
response (03) "Illegal
data"

A value contained in the
query data field is not an
allowable value for server
(or slave). This indicates a
fault in the structure of the
remainder of a complex
request, such as that the
implied length is incorrect.
It specifically does not
mean that a data item
submitted for storage in a
register has a value outside
the expectation of the
application program, since
the Modbus protocol is
unaware of the significance
of any particular value of
any particular register.

Check whether the value is within the allowed
range.

6004
Slave returned exception
response (04) "Slave
device fault"

An unrecoverable error
occurred while the server
(or slave) was attempting to
perform the requested
action.

Check whether slave is abnormal or faulty.

6128

Response station
number and requested
station number
mismatch

After the master sends a
request frame, the station
number in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6129
Response function code
and requested function
code mismatch

After the master sends a
request frame, the function
code in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6130
Response data address
and requested data
address mismatch

After the master sends a
request frame, the data
address in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6131
Response data value and
requested data value
mismatch

After the master sends a
request frame, the data
value in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

Appendix

-752-

Fault Code Message Description Troubleshooting

6240
Cache address mapping
in configuration invalid

The cache address
mapping in the
configuration is invalid and
the configuration cannot be
executed correctly.

Modify the cache address mapping in the
configuration to a valid variable or element address.

6255 Request timed out

After sending a request
frame, if the master does
not receive a response from
the slave within the
specified timeout period, it
retries according to the set
number of retries. When the
retry attempts exceed the
set number, the master
considers the slave
abnormal and reports a
request timeout error.

1. Ensure that the communication network cable is
connected reliably.

2. Ensure that the slave station number is consistent
with the configured slave station number.

3. Modify the timeout period to ensure that the
master can receive the response frame within the
timeout period.

4. Check whether the connected slave is a normal
Modbus slave.

Modbus TCP Master

6000 Configuration
disconnected

The Modbus TCP client fails
to establish a TCP
connection with the server.

1. Ensure that the communication network cable is
connected reliably.

2. Check whether the slave IP address and port ID
are consistent with the configuration.

3. If the client and server are connected through a
network bridge, router, or gateway, make sure that
the client and server gateways are set correctly.

6001
Slave returned exception
response (01) "Illegal
function code"

The function code received
in the query is not an
allowable action for the
server (or slave). This may
be because the function
code is only applicable to
new devices, and is not
implementable in the unit
selected. It could also
indicate that the server (or
slave) is in the wrong state
to process a request of this
type, for example, because
it is unconfigured and is
being asked to return
register values.

Check whether the server (or slave) supports the
function code.

Appendix

-753-

Fault Code Message Description Troubleshooting

6002
Slave returned exception
response (02) "Illegal
data address"

The data address received
in the query is not an
allowable address for the
server (or slave). More
specifically, the
combination of reference
number and transfer length
is invalid. For a controller
with 100 registers, a
request with the offset 96
and the length 4 will
succeed, but a request with
the offset 96 and the length
5 will result in exception
code 02.

Check whether the corresponding function code of
the server (or slave) supports all the addresses
accessed by this configuration.

6003
Slave returned exception
response (03) "Illegal
data"

A value contained in the
query data field is not an
allowable value for server
(or slave). This indicates a
fault in the structure of the
remainder of a complex
request, such as that the
implied length is incorrect.
It specifically does not
mean that a data item
submitted for storage in a
register has a value outside
the expectation of the
application program, since
the Modbus protocol is
unaware of the significance
of any particular value of
any particular register.

Check whether the value is within the allowed
range.

6004
Slave returned exception
response (04) "Slave
device fault"

An unrecoverable error
occurred while the server
(or slave) was attempting to
perform the requested
action.

Check whether slave is abnormal or faulty.

6128

Response station
number and requested
station number
mismatch

After the master sends a
request frame, the station
number in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6129
Response function code
and requested function
code mismatch

After the master sends a
request frame, the function
code in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

Appendix

-754-

Fault Code Message Description Troubleshooting

6130
Response data address
and requested data
address mismatch

After the master sends a
request frame, the data
address in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6131
Response data value and
requested data value
mismatch

After the master sends a
request frame, the data
value in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6240
Cache address mapping
in configuration invalid

The cache address
mapping in the
configuration is invalid and
the configuration cannot be
executed correctly.

Modify the cache address mapping in the
configuration to a valid variable or element address.

6255 Request timed out

After sending a request
frame, if the master does
not receive a response from
the slave within the
specified timeout period, it
retries according to the set
number of retries. When the
retry attempts exceed the
set number, the master
considers the slave
abnormal and reports a
request timeout error.

1. Ensure that the communication network cable is
connected reliably.

2. Ensure that the slave station number is consistent
with the configured slave station number.

3. Modify the timeout period to ensure that the
master can receive the response frame within the
timeout period.

4. Check whether the connected slave is a normal
Modbus slave.

EtherCAT

8001
Failed to read master
configuration

Failed to read the master
configuration information.

Check whether the board software and software tool
versions match.

8002
Failed to obtain slave
configuration
parameters

Failed to obtain slave
configuration parameters.

Check whether the board software and software tool
versions match.

8003 EtherCAT startup timed
out

EtherCAT startup timed out.

1. Check whether the network is properly
connected.

2. Check whether the connected slave is consistent
with the configuration.

3. Check whether the slave type matches.

8004 Failed to request the
master

Failed to request the
master.

Restart the PLC.

8200
Failed to write slave
startup parameters to
SDO

Failed to write the slave
startup parameters to the
SDO.

1. Check whether there is an object dictionary that is
not supported by the slave in the startup parameter
list.

2. Check whether the value of the object dictionary
is out of range.

8201
Slave lost during
operation

The slave is lost during
operation.

1. Check whether the network with the slave is
disconnected.

2. Check whether the slave is powered off.

Appendix

-755-

Fault Code Message Description Troubleshooting

8202
Slave state machine
switched to non-OP
mode

The slave state machine is
switched to non-OP mode.

1. Check whether the network with the slave is
disconnected.

2. Check whether the slave is powered off.

8203
Slave state machine
switching failed

Slave state machine
switching failed. -

8204 Slave type mismatch The slave type is incorrect.

1. Check whether the network cable is reversely
connected.

2. Check whether the connected device matches the
configuration.

8205 PDO address error
The PDO address is
incorrect.

1. Check whether the memory runs out.

2. Check whether the background and board
software versions match.

3. Power off and restart the PLC.

8206 PDO length error The PDO length is incorrect. Check whether the background and board software
versions match.

8301 Failed to switch to INIT
state

Failed to switch to INIT
state.

Check whether the slave station machine supports
state transition.

8302 Failed to switch to
PerOP state

Failed to switch to PerOP
state.

Check whether the slave supports the CoE protocol.

8304 Failed to switch to
SafeOP state

Failed to switch to SafeOP
state.

Check whether the PDO communication
configuration is correct.

8308 Failed to switch to OP
state

Failed to switch to OP state.

1. Check the network communication quality.

2. Check whether the EtherCAT task cycle is
appropriate.

8310 FMMU unit configuration
error

An FMMU unit configuration
error occurs.

Check whether the slave supports the FMMU unit.

8311 Email configuration error An email configuration
error occurs.

Check whether the slave supports the SM unit.

8400 ECTA configuration error The ECTA configuration is
incorrect.

Check whether the configured extension module is
consistent with the actually connected extension
module.

8401 ECTA hardware error
An ECTA hardware error
occurs.

1. Check whether the connection between the ECTA
and the extension module is loose.

2. Replace the ECTA.

8402 ECTA extension module
error

An ECTA extension module
error occurs.

1. Locate the extension module with the ERR
indicator on.

2. Read the diagnosis object dictionary of the faulty
module by using ETC_ReadParameter_CoE.

3. Determine the fault type based on description of
the diagnosis object dictionary of the extension
module in the ECTA application guide and eliminate
the fault.

Motion Control Axis

9001
Local axis emergency
stop active

The emergency stop
terminal input is active, and
the pulse output is
stopped.

Disable the emergency stop terminal input and then
call the MC_Reset instruction to reset the fault.

9003 Overspeed The pulse output frequency
exceeds 200 kHz.

Check whether the pulse frequency obtained by
multiplying the target velocity by the gear ratio
exceeds 200 kHz.

Appendix

-756-

Fault Code Message Description Troubleshooting

9020 Homing error The negative limit is not
mapped.

Map the negative limit on the configuration
interface.

9021 Homing error The positive limit is not
mapped.

Map the positive limit on the configuration interface.

9022 Homing error The home signal is not
mapped.

Map the home switch on the configuration interface.

9023 Homing error

1. The output frequency
exceeds 200 kHz when the
axis runs at the homing
velocity.

2. The output frequency
exceeds 200 kHz when the
axis runs at the homing
approach velocity.

1. Modify the unit conversion setting to ensure that
the homing velocity and homing approach velocity
do not exceed 200 kHz.

2. Change the homing velocity to ensure that the
output frequency does not exceed 200 kHz.

3. Change the homing approach velocity to ensure
that the output frequency does not exceed 200 kHz.

9024 Homing error Homing timed out.

1. Check whether the limit signal and home signal
can be connected normally.

2. Check whether the homing timeout time is too
short.

9025 Homing error The limit signal is incorrect
during homing.

Check whether the limit signal that is not applicable
to the current homing mode is triggered.

9030 Limiting active The limit signal input is
active during positioning.

Check whether the limit is reached during normal
running.

9031 Synchronization error

The target number of
transmitted pulses and the
actual number of
transmitted pulses do not
match.

Check whether the limit is reached during normal
positioning.

9101
Axis type error or non-
existent

1. The type of the axis
specified by AxisID is
incorrect.

2. The axis specified by
AxisID does not exist.

1. Check whether the instruction supports the axis
specified by AxisID.

2. Check whether the axis specified by AxisID exists.

9102 Axis configuration failed

1. The axis configuration
data is lost.

2. The axis configuration
parameters are improper.

Check whether the parameters are correct.

9103
MC_Reset called when
the axis is not faulty

The MC_Reset instruction is
called when the axis is not
faulty.

Check whether the MC_Reset instruction is called
when the axis is not switched to ErrorStop state.

9104
Axis state unknown
when MC_ReadStatus is
called

The axis is in unknown
state when the MC_
ReadStatus instruction is
called.

Check whether the current state of the axis is
uncontrollable by using the online monitoring
function.

9105
Current position setting
not allowed

The MC_SetPosition
instruction is called during
running or stop.

Set the current position when the axis is in
StandStill, Poweroff, or ErrorStop state.

9106 Stopping upon fault The axis is stopping upon a
fault.

Execute the instruction after stop upon fault is
completed, the fault is resolved, and the reset
instruction is executed.

9107 Improper parameter The parameters are
improper.

Check whether the parameters on the left of the
instruction are set properly.

Appendix

-757-

Fault Code Message Description Troubleshooting

9108
Improper PLCOpen state
machine

The PLCOpen state
machine is improper.

Check whether the current PLCOpen state machine
satisfies the execution conditions for this
instruction. If not, call the relevant instruction to
switch the axis to the required state.

9110
MC_Stop called
repeatedly during stop

The MC_Stop instruction is
called repeatedly during
stop.

Trigger only one MC_Stop instruction at a time.

9111 Instruction linked list
lost

The instruction linked list is
lost.

1. Check whether the background version and board
version match.

2. Contact the manufacturer.

9112 AxisID changed
The value of AxisID is
changed while the
instruction flow is active.

Do not change the axis number while the flow is
active for Enable instructions such as MC_Power and
MC_Jog.

9113 Reset by MC_Reset
timed out

Reset by executing the MC_
Reset instruction timed out.

1. Check whether the drive fault can be reset.

2. Check whether the axis fault type supports reset.

9114 Failed to write to 0x6060
The axis fails to write to
0x6060.

1. Check for interference in network communication.

2. Check whether the slave supports the object
dictionary 0x6060.

9115
MC_Halt called when the
axis is in Stopping state

The MC_Halt instruction is
called when the axis is in
Stopping state.

Do not call the MC_Halt instruction when the axis is
in Stopping state.

9116
Axis in online
commissioning mode

The current axis is in online
commissioning mode.

Check whether the current axis is in online
commissioning mode. PLC motion control
instructions are invalid in online commissioning
mode.

9118
Maximum acceleration
(deceleration) exceeded

The acceleration
(deceleration) of the
instruction exceeds the
maximum acceleration.

Check whether the acceleration (deceleration) of the
instruction exceeds the maximum acceleration.

9119
MC_Jog target velocity
exceeded maximum
jogging velocity

The target velocity of the
MC_Jog instruction exceeds
the maximum jogging
velocity.

Check whether the target velocity of the MC_Jog
instruction exceeds the maximum jogging velocity.

9120
Target velocity exceeded
maximum velocity

The target velocity exceeds
the maximum velocity.

Check whether the target velocity of the instruction
exceeds the maximum velocity.

9121
Jog forward and reverse
motion signals both
active

The forward and reverse
motion signals of the jog
instruction are both active.

Ensure that the forward and reverse motion signals
of the jog instruction are not active at the same
time.

9122
Control word not
mapped to EtherCAT bus
axis

The control word is not
mapped to the EtherCAT
bus axis.

Add the control word in the PDO and map it to the
axis.

9123
Target position not
mapped to EtherCAT bus
axis

The target position is not
mapped to the EtherCAT
bus axis.

Add the target position in the PDO and map it to the
axis.

9124
Target torque not
mapped to EtherCAT bus
axis

The target torque is not
mapped to the EtherCAT
bus axis.

Add the target torque in the PDO and map it to the
axis.

9125 Status word not mapped
to EtherCAT bus axis

The status word is not
mapped to the EtherCAT
bus axis.

