SBC Linear Actuator

0

I.The key feature of SBC Linear actuator

LOW COST- FAST DELIVERY

As all of our actuator products have been developed around or own SBC linear rail system we maintain total quaility control, in- house supply lines for fast deliveries and a cost control base keeping SBC actuators extremely price competitive

HIGH ACCURACY- HIGH REPEATABILITY

Advantages derived through R&D gains across our liner rail and other SBC lines are immediately transferred into our actuators keeping them at the forefront of technology benefit. As SBC has specialized in Linear Rail Systems since incorporation our actuators offer the same high running accuracy achieved in our rail guides. Repeatability of $\frac{3}{4}0.02$ (m) is our standard platform.

VERSATILE LOAD/SPEED CAPABILITY

A wide variety of rail & carraige combinations, running accuracies and sealing options means we can offer the most versatile product combinations within the SBC actuator range. We offer products than can handle slow moving high load applications as well as high speed high accuracy units that can handle up to 2000mm/sec

HIGH RIGIDITY

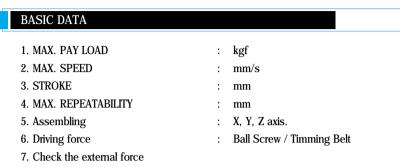
SBC actuators utilise the strength of high grade aluminum alloy to form the external body of each unit supporting the inherent rigidity within our rail system.

DESIGN ADVANTAGES

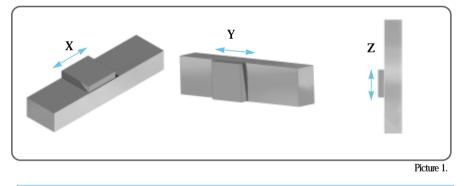
Using a pre- designed actuator system eliminates the need for individual component matching and the associated costs of individual item supply, assembly time, alignment time and most of all design time. The wide range of SBC actuators means that there is inevitably a unit to suit all types of requirement whether system bulk or compactness is the real need.

DRIVE UNIT COMPATIBILITY

SBC Actuators can be driven by the widest range of motor types depending on your application needs. Any AC or DC, Servo or Stepper motors can be used along with whatever control systems are required for specific application needs


ULTIMATE CHOICE

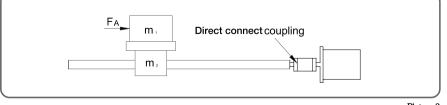
The wide range of SBC actuator models allows you to select a specific unit that best suits your needs.

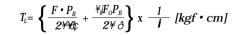

II. SBC Linear actuator application check list

Company					TE	EL				
Contact person					FA	X				
Date		Applic			ation					
System Spec (Sketch re	equest)						1			
1. System spec		2.Applied	load			Exter	nal force		1	2
No of rails		Length X (From	center X (i	nm)		
No of block /rail		Length Y(r	nm)			From	center Y (i	nm)		
Length between blocks(mm)		Length Z(r	nm)			From	center Z (1	nm)		
Length btween rails(mm)		Load(Kgf)				Extern	al force			
Mounting distance		External fo	orce Y			Extern	al force Z			
3. Speed pattern	speed	distance tiangle			speed our		listance ectangular		_ hou	r
Express transport strok	e		Norm	nal str	oke					
Stroke (mm)			Strok	ke(mn	n)					
Stroke time(hr)			Stroke time (hr)			•	•			
Speed pattern			-	ed pat						
Cycle time (s)			•	e time						
Max unifrom velocity (mm/s)					velocity (n					
Max acceleration (mm/s ²)			Max a	accelera	ation (mr	n/s²)				
4.Request accuracy				e time		1				
Straightness			-	e Time						
Clearance			Reque	st life ti	me(year)					
6.working condition										
Impact load Non	☐ few	□ a f		□ se		•	vironment	Temj	p(
vibration 🗌 Non	☐ few	□ a f		□ se	vere	Note.				
contaminants 🗌 Non	□ few	🗆 a f	ew	□ se	vere					

III. Selection of SBC Linear Actuator

8. Check the dimension(Select the Base)




Motor selection

1. Calculating Torque(TL)

Select a motor with an appropriate drive torque rating, (TL) calculation . An undersized motor will trip out under driving load

<Calculating the Applied Torque for Ball Screw operation>

Applied Torque (kgf/cm)	Ball Screw	Effect (判);	
Axial load (kgf) = $\neq i_X W$			
(#: LM coeffecient factor, W : load)	Ground Ball Screw	0.9 ~ 0.95	
Ball Screw Lead (mm)			
Ball Screw efficiency	Rplled Ball Screw	0.7 ~ 0.8	
Preload nut inside of coefficent factor			
Preload load.			