Add the status word in the PDO and map it to the
axis.

Appendix

-758-

Fault Code Message Description Troubleshooting

9126
Current position not
mapped to EtherCAT bus
axis

The current position is not
mapped to the EtherCAT
bus axis.

Add the feedback position in the PDO and map it to
the axis.

9127 0x60fd not mapped to
EtherCAT bus axis

0x60fd is not mapped to the
EtherCAT bus axis.

Add 0x60fd in the PDO and map it to the axis.

9128
Current torque not
mapped to EtherCAT bus
axis

The current torque is not
mapped to the EtherCAT
bus axis.

Add the current torque in the PDO and map it to the
axis.

9129
Probe control word not
mapped to EtherCAT bus
axis

The probe control word is
not mapped to the
EtherCAT bus axis.

Add the probe control word in the PDO and map it
to the axis.

9130
Probe status word not
mapped to EtherCAT bus
axis

The probe status word is
not mapped to the
EtherCAT bus axis.

Add the probe status word in the PDO and map it to
the axis.

9131
Probe position not
mapped to EtherCAT bus
axis

The probe position is not
mapped to the EtherCAT
bus axis.

Add the probe position in the PDO and map it to the
axis.

9132
Probe channel occupied
by interrupt positioning
instruction

An interrupt positioning
instruction is being
executed and the probe
channel is occupied.

The probe instruction and interrupt positioning
instruction must not occupy the same probe
channel at the same time. When the two instructions
are called simultaneously in the program, the
interrupt positioning instruction takes priority.

9133 Imaginary axis mode
enabled

The imaginary axis mode is
enabled.

The current instruction does not support the
imaginary axis mode.

9134 Imaginary axis probe in
use

The imaginary axis probe is
being used.

Two imaginary axis probes are supported. Check
whether the current probe is out of range.

9135
Interrupt signal not
triggered in interrupt
positioning

The interrupt signal is not
triggered in the interrupt
positioning instruction.

During execution of the interrupt positioning
instruction, no interrupt signal is detected after
positioning is completed.

9136

Probe channel occupied
by another instruction
during interrupt
positioning

The probe channel is
occupied by another
instruction during the
interrupt positioning
process.

Ensure that the probe channel is not occupied
during the interrupt positioning process.

9137
Control mode 0x6060
not mapped to bus
driver

The control mode 0x6060 is
not mapped to the bus
driver.

Add 0x6060 in the PDO and map it to the axis.

9138
Control mode 0x6061
not mapped to bus
driver

The control mode 0x6061 is
not mapped to the bus
driver.

Add 0x6061 in the PDO and map it to the axis.

9139
MC_Home called
repeatedly during
homing

The MC_Home instruction
is called repeatedly during
homing.

Do not call the MC_Home instruction repeatedly
during homing.

9140 Target torque exceeded
maximum value

The target torque of the
instruction exceeds the
maximum value.

Check whether the target torque of the instruction
exceeds the positive and negative torque limits.

9141
Maximum velocity not
mapped to bus driver

The maximum velocity is
not mapped to the bus
driver.

Add 0x607f in the PDO and map it to the axis.

9142 Immediate stop
instruction active

The immediate stop
instruction is active.

Check whether the immediate stop instruction has
been called.

Appendix

-759-

Fault Code Message Description Troubleshooting

9143
Immediate stop
instruction called
repeatedly

The immediate stop
instruction is called
repeatedly.

Check whether the immediate stop instruction is
called repeatedly.

9144
Limit reached during
jogging

The limit is reached during
jogging. Check whether the limit is active.

9145 Target position
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target position must not
exceed this value.

1. Check whether the target position is correct. Set
the target position again.

2. Change the gear ratio to ensure that the target
position is not greater than 9999999.

9146 Target velocity exceeded
9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target velocity must not
exceed this value.

1. Check whether the target velocity is correct. Set
the target velocity again.

2. Change the gear ratio to ensure that the target
velocity is not greater than 9999999.

9147 Target acceleration
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target acceleration must
not exceed this value.

1. Check whether the target acceleration is correct.
Set the target acceleration again. 2. Change the gear
ratio to ensure that the target acceleration is not
greater than 9999999.

9148 Target deceleration
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target deceleration must
not exceed this value.

1. Check whether the target deceleration is correct.
Set the target deceleration again.

2. Change the gear ratio to ensure that the target
deceleration is not greater than 9999999.

9149
Axis in sync control
mode, abortion not
allowed

1. A single-axis motion
instruction is called when
the axis is performing
interpolation in sync
control mode. The single-
axis motion instruction
reports an error.

Do not call single-axis motion instructions during
interpolation.

9150 MC_Halt in execution,
abortion not allowed

The MC_
MoveSuperImposer
instruction is called while
the MC_Halt instruction is
still active.

Do not call the MC_MoveSuperImposer instruction
while the MC_Halt instruction is still active.

9151
MC_MoveVelocityCSV
PulseWidth out of range

The variable PulseWidth of
the MC_MoveVelocityCSV
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9152

Object dictionary 60FFh
not associated in I/O
mapping of bus servo
axis when MC_
MoveVelocityCSV is
called

The object dictionary 60FFh
is not associated in I/O
mapping of the bus servo
axis when the MC_
MoveVelocityCSV
instruction is called.

Ensure that the object dictionary 60FFh is associated
in I/O mapping of the bus servo axis when the MC_
MoveVelocityCSV instruction is called.

9153
Probe terminal not
configured

The probe terminal is not
configured.

Check whether the software tool version supports
configuration of the probe terminal ID.

Appendix

-760-

Fault Code Message Description Troubleshooting

9154 MC_SetAxisConfigPara
ParameterIndex out of
range

The value of
ParameterIndex of the MC_
SetAxisConfigPara
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9155 Instruction execution
not allowed when axis
configuration
parameters are being
modified

The configuration
parameters of the axis are
being modified, and
execution of this instruction
is not allowed before the
modification is completed.

Perform the enable operation after axis initialization
is completed.

9156 Multi-execution of MC_
SetAxisConfigPara not
allowed

MC_SetAxisConfigPara does
not support multi-
execution.

Note that this instruction does not support re-
execution or multi-execution.

9157 Gear/cam motion
instruction not
supported by axis

The gear/cam motion
instruction is not supported
by the axis due to axis
properties.

Ensure that the axis is not in single-axis mode or
that the PLC supports the motion instruction.

9200
Failed to obtain cam
table configuration file

Failed to obtain the cam
table configuration file.

1. Check whether the board software and software
tool match.

2. Re-download the cam configuration table.

9201 Failed to obtain master
axis

Failed to obtain the master
axis.

1. Check whether the master axis called in the
program exists.

2. Check whether the master axis has reported an
error.

9202 Failed to obtain slave
axis

Failed to obtain the slave
axis.

1. Check whether the slave axis called in the
program exists.

2. Check whether the slave axis has reported an
error.

9203 Failed to obtain cam
table

Failed to obtain the cam
table.

Check whether the cam table called exists.

9204

Number of cams
executed simultaneously
in the PLC program
exceeded maximum
value

The number of cams
executed simultaneously in
the PLC program exceeds
the maximum allowable
value.

Check whether the number of cams executed
simultaneously in the program exceeds the
threshold.

9205 No cam node found
The corresponding cam
node is not found.

This instruction can be called only when the slave
axis is in cam engagement state.

9206
Master axis changed
during cam engagement

The master axis is changed
during cam engagement.

Do not change the master axis during cam
engagement.

9207
MC_CamIn StartMode
out of range

StartMode of the MC_
CamIn instruction is out of
range.

Ensure that the parameter value is within the
specified range.

9208
MC_CamIn StartPosition
exceeded maximum
value

StartPosition of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9209

MC_CamIn
MasterStartDistance
exceeded maximum
value

MasterStartDistance of the
MC_CamIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

Appendix

-761-

Fault Code Message Description Troubleshooting

9210
MC_CamIn
MasterScaling exceeded
maximum value

MasterScaling of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9211
MC_CamIn SlaveScaling
exceeded maximum
value

SlaveScaling of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9212
MC_CamIn MasterOffset
exceeded maximum
value

MasterOffset of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9213
MC_CamIn SlaveOffset
exceeded maximum
value

SlaveOffset of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9214
MC_CamIn
MasterScaling not
positive

MasterScaling of the MC_
CamIn instruction is not a
positive number.

Set this parameter to a positive number.

9215
MC_CamIn SlaveScaling
not positive

SlaveScaling of the MC_
CamIn instruction is not a
positive number.

Set this parameter to a positive number.

9216
MC_CamIn/MC_GearIn
ReferenceType out of
range

ReferenceType of the MC_
CamIn/MC_GearIn
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9217
MC_CamIn Direction out
of range

Direction of the MC_CamIn
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9218
MC_CamIn BufferMode
out of range

BufferMode of the MC_
CamIn instruction is out of
range.

Ensure that the parameter value is within the
specified range.

9219
Master axis phases in
cam table node array
not in ascending order

The master axis phases in
the node array of the cam
table are not sorted in
ascending order.

Sort the master axis phases in ascending order when
customizing cam table nodes.

9220
Curve type setting of
cam table node array
out of range

The curve type setting of
the node array of the cam
table is out of range.

Check whether the curve type of the cam node array
is set incorrectly.

9221
MC_CamOut target
deceleration exceeded
maximum value

The target deceleration of
the MC_CamOut instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9222
MC_CamOut target
deceleration out of
range

The target deceleration of
the MC_CamOut instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9223
MC_Phasing target
acceleration exceeded
maximum value

The target acceleration of
the MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9224
MC_Phasing target
acceleration out of range

The target acceleration of
the MC_Phasing instruction
is out of range.

Ensure that the target acceleration is within the
specified range.

Appendix

-762-

Fault Code Message Description Troubleshooting

9225
MC_Phasing target
velocity exceeded
maximum value

The target velocity of the
MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9226
MC_Phasing target
velocity out of range

The target velocity of the
MC_Phasing instruction is
out of range.

Ensure that the target deceleration is within the
specified range.

9227
MC_CamOut curve type
setting out of range

The curve type setting of
the MC_CamOut instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9228
MC_GearOut Mode out
of range

The value of Mode of the
MC_CamOut instruction is
out of range.

Ensure that the value of Mode is within the specified
range.

9229
Cam node array empty
detected by MC_
GenerateCamTable

The MC_GenerateCamTable
instruction detects that the
cam node array is empty.

Contact Inovance for technical support.

9230

MC_GenerateCamTable
node quantity input
exceeded maximum
value

The node quantity specified
by the MC_
GenerateCamTable
instruction exceeds the
maximum allowable value.

Check whether the target node quantity specified in
the instruction is beyond the specified range.

9231
MC_GenerateCamTable
Mode out of range

The value of Mode of the
MC_GenerateCamTable
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9232
MC_GenerateCamTable
node quantity input too
small

The node quantity specified
by the MC_
GenerateCamTable
instruction is too small.

Ensure that the node quantity is 2 or more.

9233
RatioNumerator in gear
instruction set to 0

The RatioNumerator
parameter in the gear
instruction is set to 0.

Set this parameter to a non-zero integer.

9234
RatioDenominator in
gear instruction not
greater than 0

The RatioDenominator
parameter in the gear
instruction is not greater
than 0.

Set this parameter to an integer greater than 0.

9235
MC_GenerateCamTable
in execution when MC_
SaveCamTable is called

The MC_GenerateCamTable
instruction is being
executed when the MC_
SaveCamTable instruction
is called.

Do not call the MC_SaveCamTable instruction
before the cam table data update operation is
completed.

9236

MC_SaveCamTable in
execution when MC_
GenerateCamTable is
called

The MC_SaveCamTable
instruction is being
executed on the cam table
when the MC_
GenerateCamTable
instruction is called.

Do not call the MC_GenerateCamTable instruction
before the cam table is saved.

9237
Failed to open cam table
during execution of MC_
SaveCamTable

Failed to open the cam
table file during execution
of the MC_SaveCamTable
instruction.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

9238
Failed to write cam point
quantity when saving
the cam table

Failed to write the cam
point quantity when the
cam table is being saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

Appendix

-763-

Fault Code Message Description Troubleshooting

9239
Failed to write data
when saving cam table

Failed to write data when
the cam table is being
saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

9240 Phase of the first point
not 0

The phase of the first point
is not 0.

Ensure that the phase of the first point is 0.

9241
Displacement of the first
point not 0

The displacement of the
first point is not 0.

Ensure that the displacement of the first point is 0.

9242
MC_GearOut Mode out
of range

The value of Mode of the
MC_GearOut instruction is
out of range.

Ensure that the value of Mode is within the specified
range.

9243
MC_Phasing target
deceleration exceeded
maximum value

The target deceleration of
the MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9244
MC_GearIn target
deceleration exceeded
maximum value

The target deceleration of
the MC_GearIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9245
MC_CamIn Periodic out
of range

The value of Periodic of the
MC_CamIn instruction is
out of range.

Ensure that the parameter value is within the
specified range.

9246
Cam table phase
exceeded maximum
value

The phase in the cam table
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

9247

Absolute value of cam
table displacement
exceeded maximum
value

The absolute value of the
displacement in the cam
table exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

9248

Absolute value of cam
table link velocity
exceeded maximum
value

The absolute value of the
link velocity in the cam
table exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

9249 Gear node empty The gear node is empty. Contact Inovance for technical support.

9250
Master axis same as
slave axis

The master axis and slave
axis are the same.

Do not use the same axis as both the master axis
and slave axis of the cam gear.

9251

Master axis
configuration address
greater than or equal to
slave axis address

The configuration address
of the master axis is greater
than or equal to that of the
slave axis.

When ReferenceType is set to set position of the
current cycle, ensure that the configuration address
of the master axis is less than that of the slave axis.

9252

Master axis filter
coefficient fFilter[0]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[0]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

9253

Master axis filter
coefficient fFilter[1]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[1]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

9254

Master axis filter
coefficient fFilter[2]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[2]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

Appendix

-764-

Fault Code Message Description Troubleshooting

9255

Sum of master axis filter
coefficients
corresponding to the
slave axis not 1

The sum of the master axis
filter coefficients
corresponding to the slave
axis is not 1.

Ensure that the sum of the master axis filter
coefficients corresponding to the slave axis is 1.

9256
Improper StartPosition
and MasterStartDistance
in MC_CamIn

The start position and start
distance of the master axis
in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and Direction
in the instruction is set to positive, ensure that the
cam synchronization point is not less than the cam
engagement point.

9257
Improper StartPosition
and MasterStartDistance
in MC_CamIn

The start position and start
distance of the master axis
in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and Direction
in the instruction is set to negative, ensure that the
cam synchronization point is not greater than the
cam engagement point.

9258
MC_GearOut target
deceleration exceeded
maximum value

The target deceleration of
the MC_GearOut instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9259
MC_Phasing target
deceleration out of
range

The target deceleration of
the MC_Phasing instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9260
MC_GearIn target
deceleration out of
range

The target deceleration of
the MC_GearIn instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9261
MC_GearOut target
deceleration out of
range

The target deceleration of
the MC_GearOut instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9262
MC_GearIn target
acceleration exceeded
maximum value

The target acceleration of
the MC_GearIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9263
MC_GearIn target
acceleration out of range

The target acceleration of
the MC_GearIn instruction
is out of range.

Ensure that the target acceleration is within the
specified range.

9264
MC_Phasing curve type
setting out of range

The curve type setting of
the MC_Phasing instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9265
MC_GearIn curve type
setting out of range

The curve type setting of
the MC_GearIn instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9266
MC_GearOut curve type
setting out of range

The curve type setting of
the MC_GearOut instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9267
Slave axis changed
during cam operation

The slave axis is modified
during the cam operation.

Do not modify the slave axis during the cam
operation.

9268
MC_Phasing
PhasingMode out of
range

The value of PhasingMode
of the MC_Phasing
instruction is out of range.

Ensure that the value of the parameter is within the
specified range.

9269
Axis not in cam control
mode when MC_CamOut
is called

The current axis is not in
cam control mode when
the MC_CamOut instruction
is called.

Ensure that the axis works in cam control mode
when the MC_CamOut instruction is called.

Appendix

-765-

Fault Code Message Description Troubleshooting

9270
Axis not in gear control
mode when MC_GearOut
is called

The current axis is not in
gear control mode when
the MC_GearOut instruction
is called.

Ensure that the axis works in gear control mode
when the MC_GearOut instruction is called.

9271

Master axis position
change too large within
a single EtherCAT cycle
during cam/gear
operation

The position change of the
master axis is too large
within a single EtherCAT
cycle during cam/gear
operation.

Ensure that the position change of the master axis is
not greater than half a cam cycle within a single
EtherCAT cycle.

9272
MC_
GetCamTableDistance
Phase out of range

The point specified by
Phase in the MC_
GetCamTableDistance
instruction does not fall
between the start and end
points.

Ensure that the point specified by Phase is within
the specified curve.

9273
Slave axis changed
during execution of MC_
GearIn

The slave axis is changed
during execution of the
MC_GearIn instruction.

Do not change the slave axis during execution of the
MC_GearIn instruction.

9274 MC_DigitalCamSwitch
Channel out of range

The value of Channel of the
MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9275 No axis found The axis is not found. Ensure that the axis specified by Axis exists.

9276 Number of tappets
allowed to be executed
at the same time out of
range

The number of tappets
allowed to be executed at
the same time is out of
range.

Ensure that the number of tappets allowed to be
executed at the same time is within the allowable
range.

9277 MC_DigitalCamSwitch
ReferenceType out of
range

The value of ReferenceType
of the MC_
DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9278 MC_DigitalCamSwitch
Number out of range

The value of Number of the
MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9279 MC_DigitalCamSwitch
Switches array empty

The Switches array of the
MC_DigitalCamSwitch
instruction is empty.

Check whether the length of the Switches array
meets requirements.

9280 Tappet array fPosition
out of range

The value of fPosition of the
tappet array is out of range.

Ensure that the parameter value is within the
specified range.

9281 Tappet array iMode out
of range

The value of iMode of the
tappet array is out of range.

Ensure that the parameter value is within the
specified range.

9282 Tappet array iDirection
out of range

The value of iDirection of
the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

9283 Tappet array fParameter
out of range

The value of fParameter of
the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

9284 Time setting out of
range in time mode

When the tappet
comparison point is set to
time mode, the time setting
is out of range.

Ensure that the parameter value is within the
specified range.

Appendix

-766-

Fault Code Message Description Troubleshooting

9285 Selected axis not under
cam control when MC_
DigitalCamSwitch
ReferenceType is set to 3

The selected axis is not
under cam control when
ReferenceType of the MC_
DigitalCamSwitch
instruction is set to 3.

Call the MC_DigitalCamSwitch instruction after cam
control takes effect.

9286 Axis communication
interrupted during
tappet execution

Axis communication is
interrupted during tappet
execution.

Ensure that axis communication is not interrupted
during tappet execution.

9287 Duplicate comparison
position start points

The comparison position
start points are the same
during tappet execution.

Ensure that the start points are not duplicate.

9288 Comparison position
start point same as end
point

The comparison position
start and end point are the
same during tappet
execution.

Ensure that the start and end points are not
duplicate.

9289 Selected tappet terminal
in use

The selected tappet
terminal is being used by
another function.

Check whether the terminal is set as the pulse
output axis.

9290 Failed to execute MC_
DigitalCamSwitch due to
improper motion control
axis state

The MC_DigitalCamSwitch
instruction cannot be
executed because the state
of the motion control axis is
improper.

Do not execute the MC_DigitalCamSwitch
instruction in homing mode.

9291 MasterSyncPosition
setting in MC_GearInPos
out of range

The MasterSyncPosition
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

9292 SlaveSyncPosition
setting in MC_GearInPos
out of range

The SlaveSyncPosition
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

9293 MasterStarDistance in
MC_GearInPos out of
range

The MasterStarDistance
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

9294 Velocity setting in MC_
GearInPos over system
limit

The Velocity setting in the
MC_GearInPos instruction
exceeds the system limit.

Ensure that the parameter value is within the
specified range.

9295 Velocity setting in MC_
GearInPos over setting
limit

The Velocity setting in the
MC_GearInPos instruction
exceeds the setting limit.

Ensure that the parameter value is within the
specified range.

9296 Acceleration setting in
MC_GearInPos over
system limit

The Acceleration setting in
the MC_GearInPos
instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

9297 Acceleration setting in
MC_GearInPos over
setting limit

The Acceleration setting in
the MC_GearInPos
instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

9298 Deceleration setting in
MC_GearInPos over
system limit

The Deceleration setting in
the MC_GearInPos
instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

Appendix

-767-

Fault Code Message Description Troubleshooting

9299 Deceleration setting in
MC_GearInPos over
setting limit

The Deceleration setting in
the MC_GearInPos
instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

9300 AvoidReversal in MC_
GearInPos out of range

The AvoidReversal setting
in the MC_GearInPos
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9301 Zero master axis speed
when MC_GearInPos
instruction is started

The master axis speed is
zero when the MC_
GearInPos instruction is
started.

Ensure that the master axis speed is not zero when
starting this instruction.

9302 Zero master axis
displacement in
catching phase of MC_
GearInPos

The master axis did not
move during the catching
phase of the MC_GearInPos
instruction.

When MasterStarDistance is set to 0, ensure that the
input MasterSyncPosition does not overlap with the
current position of the master axis.

9303 Slave axis speed not zero
before entering chasing
phase after MC_
GearInPos is started

When the MC_GearInPos
instruction is started, the
speed of the slave axis is
not zero before entering the
catching phase.

Ensure that the slave axis remains stationary before
entering the catching phase.

9304 Failed to enter catching
phase of MC_GearInPos

Failed to enter the catching
phase when the MC_
GearInPos instruction is
executed.

Ensure that the master axis can enter the catching
phase under the current position and motion
direction conditions.

9305 Slave axis over-speed
during MC_GearInPos
operation

The velocity of the slave
axis exceeds the limit
during execution of the
MC_GearInPos instruction.

Ensure that the parameter value is within the
specified range.

9400
Maximum axis group
quantity exceeded

The number of axis groups
exceeds the maximum
allowable value.

Reduce the number of axis groups in the project so
that it does not exceed the maximum value.

9401 Faulty axis in axis group
An axis in the axis group is
faulty.

Locate the faulty axis, view the fault codes of the
axis, and rectify the fault.

9402
Number of buffered
interpolation
instructions exceeded 8

The number of buffered
interpolation instructions is
greater than 8.

Check whether the number of buffered interpolation
instructions is greater than 8.

9403 Axis reused
An axis in the axis group is
reused.

Each axis can be used in only one axis group. Check
whether there is a reused axis in the axis group and
replace it with an unused axis.

9404
Failed to create axis
group

The x-axis or y-axis does
not exist.

Check whether the x-axis and y-axis exist. An axis
group consists of at least the x-axis and y-axis.

9405 Specified z-axis non-
existent

The z-axis is specified in the
instruction but does not
exist in the configuration.

Check whether the z-axis specified in the instruction
exists.

9406 Specified auxiliary axis
non-existent

The auxiliary axis is
specified in the instruction
but does not exist in the
configuration.

Check whether the auxiliary axis specified in the
instruction exists.

9407 Axis group ID duplicated The specified axis group ID
has been used.

Change the axis group ID because the axis group ID
must be unique.

9408 Axis configuration failed Failed to configure the axis.
Check whether any axis in the axis group fails to be
configured. If yes, check whether the board software
and the background match.

Appendix

-768-

Fault Code Message Description Troubleshooting

9409 Axis ID less than 0 The axis ID is less than 0.
Check whether the ID of an axis in the axis group is
less than 0.

9410 Axis group not released

The axis group is not
released because the same
MC_SetAxesGroup
instruction is triggered
repeatedly in a short time
period.

Do not re-trigger the MC_SetAxesGroup instruction
while its Busy signal output is still active.

9411 MC_GroupStop aborted The MC_GroupStop
instruction is aborted.

Check whether an instruction with higher priority is
called while the MC_GroupStop instruction is still
active.

9412
Circular interpolation
instruction CircAxes out
of range

The value of CircAxes of the
circular interpolation
instruction is out of range.

Check whether the value of CircAxes of the circular
interpolation instruction is out of range.

9413
Circular interpolation
instruction CircMode out
of range

The value of CircMode of
the circular interpolation
instruction is out of range.

Check whether the value of CircMode of the circular
interpolation instruction is out of range.

9414
Circular interpolation
instruction PathChoice
out of range

The value of PathChoice of
the circular interpolation
instruction is out of range.

Check whether the value of PathChoice of the
circular interpolation instruction is out of range.

9415
Stop instruction
StopMode out of range

The value of StopMode of
the stop instruction is out
of range.

Check whether the value of StopMode of the stop
instruction is out of range.

9416 X-axis set to ring mode The x-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9417 Y-axis set to ring mode The y-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9418 Z-axis set to ring mode The z-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9419 Auxiliary axis set to ring
mode

The auxiliary axis is set to
ring mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9420
Circular interpolation
instruction triggered
repeatedly

The circular interpolation
instruction is triggered
repeatedly.

Do not re-trigger the same circular interpolation
instruction while its Busy signal output is still active.

9421
Linear interpolation
instruction triggered
repeatedly

The linear interpolation
instruction is triggered
repeatedly.

Do not re-trigger the same linear interpolation
instruction while its Busy signal output is still active.

9422
Failed to obtain the axis
group

Failed to obtain the axis
group.

Check whether the axis group specified by GroupID
has been created by calling MC_SetAxesGroup.

9423 Axis configuration failed Failed to configure the axis.

Check whether an instruction is triggered when axis
configuration is not completed. Check whether the
communication state of all axes in the axis group is
Axis ready.

9424 Axis disabled An axis is disabled.
Do not call the interpolation instruction when any
axis is in Disabled state.

9425
Axis in execution of
single-axis motion
instruction

The interpolation
instruction is triggered
when an axis is executing a
single-axis motion
instruction.

Do not call the interpolation instruction when any
axis is executing single-axis motion instructions and
not in StandStill state.

Appendix

-769-

Fault Code Message Description Troubleshooting

9426 Axis in Stopping state An axis is in Stopping state.
Do not call the interpolation instruction when any
axis is in Stopping state after executing the MC_Stop
instruction.

9427
Axis group in Stopping
state

The axis group is in
Stopping state.

Do not call the interpolation instruction while the
MC_GroupStop instruction is still active.

9428 Axis in Homing state An axis is in Homing state.
Do not call the interpolation instruction when any
axis is in Homing state after executing the MC_Home
instruction.

9429
Axis in execution of the
position setting
instruction

An axis is executing the
position setting instruction.

Do not call the interpolation instruction when any
axis is setting the current position by executing the
MC_SetPosition instruction.

9430
Axis in commissioning
state

An axis is in commissioning
state.

Do not call the interpolation instruction when any
axis is in commissioning state.

9431

Axis in commissioning
state during
interpolation, aborted
instruction execution of
other axes

An axis enters the
commissioning state during
interpolation, which aborts
instruction execution of
other axes.

Check whether any axis enters the commissioning
state during interpolation and aborts instruction
execution of other axes.

9432
Failed to request
memory

Failed to request the
memory.

Check whether the memory runs out. Contact the
manufacturer.

9433
Target velocity less than
or equal to 0

The target velocity is 0 or
less than 0.

Ensure that the target velocity of the instruction is
greater than 0.

9434
Target acceleration less
than or equal to 0

The target acceleration is 0
or less than 0.

Ensure that the target acceleration of the instruction
is greater than 0.

9435
Target deceleration less
than or equal to 0

The target deceleration is 0
or less than 0.

Ensure that the target deceleration of the
instruction is greater than 0.

9436
Curve type setting out of
range

The curve type setting is
out of range.

Check whether the curve type is set to a value other
than the T-shaped curve for the interpolation
instruction.

9437 Improper AbsRelMode
AbsRelMode is set
incorrectly.

Check whether the parameter is set to a value other
than the absolute positioning and relative
positioning modes.

9438 Improper BufferMode
BufferMode is set
incorrectly.

Check whether the value of BufferMode is proper.

9439 Improper InsertMode
InsertMode is set
incorrectly.

Check whether the value of InsertMode is proper.

9440 Axis stopped due to a
fault

An axis stops due to a fault. Locate the faulty axis and rectify the fault based on
the fault code.

9441
MC_GroupStop called
repeatedly

The MC_GroupStop
instruction is called
repeatedly.

Do not re-trigger an MC_GroupStop instruction or
call other MC_GroupStop instructions while an MC_
GroupStop instruction is still active.

9442
Data buffer area not
empty

The data buffer area is not
empty. It is an internal
fault.

Contact the manufacturer.

9443 Not a circle
No circle can be drawn due
to improper parameter
settings.

Update the parameter settings.

9444 Not a circle

The start, end, and border
points in the circular
interpolation instruction
are the same point, and no
circle can be drawn.

Check the input parameters of the circular
interpolation instruction and ensure that the start,
end, and border points can form a circle.

Appendix

-770-

Fault Code Message Description Troubleshooting

9445 Instruction buffer area
full

The instruction buffer area
is full.

Contact Inovance for technical support.

9446
X-axis exceeded
maximum velocity

The velocity of the x-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the x-axis is not
greater than the maximum allowable velocity.

9447
Y-axis exceeded
maximum velocity

The velocity of the y-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the y-axis is not
greater than the maximum allowable velocity.

9448
Z-axis exceeded
maximum velocity

The velocity of the z-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the z-axis is not
greater than the maximum allowable velocity.

9449
Auxiliary axis exceeded
maximum velocity

The velocity of the auxiliary
axis exceeds the maximum
allowable velocity.

Ensure that the target velocity of the auxiliary axis is
not greater than the maximum allowable velocity.

9450
Failed to obtain the
number of axis groups

Failed to obtain the number
of axis groups. Update the software tool to the latest version.

9451 Internal fault An internal fault occurs. Contact the manufacturer.

9452
Instruction called when
the axis is in StandStill
state

The instruction is called
when the axis is in
StandStill state.

Do not call this instruction when the axis is
StandStill state.

9453 Maximum velocity
exceeded

The maximum velocity
specified on the axis group
configuration interface is
exceeded.

Check whether the target velocity of the instruction
is greater than the maximum velocity specified on
the axis group configuration interface.

9454
Maximum acceleration
(deceleration) exceeded

The maximum allowable
acceleration (deceleration)
is exceeded.

Check whether the target acceleration
(deceleration) of the instruction is greater than the
maximum acceleration (deceleration) specified on
the axis group configuration interface.

9455
Axis group fault due to
linear interpolation
instruction error

The axis group becomes
faulty due to an error
reported by the linear
interpolation instruction.

Identify the first linear interpolation instruction that
reports the error and troubleshoot the fault based
on the fault code.

9456
Axis group fault due to
circular interpolation
instruction error

The axis group becomes
faulty due to an error
reported by the circular
interpolation instruction.

Identify the first circular interpolation instruction
that reports the error and troubleshoot the fault
based on the fault code.

9457
Axis group fault due to
axis group stop
instruction error

The axis group becomes
faulty due to an error
reported by the axis group
stop instruction.

Identify the first axis group stop instruction that
reports the error and troubleshoot the fault based
on the fault code.

9458
Axis group fault due to
axis group pause
instruction error

The axis group becomes
faulty due to an error
reported by the axis group
pause instruction.

Identify the first axis group pause instruction that
reports the error and troubleshoot the fault based
on the fault code.

9459
X-axis performing the
interpolation algorithm
of another axis group

The x-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9460
Y-axis performing the
interpolation algorithm
of another axis group

The y-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

Appendix

-771-

Fault Code Message Description Troubleshooting

9461
Z-axis performing the
interpolation algorithm
of another axis group

The z-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9462

Auxiliary axis performing
the interpolation
algorithm of another
axis group

The auxiliary axis in the axis
group is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9463

Axes in synchronous
mode but not under axis
group control when the
MC_GroupStop
instruction is called

When the MC_GroupStop
instruction is called, the
axes are in synchronous
mode but not under axis
group control, such as
interpolation control or
cam control.

Note that the MC_GroupStop instruction can be
called only when the axes in the axis group are in
synchronous mode under axis group control. Do not
call the MC_GroupStop instruction when the axes
enter the synchronous mode due to other
instructions.

9464

Axes in synchronous
mode but not under axis
group control when the
linear or circular
interpolation instruction
is called

When the linear or circular
interpolation instruction is
called, the axes are in
synchronous mode but not
under axis group control,
such as interpolation
control or cam control.

Note that the linear or circular interpolation
instruction can be called only when the axes in the
axis group are in synchronous mode under axis
group control. Do not call the linear or circular
interpolation instruction when the axes enter the
synchronous mode due to other non-axis-group
instructions.

9465

Axes in synchronous
mode but not under axis
group control when the
MC_GroupHalt
instruction is called

When the MC_GroupHalt
instruction is called, the
axes are in synchronous
mode but not under axis
group control, such as
interpolation control or
cam control.

Note that the MC_GroupHalt instruction can be
called only when the axes in the axis group are in
synchronous mode under axis group control. Do not
call the MC_GroupHalt instruction when the axes
enter the synchronous mode due to other
instructions.

9466 Improper NumOfTurns
in MC_MoveEllipse

NumOfTurns in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9467 Improper AddLength in
MC_MoveEllipse

AddLength in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9468 Shutdown due to MC_
MoveEllipse failure

The MC_MoveEllipse
instruction fails and causes
shutdown.

Find the MC_MoveEllipse instruction that caused the
failure and check the fault code of the instruction to
further confirm the fault.

9469 Improper CircAxes in
MC_MoveEllipse

CircAxes in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9470 Improper CircMode in
MC_MoveEllipse

CircMode in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9471 Improper PathChoice in
MC_MoveEllipse

PathChoice in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9472 Improper Velocity in MC_
MoveEllipse

Velocity in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9473 Improper Acceleration in
MC_MoveEllipse

Acceleration in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

Appendix

-772-

Fault Code Message Description Troubleshooting

9474 Improper Deceleration in
MC_MoveEllipse

Deceleration in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9475 Improper BufferMode in
MC_MoveEllipse

BufferMode in the MC_
MoveEllipse instruction is
set incorrectly.

Ensure that the parameter value is within the
allowable range.

9476 Cannot form ellipse due
to unreasonable center
point, long axis length,
and short axis length

The set center point, long
axis length, and short axis
length are improper and
cannot form an ellipse.

Ensure that the parameter value is within the
allowable range.

9477 Interpolation not
supported by x-axis

The property of the x-axis in
the axis group instruction
does not support the
interpolation motion.

Ensure that the x-axis is not in single-axis mode.

9478 Interpolation not
supported by y-axis

The property of the y-axis in
the axis group instruction
does not support the
interpolation motion.

Ensure that the y-axis is not in single-axis mode.

9479 Interpolation not
supported by z-axis

The property of the z-axis in
the axis group instruction
does not support the
interpolation motion.

Ensure that the z-axis is not in single-axis mode.

9480 Interpolation not
supported by auxiliary
axis

The property of the
auxiliary axis in the axis
group instruction does not
support the interpolation
motion.

Ensure that the auxiliary axis is not in single-axis
mode.

9501 EtherCAT bus drive error

A drive error occurs. The
fault code in the object
dictionary 0x603F of the
drive is 0x%x{16:16}.

1. Determine the drive fault type according to the
bus drive guide and rectify the fault.

9502 Drive disabled The drive is disabled.

1. Check whether the drive status word 0x6041
switches to the disabled state during motion.

2. Check whether communication is disconnected
during motion.

9503 Limit reached The limit is reached.
1. Check whether the software limit is configured
and reached.

2. Check whether the hardware limit is reached.

9505 Failed to modify the
control mode

Failed to modify the control
mode.

1. Check for interference in network communication.

2. Check whether the drive supports the object
dictionary 0x6060.

9508 Homing failed Homing failed.
1. Identify the cause of the drive homing failure
based on the fault code.

2. Check whether homing timed out.

9509
Axis internal calculation
precision error

An axis internal calculation
precision error occurs.

Check whether the floating-point data of the
instruction falls beyond the single-precision floating-
point number range.

9510
Following error out of
range

The following error is out of
range.

1. Check whether the acceleration is too large.

2. Check whether the set following error is too small.

Appendix

-773-

Fault Code Message Description Troubleshooting

9512
Servo drive
disconnected during
operation

The servo drive is
disconnected during
operation.

1. Check whether the drive works properly.

2. Check whether the network cable is properly
connected.

3. Check for strong interference in communication.

9513 Homing failed due to a
drive fault

Homing failed due to a
drive fault.

Check the fault code of the drive to eliminate the
fault.

9514
Homing failed because
the homing offset
exceeded 32 bits

Homing failed because the
homing offset exceeded 32
bits.

Check whether the homing offset multiplied by the
gear ratio exceeds 32 bits; if yes, change the gear
ratio.

9515 Homing failed due to
loss of the slave

Homing failed because the
EtherCAT drive is lost.

Contact Inovance for technical support.

9516

Homing failed because
the SDO failed to write
to object dictionary
0x607C

Homing failed because the
SDO failed to write to
object dictionary 0x607C.

1. Check whether the drive supports 0x607C.

2. Check the network communication quality.

9517

Homing failed because
the SDO failed to write 6
to object dictionary
0x6060

Homing failed because the
SDO failed to write 6 to
object dictionary 0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication quality.

9518
Homing failed because
the SDO failed to read
object dictionary 0x6061

Homing failed because the
SDO failed to read object
dictionary 0x6061.

1. Set 0x6061 in the PDO.

2. Check the network communication quality.

9519

Homing failed because
the SDO failed to write 8
to object dictionary
0x6060

Homing failed because the
SDO failed to write 8 into
object dictionary 0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication quality.

9551 Failed to switch the
control mode

Failed to switch the control
mode.

Check for interference in network communication.

9552 Target velocity equal to
0

The target velocity is 0. Check whether the target velocity of position
instructions is appropriate.

9601
Axis stopped due to MC_
MoveAbsolute
parameter exception

The axis stops due to
parameter exception of the
MC_MoveAbsolute
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9602
Axis stopped due to MC_
MoveRelative parameter
exception

The axis stops due to
parameter exception of the
MC_MoveRelative
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9603
Axis stopped due to MC_
MoveVelocity exception

The axis stops due to
exception of the MC_
MoveVelocity instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9604
Axis stopped due to MC_
Jog exception

The axis stops due to
exception of the MC_Jog
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9605
Axis stopped due to MC_
MoveVelocityCSV
exception

The axis stops due to
exception of the MC_
MoveVelocityCSV
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9606
Axis stopped due to MC_
MoveBuffer exception

The axis stops due to
exception of the MC_
MoveBuffer instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

Appendix

-774-

Fault Code Message Description Troubleshooting

9607
Axis stopped due to MC_
MoveFeed parameter
exception

The axis stops due to
parameter exception of the
MC_MoveFeed instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9608
Axis stopped due to MC_
Stop parameter
exception

The axis stops due to
parameter exception of the
MC_Stop instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9609
Axis stopped due to MC_
MoveTorque parameter
exception

The axis stops due to
parameter exception of the
MC_MoveTorque
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9610
Axis stopped due to MC_
Halt parameter
exception

The axis stops due to
parameter exception of the
MC_Halt instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9611
Axis stopped due to MC_
MoveSuperImposed
parameter exception

The axis stops due to
parameter exception of the
MC_MoveSuperImposed
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9612
Axis stopped due to MC_
SyncMoveVelocity error

The axis stops due to an
error reported by the MC_
SyncMoveVelocity
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9613
Axis stopped due to MC_
SyncTorqueControl error

The axis stops due to an
error reported by the MC_
SyncTorqueControl
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9614 Axis stopped due to MC_
FollowVelocity error

The axis stops due to an
error reported by the MC_
FollowVelocity instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9615 Axis stopped due to MC_
SetOverRide parameter
exception

The axis stops due to
parameter exception of the
MC_SetOverRide
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9701
Failed to request
memory for the encoder
axis instruction

The encoder axis
instruction failed to request
the memory.

1. Check whether the PLC memory runs out.

2. Contact the manufacturer.

9702

1. Encoder axis type
error

2. Requested encoder
axis non-existent

3. Instruction not
supported in offline
commissioning

1. The encoder axis type is
incorrect.

2. The requested encoder
axis does not exist.

3. The instruction is not
supported in offline
commissioning.

This instruction does not support the set axis type.
Check whether the axis type setting is incorrect.

9703 Axis configuration failed Failed to configure the axis. Check whether the board software and the software
tool match.

9704

Counter operation
command not
configured in I/O
mapping of encoder axis

Counter operation
command is not configured
in I/O mapping of the
encoder axis.

Configure Counter operation command in I/O
mapping of the encoder axis.

9705
Counter status not
configured in I/O
mapping of encoder axis

Counter status is not
configured in I/O mapping
of the encoder axis.

Configure Counter status in I/O mapping of the
encoder axis.

Appendix

-775-

Fault Code Message Description Troubleshooting

9706

Encoder present
position not configured
in I/O mapping of
encoder axis

Encoder present position is
not configured in I/O
mapping of the encoder
axis.

Configure Encoder present position in I/O mapping
of the encoder axis.

9707
Pulse rate not
configured in I/O
mapping of encoder axis

Pulse rate is not configured
in I/O mapping of the
encoder axis.

Configure Pulse rate in I/O mapping of the encoder
axis.

9708
Positive limit not greater
than negative limit

The positive limit of the
encoder axis is not greater
than the negative limit.

Ensure that the positive limit of the encoder axis is
greater than the negative limit.

9709

Positive limit greater
than 2147483647 after
being converted into the
pulse unit

The positive limit of the
encoder axis is greater than
2147483647 after being
converted into the pulse
unit.

Ensure that the positive limit of the encoder axis is
less than or equal to 2147483647 after being
converted into the pulse unit.

9710

Negative limit less than –
2147483648 after being
converted into the pulse
unit

The negative limit of the
encoder axis is less than –
2147483648 after being
converted into the pulse
unit.

Ensure that the negative limit of the encoder axis is
greater than or equal to –2147483648 after being
converted into the pulse unit.

9711

Revolution cycle in ring
mode greater than
2147483647 after being
converted into the pulse
unit

The revolution cycle of the
encoder axis in ring mode is
greater than 2147483647
after being converted into
the pulse unit.

Ensure that the revolution cycle of the encoder axis
in ring mode is less than or equal to 2147483647
after being converted into the pulse unit.

9712
Encoder axis changed
while ENC_Counter is
active

The encoder axis is
changed while the ENC_
Counter instruction is still
active.

Do not change the encoder axis while the ENC_
Counter instruction is still active.

9713
GR10-2HCE module
faulty

The GR10-2HCE module is
faulty.

Check the fault code object dictionary of the GR10-
2HCE module and troubleshoot the fault according
to the fault code.

9714 Failed to reset the
encoder axis fault

Failed to reset the encoder
axis fault.

1. The current fault of the encoder axis does not
support reset.

2. The encoder shaft enters the faulty state
immediately after the fault is reset. Check the axis
fault codes and slave fault codes to further
determine the fault type.

9715
ENC_Reset called when
the encoder axis is not
faulty

The ENC_Reset instruction
is called when the encoder
axis is not faulty.

Do not call the ENC_Reset instruction when the
encoder axis is not faulty.

9716
ENC_Preset TriggerMode
out of range

The value of TriggerMode of
the ENC_Preset instruction
is out of range.

Ensure that the parameter value is within the
allowable range.

9717
ENC_Preset Position
greater than 9999999

The value of Position of the
ENC_Preset instruction is
greater than 9999999.

Set Position of the ENC_Preset instruction to a value
less than or equal to 9999999.

9718

Physical output
command not
configured in I/O
mapping of encoder axis

Physical output command
is not configured in I/O
mapping of the encoder
axis.

Configure Physical output command in I/O mapping
of the encoder axis.

Appendix

-776-

Fault Code Message Description Troubleshooting

9719

Preset position or
comparison output
position greater than
positive limit

The preset position or
comparison output position
of the encoder axis
instruction is greater than
the positive limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than or equal to the positive limit.

9720

Preset position or
comparison output
position less than
negative limit

The preset position or
comparison output position
of the encoder axis
instruction is less than the
negative limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
greater than or equal to the negative limit.

9721

Preset position or
comparison output
position greater than
2147483647 or less than
–2147483648 after being
converted into the pulse
unit

The preset position or
comparison output position
of the encoder axis
instruction is greater than
2147483647 or less than –
2147483648 after being
converted into the pulse
unit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
between –2147483648 and +2147483647 after being
converted into the pulse unit.

9722

Preset position or
comparison output
position greater than or
equal to revolution cycle
in ring mode

The preset position or
comparison output position
of the encoder axis
instruction is greater than
or equal to the revolution
cycle in ring mode.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than the revolution cycle in ring mode.

9723
ENC_TouchProbe
ProbeID out of range

The value of ProbeID of the
ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9724
ENC_TouchProbe
TriggerEdge out of range

The value of TriggerEdge of
the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9725
ENC_TouchProbe
TerminalSource out of
range

The value of
TerminalSource of the
ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9726
ENC_TouchProbe
TriggerMode out of
range

The value of TriggerMode of
the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9727

Probe status word not
associated in I/O
mapping of the encoder
axis

The probe status word is
not associated in I/O
mapping of the encoder
axis.

Ensure that the probe status word is associated in I/
O mapping of the encoder axis.

9728

Probe feedback position
not associated in I/O
mapping of the encoder
axis

The probe feedback
position is not associated in
I/O mapping of the encoder
axis.

Ensure that the probe feedback position is
associated in I/O mapping of the encoder axis.

9729

Control word not
associated in I/O
mapping of the encoder
axis

The control word is not
associated in I/O mapping
of the encoder axis.

Ensure that the control word is associated in I/O
mapping of the encoder axis.

Appendix

-777-

Fault Code Message Description Troubleshooting

9730
Window start position
not less than end
position

The probe window function
of the encoder axis is
enabled, but the start
position of the window is
not less than the end
position.

Ensure that the start position of the probe window is
less than the end position.

9731
Xn0 not assigned with
probe function

The Xn0 terminal is not
assigned with the probe
function.

Assign the probe function to the Xn0 terminal.

9732
Xn1 not assigned with
probe function

The Xn1 terminal is not
assigned with the probe
function.

Assign the probe function to the Xn1 terminal.

9742
Compare mode not
configured in I/O
mapping of encoder axis

Compare mode is not
configured in I/O mapping
of the encoder axis.

Configure Compare mode in I/O mapping of the
encoder axis.

9743
Compare pulse/time not
configured in I/O
mapping of encoder axis

Compare pulse/time is not
configured in I/O mapping
of the encoder axis.

Configure Compare pulse/time in I/O mapping of the
encoder axis.

9744
Compare size/step not
configured in I/O
mapping of encoder axis

Compare size/step is not
configured in I/O mapping
of the encoder axis.

Configure Compare size/step in I/O mapping of the
encoder axis.

9745
Compare point value 1
not configured in I/O
mapping of encoder axis

Compare point value 1 is
not configured in I/O
mapping of the encoder
axis.

Configure Compare point value 1 in I/O mapping of
the encoder axis.

9746
Compare point value 2
not configured in I/O
mapping of encoder axis

Compare point value 2 is
not configured in I/O
mapping of the encoder
axis.

Configure Compare point value 2 in I/O mapping of
the encoder axis.

9747
Physical output status
not configured in I/O
mapping of encoder axis

Physical output status is
not configured in I/O
mapping of the encoder
axis.

Configure Physical output status in I/O mapping of
the encoder axis.

9748
Compare error code not
configured in I/O
mapping of encoder axis

Compare error code is not
configured in I/O mapping
of the encoder axis.

Configure Compare error code in I/O mapping of the
encoder axis.

9749

Current compare
number/position not
configured in I/O
mapping of encoder axis

Current compare number/
position is not configured in
I/O mapping of the encoder
axis.

Configure Current compare number/position in I/O
mapping of the encoder axis.

9750

Failed to obtain the
array start address of the
single-axis array
comparison output
instruction

Failed to obtain the start
address of the array of the
single-axis array
comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9751

Failed to obtain the axis
group start address of
the axis group array
comparison output
instruction

Failed to obtain the start
address of the axis group of
the axis group array
comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9752 Bus encoder axis not
associated with slave

The bus encoder axis is not
associated with any slave. Associate the bus encoder axis with a slave.

Appendix

-778-

Fault Code Message Description Troubleshooting

9753

X-axis and y-axis of the
axis group array
comparison instruction
not associated with the
same slave

The x-axis and y-axis of the
axis group array
comparison instruction are
not associated with the
same slave.

Associate the x-axis and y-axis of the axis group
comparison output instruction with the same slave.

9754

X-axis of the axis group
array comparison
instruction not
associated with the first
channel of the slave

The x-axis of the axis group
array comparison
instruction is not
associated with the first
channel of the slave.

Associate the x-axis of the axis group comparison
output instruction with the first channel of the slave.

9755

Y-axis of the axis group
array comparison
instruction not
associated with the
second channel of the
slave

The y-axis of the axis group
array comparison
instruction is not
associated with the second
channel of the slave.

Associate the y-axis of the axis group comparison
output instruction with the second channel of the
slave.

9756

Yn0 not assigned with
the one-dimensional
comparison output
function

The Yn0 terminal is not
assigned with the one-
dimensional comparison
output function.

Assign the one-dimensional comparison output
function to the Yn0 output terminal corresponding
to the channel.

9757

Absolute value of start
value of encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
start value of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9758

Absolute value of end
value of encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
end value of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9759

Absolute value of the
step of the encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
step of the encoder axis
step comparison output
instruction is greater than
9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9760

Absolute value of
Parameter of the
encoder axis step
comparison output
instruction greater than
9999999

The absolute value of
Parameter of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9761
Mode of the encoder axis
comparison output
instruction out of range

The value of Mode of the
encoder axis comparison
output instruction is out of
range.

Ensure that the parameter value is within the
allowable range.

9762

Time for time control of
the encoder axis
comparison output out
of range

The time for time control of
the encoder axis
comparison output is out of
range.

Ensure that the parameter value is within the
allowable range.

9763
Step of the encoder axis
step comparison output
instruction equal to 0

The step of the encoder
axis step comparison
output instruction is 0.

Set the step of the step comparison output
instruction to a value other than 0.

Appendix

-779-

Fault Code Message Description Troubleshooting

9764

Start position of the step
comparison output
instruction equal to end
position

The start position of the
step comparison output
instruction of the encoder
axis is equal to the end
position.

Ensure that the start position of the step
comparison output instruction is not equal to the
end position.

9765

Start position of the step
comparison output
instruction less than end
position, but step
negative

The start position of the
step comparison output
instruction of the encoder
axis is less than the end
position, but the step is
negative.

Set the step to a positive value.

9766

Start position of the step
comparison output
instruction greater than
end position, but step
positive

The start position of the
step comparison output
instruction of the encoder
axis is greater than the end
position, but the step is
positive.

Set the step to a negative value.

9767
Size of the encoder axis
array comparison output
instruction out of range

The value of Size of the
encoder axis array
comparison output
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9768

Absolute value of the
target position of the
encoder axis array
comparison output
instruction greater than
9999999

The absolute value of the
target position of the
encoder axis array
comparison output
instruction is greater than
9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9769

Axis performing one-
dimensional comparison
output, must not be
aborted by a two-
dimensional comparison
output instruction

The axis is performing one-
dimensional comparison
output and must not be
aborted by a two-
dimensional comparison
output instruction.

Wait for the one-dimensional comparison output to
complete or stop the one-dimensional comparison
output before executing the two-dimensional
comparison output instruction.

9770
EtherCAT slave
disconnected during
operation

The EtherCAT slave is
disconnected during
operation.

Check whether the EtherCAT slave is disconnected
during operation.

9771
Bus encoder axis in
offline commissioning
mode

The bus encoder axis is in
offline commissioning
mode.

The bus encoder axis does not support the offline
commissioning mode.

9772
DI terminal not assigned
with the preset position
function

The DI terminal is not
assigned with the preset
position function.

Assign the preset position function to the DI
terminal before calling the preset position
instruction.

9773

Parameter in
comparison instruction
out of range when the
pulse output mode is
selected

The value of Parameter in
the comparison instruction
is out of range when the
pulse output mode is
selected.

Do not set Parameter to 0 or a negative value when
the pulse output mode is selected in the comparison
instruction.

9774

2HCE module failed
when the comparison
output instruction is
called

The 2HCE module fails
when the comparison
output instruction is called.

1. Ensure that the input parameters are within the
allowable range.

2. Check whether I/O mapping of the encoder axis is
manually modified and whether it meets the I/O
mapping configuration requirements of the
comparison output instruction.

Appendix

-780-

Fault Code Message Description Troubleshooting

9775
Set position in ring
mode less than 0

The set position in ring
mode is less than 0.

Set the position in ring mode to a value greater than
or equal to 0.

9776

Y00 not assigned with
the two-dimensional
comparison output
function

The Y00 terminal is not
assigned with the two-
dimensional comparison
output function.

Assign the two-dimensional comparison output
function to the Y00 output terminal corresponding
to the channel.

9777

Axis performing two-
dimensional comparison
output, cannot be
aborted by a one-
dimensional comparison
output instruction

The axis is performing two-
dimensional comparison
output and cannot be
aborted by a one-
dimensional comparison
output instruction.

Wait for the two-dimensional comparison output to
complete or stop the two-dimensional comparison
output before calling the one-dimensional
comparison output instruction.

9800
Failed to read the
number of motion
control axes

Failed to read the number
of motion control axes.

Change the background version.

9801
Motion control axis
quantity out of range

The number of motion
control axes is out of range.

Reduce the number of axes since the H5U supports
at most 32 axes.

9802
Axis failed to request
internal space

The axis failed to request
internal storage space.

1. Check whether the memory runs out.

2. Contact the manufacturer.

9803
Failed to obtain axis
parameters

Failed to obtain axis
parameters.

Change the background version.

9804 Failed to obtain the
slave

Failed to obtain the slave. Change the background version.

9805 Failed to obtain the
system variable

Failed to obtain the system
variable.

1. Check whether the memory runs out. 2. Return
the machine to the manufacturer for analysis.

9806 Improper gear ratio
settings

Parameters related to the
gear ratio are set
improperly.

1. Ensure that the numerator and denominator of
the gear ratio are greater than 0.

2. Ensure that the number of pulses per revolution
of the motor/encoder is greater than 0.

3. Ensure that the displacement per revolution of
the rotary table is between 0.000001 and 9999999.

9807 Improper software
limiting parameters

The software limiting
parameters are set
improperly.

1. Ensure that the positive limit is not greater than
9999999.

2. Ensure that the negative limit is not greater than
9999999.

3. Ensure that the negative limit is not greater than
the positive limit.

9808 Improper linear/rotary
mode

The linear/rotary mode
parameter is set
improperly.

Note that only the linear mode and rotary mode are
supported.

9809 Improper revolution
cycle

The revolution cycle is set
improperly.

Ensure that the revolution cycle is between 0.01 and
9999999.

9810 Improper encoder mode The encoder mode is set
improperly.

Ensure that the encoder mode is set properly. Note
that only the incremental mode and absolute value
mode are supported.

9811 Improper homing
parameter setting

The homing parameter is
set improperly.

1. Do not modify the homing mode of the bus servo
axis. If you want to modify the homing mode of the
bus servo axis, write to the SDO.

2. Check whether the homing mode is set properly.
Note that only the values 17 to 30 and 35 are
supported.

Appendix

-781-

Fault Code Message Description Troubleshooting

9812 Limit, home, or probe
terminal Modbus
address out of range

The Modbus address
setting of the limit, home,
or probe terminal is out of
range.

1. Check whether the set address is out of the range
of Modbus addresses.

2. Select an address among X0 to X7 for the home
signal. 3. Select an address among X0 to X7 for the
probe signal.

9813 Improper pulse output
mode setting of the local
pulse axis

The pulse output mode of
the local pulse axis is set
improperly.

Check whether the pulse output mode of the local
pulse axis is set improperly.

9814 Improper limiting
deceleration

The limiting deceleration is
set improperly.

Ensure that the limiting deceleration is between
0.0001 and 9999999.

9815 Improper deceleration
upon axis fault

The deceleration upon axis
fault is set improperly.

Ensure that the deceleration upon axis fault is
between 0.0001 and 999999.

9816 Improper maximum
velocity

The maximum velocity is
set improperly.

Ensure that the maximum velocity is between 0.0001
and 999999.

9817 Improper maximum
positive torque

The maximum positive
torque is set improperly.

Ensure that the maximum positive torque is
between 1 and 65534.

9818 Improper maximum
negative torque

The maximum negative
torque is set improperly.

Ensure that the maximum negative torque is
between 1 and 65534.

9819 Improper maximum
jogging velocity

The maximum jogging
velocity is set improperly.

Ensure that the maximum jogging velocity is
between 0.0001 and the maximum velocity.

9820 Improper maximum
acceleration

The maximum acceleration
is set improperly.

Ensure that the maximum acceleration is between
0.0001 and 9999999.

9821 Improper following error
threshold

The following error
threshold is set improperly.

Ensure that the following error threshold is between
0.0001 and 9999999.

9822 Improper velocity reach
threshold

The velocity reach
threshold is set improperly.

Ensure that the velocity reach threshold is between
0.0001 and 9999999.

9823 Improper homing
velocity

The homing velocity is set
improperly.

1. Ensure that the homing velocity is between 0.0001
and 9999999. 2. Ensure that the homing velocity is
not greater than the maximum velocity. 3. Ensure
that the value obtained by multiplying the homing
velocity by the gear ratio is between 1 and
2148483647.

9824 Improper homing
approach velocity

The homing approach
velocity is set improperly.

1. Ensure that the homing approach velocity is
between 0.0001 and 9999999. 2. Ensure that the
homing approach velocity is not greater than the
maximum velocity. 3. Ensure that the value obtained
by multiplying the homing approach velocity by the
gear ratio is between 1 and 2148483647. 4. Ensure
that the homing approach velocity is less than the
homing velocity.

9825 Homing position mode
setting out of range

The homing position mode
setting is out of range.

Ensure that the parameter value is within the
allowable range.

9826 Improper homing
acceleration

The homing acceleration
setting is improper.

1. Ensure that the homing acceleration is between
0.0001 and 9999999. 2. Ensure that the homing
acceleration is not greater than the maximum
acceleration.

9827 Homing timeout time
out of range

The homing timeout time is
out of range.

Ensure that the homing timeout time is greater than
or equal to 1.

Index

-782-

$ADD – Character string linking ... 274
$MOV – Character string transfer .. 285

A
ABS – Absolute value of integer................ 236
ACOS – Floating-point COS-1

operation instruction 144
ADD – Binary data addition......................... 115
ALT – Alternate output.....................................79
AND< – AND contact comparison less
than..96

AND<= – AND contact comparison
less than or equal to.......................................96

AND<> – AND contact comparison
not equal to ..96

AND – Serial connection of NO contacts..69
AND^ – AND logical XOR operation 112
AND& – AND logical AND operation 112
AND= – AND contact comparison
equal to ..96

AND> – AND contact comparison
greater than..96

AND>= – AND contact comparison
greater than or equal to................................96

AND| – AND logical OR operation 112
ANDF – Serial connection of pulse
falling edge ...69

ANDI – Serial connection of NC contacts.69
ANDP – Serial connection of pulse
rising edge...69

ANDZ< – Absolute value AND contact
comparison less than.................................. 107

ANDZ<= – Absolute value AND
contact comparison less than or
equal to ... 107

ANDZ<> – Absolute value AND
contact comparison not equal to 107

ANDZ= – Absolute value AND contact
comparison equal to 107

ANDZ> – Absolute value AND contact
comparison greater than........................... 107

ANDZ>= – Absolute value AND
contact comparison greater than or
equal to ... 107

ASCI – Conversion from HEX into ASCII .188
ASIN – Floating-point SIN-1 operation
instruction.. 143

ATAN – Floating-point TAN-1

operation instruction 145

B
BAND – Word or dword bit AND
contact instruction....................................... 134

BANDI: Word or dword bit AND
inversion contact instruction................... 135

BCD – Conversion from binary into
BCD.. 168

BIN – Conversion from BCD into binary 169
BINDA – Conversion from BIN to
decimal ASCII.. 174

BITW – Conversion from bit to word....... 186
BK– – Block data subtraction 246
BK+ – Block data addition........................... 245
BKCMP<= – Matrix comparison less
than or equal to... 255

BKCMP<> – Matrix comparison not equal
to .. 255

BKCMP= – Matrix comparison equal to .255
BKCMP> – Matrix comparison greater
than... 255

BKCMP>= – Matrix comparison
greater than or equal to............................. 255

BKCMP< – Matrix comparison less
than... 255

BLD – Word or dword bit contact
instruction.. 132

BLDI – Word or dword bit inversion
contact instruction....................................... 133

BMOV – Batch move....................................... 196
BON – Bit state check.................................... 232
BOR – Word or dword bit OR contact
instruction.. 136

BORI – Word or dword bit OR
inversion contact instruction................... 136

BOUT – Word or dword bit data
output instruction .. 137

BRST – Word or dword bit data reset
instruction.. 139

BSET – Word or dword bit data
setting instruction .. 138

BTOW – Conversion from byte to word.183
BZAND – Dead zone control 154

C
CALL – Call subprogram..................................85
CCD – Check code ... 240
CJ – Conditional jump......................................83
CML: Complement .. 199
CMP – Comparison ... 200
COS – Floating-point COS operation
instruction.. 142

COSH – Floating-point COSH
operation instruction 149

CRC – CRC code calculation 241

D
DABIN – Conversion from decimal
ASCII into BIN.. 172

DEC – Decrement by 1................................... 125
DECO – Data decoding.................................. 191
DEG – Floating-point radian-to-
degree conversion instruction 147

DI – Disable interrupt..87
DIS – 4-bit separation of 16-bit data....... 182
DIV – Binary data division............................ 118
DWTOW – Conversion from dword to
word.. 178

E
EABS – Absolute value of floating-
point number.. 237

EADD – Floating-point addition 120
EBCD – Conversion from binary
floating-point to decimal floating-
point ... 171

EBIN – Conversion from decimal
floating-point to binary floating-point 172

ECMP – Floating-point comparison......... 201

Index

-783-

EDIV – Floating-point division.................... 123
EFMOV – Multi-point floating-point
move... 238

EI – Enable interrupt ...87
EIP_Apply_Attributes – Calling the
"Apply_Attributes" service for a
specific instance of the EtherNet/IP
object ... 686

EIP_Generic_Service – Calling the
"Generic" service of a specific
instance of the EtherNet/IP object........ 676

EIP_Generic_Service – Calling the
"Reset" service of a specific
instance of the EtherNet/IP object........ 690

EIP_Get_Attribute_Single – Calling
the "Get_Attribute_Single" service
for a specific instance of the
EtherNet/IP object.. 680

EIP_Get_Attributes_All – Calling the
"Get_Attributes_All" service for a
specific instance of the EtherNet/IP
object ... 678

EIP_NOP – Calling the "NOP" (No
Operation) service for a specific
instance of the EtherNet/IP object........ 688

EIP_Set_Attribute_Single – Calling
the "Set_Attribute_Single" service
for a specific instance of the
EtherNet/IP object.. 684

EIP_Set_Attributes_All – Calling the
"Set_Attributes_All" service for a
specific instance of the EtherNet/IP
object ... 682

EIP_Start – Calling the "Start"
service of a specific instance of the
EtherNet/IP object.. 692

EIP_Stop – Calling the "Stop" service
of a specific instance of the
EtherNet/IP object.. 694

EMOV – Floating-point move...................... 195
EMUL – Floating-point multiplication 122
ENC_ArrayCompare – Encoder one-
dimensional array comparison............... 547

ENC_Compare – Single-point
comparison output 566

ENC_Counter – Encoder enable 518
ENC_DigitalOutput – Encoder DO
control ... 572

ENC_GroupArrayCompare – Encoder
two-dimensional array comparison 567

ENC_Preset – Encoder preset 527
ENC_ReadStatus – Encoder state read..570
ENC_Reset – Encoder reset......................... 526
ENC_ResetCompare – Encoder
comparison output reset........................... 573

ENC_SetLineRotationMode –
Rotation mode setting................................ 579

ENC_SetUnit – Gear ratio setting 577
ENC_StepCompare – Encoder one-
dimensional step comparison................. 560

ENC_TouchProbe – Encoder probe 532
ENCO – Data encoding.................................. 193
ENEG – Floating-point sign negation
instruction.. 131

ESQR – Floating-point square root
operation.. 164

ESTR – Conversion from binary
floating-point into string 267

ESUB – Floating-point subtraction.......... 121

ETC_ReadParameter_CoE – Reading SDO
parameters of the slave 666

ETC_RestartMaster – Restarting
EtherCAT master ... 671

ETC_WriteParameter_CoE – Writing
SDO parameters of the slave 668

EVAL – Conversion from string into
binary floating-point 270

EXP – Floating-point exponentiation
operation.. 161

EZCP – Floating-point zone
comparison.. 203

F
FANDD<> – Floating-point AND
contact comparison not equal to 102

FANDD= – Floating-point AND
contact comparison equal to 102

FANDD> – Floating-point AND
contact comparison greater than.......... 102

FANDD>= – Floating-point AND
contact comparison greater than or
equal to ... 102

FANDD< – Floating-point AND
contact comparison less than................. 102

FANDD<= – Floating-point AND
contact comparison less than or
equal to ... 102

FDEL – Deletion of data from a table...... 212
FINS – Insertion of data to a table 213
FLDD< – Floating-point contact
comparison less than.................................. 101

FLDD<> – Floating-point contact
comparison not equal to 101

FLDD= – Floating-point contact
comparison equal to 101

FLDD> – Floating-point contact
comparison greater than........................... 101

FLDD>= – Floating-point contact
comparison greater than or equal to... 101

FLDD<= – Floating-point contact
comparison less than or equal to.......... 101

FLT – Conversion from binary integer
to binary floating-point 170

FMOV – Multi-point move 198
FOR – Start of a loop...88
FORD<= – Floating-point OR contact
comparison less than or equal to.......... 104

FORD<> – Floating-point OR contact
comparison not equal to 104

FORD< – Floating-point OR contact
comparison less than.................................. 104

FORD= – Floating-point OR contact
comparison equal to 104

FORD> – Floating-point OR contact
comparison greater than........................... 104

FORD>= – Floating-point OR contact
comparison greater than or equal to... 104

H
HC_ArrayCompare – High-speed
counter array comparison 596

HC_Compare – High-speed counter
comparison.. 594

HC_Counter – High-speed counter
enable .. 585

Index

-784-

HC_Preset – High-speed counter
preset ... 581

HC_StepCompare – High-speed
counter step comparison 599

HC_TouchProbe – High-speed
counter probe... 588

HEX – Conversion from ASCII to HEX 190
HOUR – Hour meter.. 296
HTOS – Conversion from hour-
minute-second into second 291

I
INC – Increment by 1 124
INSTR – Character string search 276
INT – Conversion from floating-point
number to binary integer 167

INV – Operation result inversion..................82

L
LBL – Label..84
LD<> – Contact comparison not
equal to ..98

LD – Load NO contact.......................................68
LD^ – LD logical XOR operation 110
LD& – LD logical AND operation 110
LD= – Contact comparison equal to98
LD> – Contact comparison greater than..98
LD>= – Contact comparison greater
than or equal to..98

LD| – LD logical OR operation 110
LDF – Obtain pulse falling edge68
LDI – Load NC contact......................................68
LD< – Contact comparison less than.........98
LD<= – Contact comparison less than
or equal to...98

LDP – Obtain pulse rising edge68
LDZ< – Absolute value contact
comparison less than.................................. 105

LDZ<= – Absolute value contact
comparison less than or equal to.......... 105

LDZ<> – Absolute value contact
comparison not equal to 105

LDZ= – Absolute value contact
comparison equal to 105

LDZ> – Absolute value contact
comparison greater than........................... 105

LDZ>= – Absolute value contact
comparison greater than or equal to... 105

LEFT – String data extraction from
the left.. 279

LEN: Character string length detection .275
LIMIT – Upper/Lower limit control 152
LOG – Floating-point common
logarithm operation 162

LOGE – Floating-point natural
logarithm operation 163

LRC – LRC code calculation 243

M
MAND – Matrix AND .. 248
MB_Client – Transmission and
reception of the Modbus TCP
protocol... 639

MB_Master – Transmission and
reception of serial Modbus protocol 636

MC_CamIn – Start cam operation.. 411, 430
MC_CamOut – End cam operation 425
MC_DigitalCamSwitch – Tappet
control ... 445

MC_FollowVelocity – CSP-based
velocity following.. 402

MC_GearInPos – Start the gear
operation at the specified position....... 449

MC_GearOut – End gear operation.......... 434
MC_GenerateCamTable – Update
cam table.. 439

MC_GetCamTableDistance – Obtain
cam table displacement 429

MC_GetCamTablePhase – Obtain
cam table phase .. 427

MC_GroupPause – Pause axis group
operation.. 485

MC_GroupStop – Stop axis group
operation.. 482

MC_Halt – Halt.. 363
MC_Halt_CO – Halt servo axis
through communication............................ 496

MC_Home – Homing...................................... 356
MC_Home_CO – Control axis homing
through communication............................ 506

MC_ImmediateStop – Immediate stop.. 381
MC_Jog – Jogging... 343
MC_Jog_CO – Control axis jogging
through communication............................ 507

MC_MoveAbsolute – Absolute
positioning... 336

MC_MoveAbsolute_CO – Control
absolute positioning of axis through
communication ... 504

MC_MoveBuffer – Multi-position
positioning... 375

MC_MoveCircular – Circular
interpolation ... 472

MC_MoveEllipse – Elliptical
interpolation ... 478

MC_MoveFeed – Interrupt positioning .. 367
MC_MoveLinear – Linear interpolation .462
MC_MoveRelative – Relative
positioning... 325

MC_MoveRelative_CO – Control
relative positioning of axis through
communication ... 501

MC_MoveSuperImposed – Motion
superimposition .. 385

MC_MoveVelocity – Velocity control....... 332
MC_MoveVelocity_CO – Control axis
velocity through communication 499

MC_MoveVelocityCSV – CSV-based
velocity control with adjustable
pulse width .. 389

MC_Phasing – Master axis phase
shifting... 435

MC_Power – Enable control 300
MC_Power_CO – Enable servo axis
through communication............................ 492

MC_ReadActualPosition – Current
position read... 311

MC_ReadActualPosition_CO – Read
current position of axis through
communication ... 496

MC_ReadActualTorque – Current
torque read.. 312

Index

-785-

MC_ReadActualVelocity – Current
velocity read.. 314

MC_ReadActualVelocity_CO – Read
current velocity of axis through
communication ... 495

MC_ReadAxisError – Read axis errors..... 307
MC_ReadDigitalInput – Digital input
read... 309

MC_ReadParameter_CO – Read axis
parameters through communication ..512

MC_ReadStatus – Axis state read............. 304
MC_Reset – Fault reset 302
MC_Reset_CO – Reset servo axis
fault through communication................. 493

MC_SaveCamTable – Save cam table 438
MC_SetAxisConfigPara – Axis
configuration parameters 395

MC_SetOverride Adjust target
velocity during motion 513

MC_SetPosition – Current position
setting .. 315

MC_Stop – Stop ... 360
MC_Stop_CO – Stop servo axis
through communication............................ 498

MC_SyncMoveVelocity – CSV-based
synchronous velocity control with
adjustable pulse width 391

MC_SyncTorqueControl –
Synchronous torque control.................... 393

MC_TorqueControl – Torque control 350
MC_TouchProbe – Probe 318
MC_WriteParameter_CO – Write axis
parameters through communication ..509

MCPY – Data copy (memory copy,
type conversion) instruction.................... 179

MEAN – Mean calculation 151
MEF– Conversion of operation result
to falling edge pulse72

MEP – Conversion of operation result
to rising edge pulse...72

MIDR – Random extraction of
character string.. 283

MIDW – Random replacement of
character string.. 281

MINV – Matrix inversion 253
MOD – Remainder by division.................... 119
MOR – Matrix OR .. 249
MOV – Move ... 194
MSET – Data setting (memory setting
and reset) instruction.................................. 181

MUL – Binary data multiplication 117
MXNR: Matrix XNOR .. 250
MXOR – Matrix XOR... 252

N
NEG – Negation instruction 129
NEXT – End of a loop ..88

O
OR<= – OR contact comparison less
than or equal to..99

OR<> – OR contact comparison not
equal to ..99

OR – Parallel connection of NO
contacts..70

OR^ – OR logical XOR operation 113
OR& – OR logical AND operation 113
OR= – OR contact comparison equal to ...99
OR> – OR contact comparison
greater than..99

OR>= – OR contact comparison
greater than or equal to................................99

OR| – OR logical OR operation................... 113
ORF – Parallel connection of pulse
falling edge ...70

ORI – Parallel connection of NC
contacts..70

OR< – OR contact comparison less than..99
ORP – Parallel connection of pulse
rising edge...70

ORZ< – Absolute value OR contact
comparison less than.................................. 108

ORZ<= – Absolute value OR contact
comparison less than or equal to.......... 109

ORZ<> – Absolute value OR contact
comparison not equal to 108

ORZ= – Absolute value OR contact
comparison equal to 108

ORZ> – Absolute value OR contact
comparison greater than........................... 108

ORZ>= – Absolute value OR contact
comparison greater than or equal to... 109

OUT – Coil drive ..73
OUTSTL – Output program jump to
secondary bus ...92

P
PID – PID calculation 696
PLF – Pulse falling edge detection
coil instruction ..78

PLS – Pulse rising edge detection
coil instruction ..78

POP – Last-in data read................................ 215
POW – Floating-point weight
instruction.. 165

PT# – Pointer variable contact
comparison.. 625

PTADD – Pointer variable address
addition... 621

PTDEC – Pointer variable address
decremented by 1... 620

PTGET – Pointer variable assignment.... 618
PTINC – Pointer variable address
incremented by 1.. 619

PTMOV – Pointer variable mutual
assignment .. 625

PTSET – Pointer variable assignment 623
PTSUB – Pointer variable address
subtraction .. 622

R
RAD – Floating-point degree-to-
radian conversion instruction 146

RAMP – Ramp instruction............................ 216
RAND – Random number generation
within limits... 234

RCL – Rotation left with carry 221
RCR – Rotation right with carry................. 220
RET – Program return to primary bus91

Index

-786-

RIGHT – String data extraction from
the right... 278

ROL – Rotation left.. 219
ROR – Rotation right 218
RST – Contact or cache clearing..................74
RSTSTL – Resetting program jump to
secondary bus ...92

S
SCL – Coordinate determination
(coordinates of different points) 157

SCL2 – Coordinate determination 2
(X and Y coordinates) 159

SER – Data search ... 210
SerialRcv – Serial port free protocol
reception and free protocol
cancellation... 633

SerialSend – Serial port free protocol
transmission.. 631

SerialSR – Serial port free protocol
transmission and reception and
free protocol cancellation......................... 628

SET – SET action storage coil........................74
SETSTL – Setting Program jump to
secondary bus ...92

SFL – Bit shift left with carry....................... 229
SFR – Bit shift right with carry 228
SFRD: Shift read (FIFO) 227
SFTL – Bit shift left.. 223
SFTR – Bit shift right 222
SFWR: Shift write (FIFO) 226
SIN – Floating-point SIN operation
instruction.. 140

SINH – Floating-point SINH
operation instruction 148

SMOV – Shift move ... 197
SORTC – Data sorting by column............. 207
SORTR – Data sorting by row..................... 205
SQR – Square root operation..................... 165
SSRET – Conditional subprogram
return ..86

STL – Program jump to secondary bus91
STOH – Conversion from second into
hour-minute-second.................................... 293

STR – Conversion from integer into
string... 257

STRMOV – String assignment..................... 261
SUB – Binary data subtraction 116
SUM – Sum of ON bits 233
SWAP: Byte swap... 231

T
TACR – Accumulating timer 615
TADD – Clock data addition........................ 289
TAN – Floating-point TAN operation
instruction.. 142

TANH – Floating-point TANH
operation instruction 149

TCMP – Clock data comparison................ 286
TCP_Accept – TCP connection
request accept.. 645

TCP_Close – TCP connection close......... 649
TCP_Connect – TCP connection
request initiation... 647

TCP_Listen – TCP listening 643

TCP_Receive – TCP data reception 652
TCP_Send – TCP data transmission........ 650
TOFR – Off-delay timer 613
TONR – On-delay timer................................. 611
TPR – Pulse timer .. 609
TRD – Clock data read................................... 294
TSUB – Clock data subtraction 290
TWR – Clock data write................................. 295

U
UDP_Bind – UDP socket binding.............. 657
UDP_Receive – UDP data reception........ 658
UDP_Send – UDP data transmission 660
UNI – 4-bit combination of 16-bit data.. 177

W
WAND – Logical AND instruction 126
WBIT – Conversion from word to bit....... 176
WDT – Watchdog timer reset87
WOR – Logical OR instruction.................... 127
WSFL – Word shift left 225
WSFR – Word shift right................................ 224
WSUM – Data sum calculation................... 151
WTOB – Conversion from word to byte.184
WTODW – Conversion from word to
dword... 187

WXOR – Logical XOR instruction............... 128

X
XCH – Data exchange..................................... 235

Z
ZCP – Zone comparison 202
ZONE – Zone control 155
ZRST – Batch data reset76
ZSET – Batch setting...75

19012250A12

	Preface
	1 Overview
	1.1 Instruction Composition
	1.1.1 LD Instructions
	1.1.2 LiteST Instructions
	1.1.3 Lists of Elements and Variables

	1.2 Elements
	1.2.1 Bit Elements
	1.2.2 Word Elements
	1.2.3 Special Elements
	1.2.4 Bit-based Operation on Word Elements

	1.3 Variables
	1.3.1 Custom Variables
	1.3.2 Defining Variables
	1.3.3 Defining Arrays
	1.3.4 Defining Structures
	1.3.5 Defining IP Variables
	1.3.6 Defining Strings
	1.3.7 Defining Specific Unions
	1.3.8 Using Variables

	1.4 Graphical Block Instructions
	1.4.1 Instruction Composition
	1.4.2 Programming
	1.4.3 Labeling Function

	1.5 Function Blocks and Functions (FB/FC)
	1.5.1 Function Blocks (FB)
	1.5.2 Functions (FC)
	1.5.3 Authorization Function Block
	1.5.4 FB Initial Values
	1.5.5 Encrypting FB or FC

	2 Instruction List
	2.1 LD & LiteST Instructions
	2.2 LiteST Instructions

	3 Instruction Description (LD & LiteST)
	3.1 Program Logic Instructions
	3.1.1 Contact Instructions
	3.1.1.1 Instruction List
	3.1.1.2 LD&LDI&LDP&LDF
	3.1.1.3 AND&ANDI&ANDP&ANDF
	3.1.1.4 OR&ORI&ORP&ORF
	3.1.1.5 MEP&MEF

	3.1.2 Output Control Instructions
	3.1.2.1 Instruction List
	3.1.2.2 OUT
	3.1.2.3 SET
	3.1.2.4 RST
	3.1.2.5 ZSET
	3.1.2.6 ZRST
	3.1.2.7 PLS&PLF
	3.1.2.8 ALT
	3.1.2.9 R_TRIG
	3.1.2.10 F_TRIG

	3.1.3 Flow Control Instruction
	3.1.3.1 INV

	3.2 Process Control Instructions
	3.2.1 Instruction List
	3.2.2 CJ
	3.2.3 LBL
	3.2.4 CALL
	3.2.5 SSRET
	3.2.6 EI & DI
	3.2.7 WDT
	3.2.8 FOR&NEXT

	3.3 SFC Instructions
	3.3.1 Instruction List
	3.3.2 STL
	3.3.3 RET
	3.3.4 OUTSTL/SETSTL/RSTSTL

	3.4 Contact Operation Instructions
	3.4.1 Contact Comparison Instructions
	3.4.1.1 Instruction List
	3.4.1.2 AND#
	3.4.1.3 LD#
	3.4.1.4 OR#
	3.4.1.5 FLDD#
	3.4.1.6 FANDD#
	3.4.1.7 FORD#
	3.4.1.8 LDZ#
	3.4.1.9 ANDZ#
	3.4.1.10 ORZ#

	3.4.2 Contact Logical Operation Instructions
	3.4.2.1 Instruction List
	3.4.2.2 LD*
	3.4.2.3 AND*
	3.4.2.4 OR*

	3.5 Data Operation Instructions
	3.5.1 Arithmetic Operation Instructions
	3.5.1.1 Instruction List
	3.5.1.2 ADD
	3.5.1.3 SUB
	3.5.1.4 MUL
	3.5.1.5 DIV
	3.5.1.6 MOD
	3.5.1.7 EADD
	3.5.1.8 ESUB
	3.5.1.9 EMUL
	3.5.1.10 EDIV
	3.5.1.11 INC
	3.5.1.12 DEC

	3.5.2 Data Logical Operation Instructions
	3.5.2.1 Instruction List
	3.5.2.2 WAND
	3.5.2.3 WOR
	3.5.2.4 WXOR
	3.5.2.5 NEG
	3.5.2.6 ENEG

	3.5.3 Word Bit Operation Instructions
	3.5.3.1 Instruction List
	3.5.3.2 BLD
	3.5.3.3 BLDI
	3.5.3.4 BAND
	3.5.3.5 BANDI
	3.5.3.6 BOR
	3.5.3.7 BORI
	3.5.3.8 BOUT
	3.5.3.9 BSET
	3.5.3.10 BRST

	3.5.4 Trigonometric Function Instructions
	3.5.4.1 Instruction List
	3.5.4.2 SIN
	3.5.4.3 TAN
	3.5.4.4 COS
	3.5.4.5 ASIN
	3.5.4.6 ACOS
	3.5.4.7 ATAN
	3.5.4.8 RAD
	3.5.4.9 DEG
	3.5.4.10 SINH
	3.5.4.11 COSH
	3.5.4.12 TANH

	3.5.5 Table Operation Instructions
	3.5.5.1 Instruction List
	3.5.5.2 WSUM
	3.5.5.3 MEAN
	3.5.5.4 LIMIT
	3.5.5.5 BZAND
	3.5.5.6 ZONE
	3.5.5.7 SCL
	3.5.5.8 SCL2

	3.5.6 Exponent Operation Instructions
	3.5.6.1 Instruction List
	3.5.6.2 EXP
	3.5.6.3 LOG
	3.5.6.4 LOGE
	3.5.6.5 ESQR
	3.5.6.6 SQR
	3.5.6.7 POW

	3.6 Data Processing Instructions
	3.6.1 Data Conversion Instructions
	3.6.1.1 Instruction List
	3.6.1.2 INT
	3.6.1.3 BCD
	3.6.1.4 BIN
	3.6.1.5 FLT
	3.6.1.6 EBCD
	3.6.1.7 EBIN
	3.6.1.8 DABIN
	3.6.1.9 BINDA
	3.6.1.10 WBIT
	3.6.1.11 UNI
	3.6.1.12 DWTOW
	3.6.1.13 MCPY
	3.6.1.14 MSET
	3.6.1.15 DIS
	3.6.1.16 BTOW
	3.6.1.17 WTOB
	3.6.1.18 BITW
	3.6.1.19 WTODW
	3.6.1.20 ASCI
	3.6.1.21 HEX
	3.6.1.22 DECO
	3.6.1.23 ENCO

	3.6.2 Data Transfer And Comparison Instructions
	3.6.2.1 Instruction List
	3.6.2.2 MOV
	3.6.2.3 EMOV
	3.6.2.4 BMOV
	3.6.2.5 SMOV
	3.6.2.6 FMOV
	3.6.2.7 CML
	3.6.2.8 CMP
	3.6.2.9 ECMP
	3.6.2.10 ZCP
	3.6.2.11 EZCP

	3.6.3 Table Operation Instructions
	3.6.3.1 Instruction List
	3.6.3.2 SORTR
	3.6.3.3 SORTC
	3.6.3.4 SER
	3.6.3.5 FDEL
	3.6.3.6 FINS
	3.6.3.7 POP
	3.6.3.8 RAMP

	3.6.4 Data Shift Instructions
	3.6.4.1 Instruction List
	3.6.4.2 ROR
	3.6.4.3 ROL
	3.6.4.4 RCR
	3.6.4.5 RCL
	3.6.4.6 SFTR
	3.6.4.7 SFTL
	3.6.4.8 WSFR
	3.6.4.9 WSFL
	3.6.4.10 SFWR
	3.6.4.11 SFRD
	3.6.4.12 SFR
	3.6.4.13 SFL

	3.6.5 Other Data Processing Instructions
	3.6.5.1 Instruction List
	3.6.5.2 SWAP
	3.6.5.3 BON
	3.6.5.4 SUM
	3.6.5.5 RAND
	3.6.5.6 XCH
	3.6.5.7 ABS
	3.6.5.8 EABS
	3.6.5.9 EFMOV
	3.6.5.10 CCD
	3.6.5.11 CRC
	3.6.5.12 LRC

	3.7 Matrix Instructions
	3.7.1 Matrix Operation Instructions
	3.7.1.1 Instruction List
	3.7.1.2 BK+
	3.7.1.3 BK–
	3.7.1.4 MAND
	3.7.1.5 MOR
	3.7.1.6 MXNR
	3.7.1.7 MXOR
	3.7.1.8 MINV

	3.7.2 Matrix Comparison Instructions
	3.7.2.1 Instruction List
	3.7.2.2 BKCMP#

	3.8 String Instructions
	3.8.1 Instruction List
	3.8.2 STR
	3.8.3 STRMOV
	3.8.4 VAL
	3.8.5 ESTR
	3.8.6 EVAL
	3.8.7 $ADD
	3.8.8 LEN
	3.8.9 INSTR
	3.8.10 RIGHT
	3.8.11 LEFT
	3.8.12 MIDW
	3.8.13 MIDR
	3.8.14 $MOV

	3.9 Clock Instructions
	3.9.1 Instruction List
	3.9.2 TCMP
	3.9.3 TZCP
	3.9.4 TADD
	3.9.5 TSUB
	3.9.6 HTOS
	3.9.7 STOH
	3.9.8 TRD
	3.9.9 TWR
	3.9.10 HOUR

	3.10 MC Axis Control Instructions (EtherCAT&Pulse Output)
	3.10.1 Basic Instructions
	3.10.1.1 Instruction List
	3.10.1.2 MC Axis State Machine
	3.10.1.3 MC_Power
	3.10.1.4 MC_Reset
	3.10.1.5 MC_ReadStatus
	3.10.1.6 MC_ReadAxisError
	3.10.1.7 MC_ReadDigitalInput
	3.10.1.8 MC_ReadActualPosition
	3.10.1.9 MC_ReadActualTorque
	3.10.1.10 MC_ReadActualVelocity
	3.10.1.11 MC_SetPosition
	3.10.1.12 MC_TouchProbe
	3.10.1.13 MC_MoveRelative
	3.10.1.14 MC_MoveVelocity
	3.10.1.15 MC_MoveAbsolute
	3.10.1.16 MC_Jog
	3.10.1.17 MC_TorqueControl
	3.10.1.18 MC_Home
	3.10.1.19 MC_Stop
	3.10.1.20 MC_Halt
	3.10.1.21 MC_MoveFeed
	3.10.1.22 MC_MoveBuffer
	3.10.1.23 MC_ImmediateStop
	3.10.1.24 MC_MoveSuperImposed
	3.10.1.25 MC_MoveVelocityCSV
	3.10.1.26 MC_SyncMoveVelocity
	3.10.1.27 MC_SyncTorqueControl
	3.10.1.28 MC_SetAxisConfigPara
	3.10.1.29 MC_FollowVelocity
	3.10.1.30 Axis Fault Codes

	3.10.2 Cam and Gear Instructions
	3.10.2.1 Instruction List
	3.10.2.2 MC_CamIn
	3.10.2.3 MC_CamOut
	3.10.2.4 MC_GetCamTablePhase
	3.10.2.5 MC_GetCamTableDistance
	3.10.2.6 MC_GearIn
	3.10.2.7 MC_GearOut
	3.10.2.8 MC_Phasing
	3.10.2.9 MC_SaveCamTable
	3.10.2.10 MC_GenerateCamTable
	3.10.2.11 MC_DigitalCamSwitch
	3.10.2.12 MC_GearInPos
	3.10.2.13 Fault Codes

	3.10.3 Axis Group Control Instructions
	3.10.3.1 Instruction List
	3.10.3.2 MC_MoveLinear
	3.10.3.3 MC_MoveCircular
	3.10.3.4 MC_MoveEllipse
	3.10.3.5 MC_GroupStop
	3.10.3.6 MC_GroupPause
	3.10.3.7 Fault Codes

	3.11 MC Axis Control Instructions (CANopen)
	3.11.1 Instruction List
	3.11.2 MC_Power_CO
	3.11.3 MC_Reset_CO
	3.11.4 MC_ReadActualVelocity_CO
	3.11.5 MC_ReadActualPosition_CO
	3.11.6 MC_Halt_CO
	3.11.7 MC_Stop_CO
	3.11.8 MC_MoveVelocity_CO
	3.11.9 MC_MoveRelative_CO
	3.11.10 MC_MoveAbsolute_CO
	3.11.11 MC_Home_CO
	3.11.12 MC_Jog_CO
	3.11.13 MC_WriteParameter_CO
	3.11.14 MC_ReadParameter_CO
	3.11.15 MC_SetOverride
	3.11.16 Error Codes of CANopen Axis Control Instructions

	3.12 HC Axis Control Instructions (Pulse Input)
	3.12.1 Instruction List
	3.12.2 ENC_Counter
	3.12.3 ENC_Reset
	3.12.4 ENC_Preset
	3.12.5 ENC_TouchProbe
	3.12.6 ENC_ArrayCompare
	3.12.7 ENC_StepCompare
	3.12.8 ENC_Compare
	3.12.9 ENC_GroupArrayCompare
	3.12.10 ENC_ReadStatus
	3.12.11 ENC_DigitalOutput
	3.12.12 ENC_ResetCompare
	3.12.13 ENC_SetUnit
	3.12.14 ENC_SetLineRotationMode
	3.12.15 HC_Preset
	3.12.16 HC_Counter
	3.12.17 HC_TouchProbe
	3.12.18 HC_Compare
	3.12.19 HC_ArrayCompare
	3.12.20 HC_StepCompare
	3.12.21 Error Codes

	3.13 Timer Instructions
	3.13.1 Timer Instruction Parameters
	3.13.2 Instruction List
	3.13.3 TPR
	3.13.4 TONR
	3.13.5 TOFR
	3.13.6 TACR

	3.14 Pointer instruction
	3.14.1 Instruction List
	3.14.2 PTGET
	3.14.3 PTINC
	3.14.4 PTDEC
	3.14.5 PTADD
	3.14.6 PTSUB
	3.14.7 PTSET
	3.14.8 PTMOV
	3.14.9 PT#

	3.15 Communication Instructions
	3.15.1 Instruction List
	3.15.2 SerialSR
	3.15.3 SerialSend
	3.15.4 SerialRcv
	3.15.5 Error Codes of Serial Port Free Protocol Communication Instructions
	3.15.6 MB_Master
	3.15.7 MB_Client
	3.15.8 Fault Codes of Modbus Communication Instructions
	3.15.9 Connection-oriented Socket TCP Communication
	3.15.10 TCP_Listen
	3.15.11 TCP_Accept
	3.15.12 TCP_Connect
	3.15.13 TCP_Close
	3.15.14 TCP_Send
	3.15.15 TCP_Receive
	3.15.16 TCP Server Communication Instance
	3.15.17 TCP Client Communication Instance
	3.15.18 Connectionless Socket UDP Communication
	3.15.19 UDP_Bind
	3.15.20 UDP_Receive
	3.15.21 UDP_Send
	3.15.22 UDP Communication Instance
	3.15.23 Error Codes of Socket Communication Instructions
	3.15.24 ETC_ReadParameter_CoE
	3.15.25 ETC_WriteParameter_CoE
	3.15.26 ETC_RestartMaster
	3.15.27 Instruction Codes
	3.15.28 EIP_Generic_Service
	3.15.29 EIP_Get_Attributes_All
	3.15.30 EIP_Get_Attribute_Single
	3.15.31 EIP_Set_Attributes_All
	3.15.32 EIP_Set_Attribute_Single
	3.15.33 EIP_Apply_Attributes
	3.15.34 EIP_NOP
	3.15.35 EIP_Reset
	3.15.36 EIP_Start
	3.15.37 EIP_Stop

	3.16 Other Instructions
	3.16.1 PID

	4 Instruction Description (LiteST)
	4.1 Data Operation Instructions
	4.1.1 Trigonometric Function Instructions
	4.1.1.1 Instruction List
	4.1.1.2 SIN
	4.1.1.3 COS
	4.1.1.4 TAN
	4.1.1.5 ASIN
	4.1.1.6 ACOS
	4.1.1.7 ATAN

	4.1.2 Exponent Operation Instructions
	4.1.2.1 Instruction List
	4.1.2.2 LOG
	4.1.2.3 LN
	4.1.2.4 SQRT
	4.1.2.5 EXPT

	4.1.3 Explicit Conversion Instructions
	4.1.3.1 Instruction List
	4.1.3.2 INT_TO_<TYPE>
	4.1.3.3 DINT_TO_<TYPE>
	4.1.3.4 BOOL_TO_<TYPE>
	4.1.3.5 REAL_TO_<TYPE>
	4.1.3.6 BYTE_TO_TYPE
	4.1.3.7 TO_<TYPE>

	4.1.4 Comparison Instructions
	4.1.4.1 Instruction List
	4.1.4.2 MAX
	4.1.4.3 MIN

	4.1.5 Shift Instructions
	4.1.5.1 Instruction List
	4.1.5.2 SHL
	4.1.5.3 SHR

	4.1.6 Absolute Value Operation Instruction
	4.1.6.1 ABS

	4.1.7 Bit Operators
	4.1.7.1 Instruction List
	4.1.7.2 AND
	4.1.7.3 OR
	4.1.7.4 XOR
	4.1.7.5 NOT

	4.2 Program Logic Instructions
	4.2.1 Binary Operation Instruction
	4.2.1.1 SEL

	5 Appendix
	5.1 ASCII Code Conversion
	5.2 Fault Codes