Calculating the Torque for Ball Screw

; ØEquation of Torque

Deceleration rate

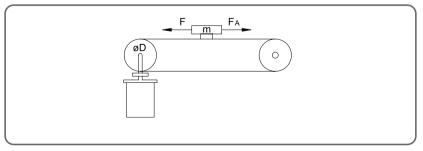
 T_L

F

 $P_{\scriptscriptstyle B}$

¥ç

¥j


 F_{a}

i

$$T_{L} = \frac{F \cdot P_{B}}{2 + 40} X \frac{1}{i} X S \cdot F \qquad \text{(Horizontal load)} \quad S \models \square F(\text{safety factor}) : 2~2.5$$
$$T_{L} = \frac{F \cdot P_{B}}{2 + 40} X \frac{1}{i} X 2 X S \cdot F \qquad \text{(Vertical load)}$$

Calculating the Torque for Ball Screw torque

Calculating the torque for timing belt

Picture2

$$T_{L} = \frac{F}{2 \neq 6} \times \frac{\neq 0}{i} = \frac{FD}{2 \neq 6} [kgf \cdot cm]$$

 $F = \neq i x W [kgf]$

T_{L}	applied Torque (kgf $i \cong cm$)
F	axial load (kg)
¥ç	Timming Belt efficiency
D	Pully diameter
i	reduction rate
¥ì	LM Guide and Timming Belt pully coefficient of friction

on 3 Timming Belt Torque calculaton

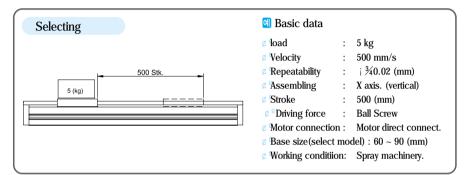
$$T_{t} = \frac{D}{2} \mathbf{x} \mathbf{F} \mathbf{x} \frac{1}{\neq_{\mathcal{C}}} \mathbf{x} \frac{1}{i} \mathbf{x} \mathbf{S} \cdot \mathbf{F} \qquad \text{(horizontal load)} \qquad \mathbf{S} \models \square \mathbf{F}(\text{safety}) : 2 \sim 2.5$$
$$T_{t} = \frac{D}{2} \mathbf{x} \mathbf{F} \mathbf{x} \frac{1}{\neq_{\mathcal{C}}} \mathbf{x} \frac{1}{i} \mathbf{x} \mathbf{2} \mathbf{x} \mathbf{S} \cdot \mathbf{F} \qquad \text{(vertical load, but } \neq_{\stackrel{\leftarrow}{=}} \text{ non care, } \mathbf{F} = \mathbf{W})$$

equation 4

Timming Belt Torque calculaton

(1) Calculation of motor power(W)

After calcuating the applied torque, calculating the motor power using below equation.

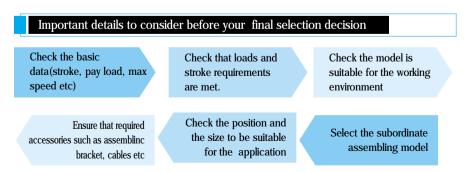

W = 0.1047 x R(rpm) x Torque[N.m]

Calculating the motor power (W)

Making a selection to suit the application environment

1. Ensure that the linear actuator is suited to the working environment.

2.Select model


Check that linear actuator model selected can handle the parameters in the check ilst above., if appropriate consider using i $\degree\,$ SS90- $_iD$ 10- 500 i, $\pm\,$

3. Select motor

.After selecting a linear actuator you must then consider what type of motor and control system will best suit the application ensuring that the motor has appropriate torque

$$T_{L} = \frac{F \cdot P_{B}}{2 \frac{1}{2 \frac{1}{2}}} \times \frac{1}{i} \times S \cdot F$$
Using equation, calculate the Torque
$$T_{L} = \frac{5 \cdot 10}{2 \frac{2}{2} \frac{1}{0.9}} \times \frac{1}{1} \times 2 = 17.69[kgf \cdot cm]$$
Select the motor fitting for this Torque

j ØMotor should be selected after calculating the Torque reruietb drive the loaded actuator

Important guidelines when selecting a linear actuator

1. Setting up your axes stroke range

- Always keep to the minimum stroke length required to optimize the working area.
- Assembling multiple axes, always keep the stroke range for Y and Z axes shorter than that of X.
- · Always consider speed requirements where the long stroke moves are required.

2. Consideration of system loads

- Do not exceed the catalogue load for any individual axis
- · Always consider additional load effects in horizontal and vertical axes.
- · Be aware of the effects of load under acceleration and deceleration.

3. Speed

• Never exceed the allowable speed rating of the individual actuator.

4. Care on installation

• Inproper installation can shorten the life of the unit regardless of the fact that it operates within its specified load limits.

5. Environment

• Always consider the working environment, heat, dust, condensation and vibration will all have an adverse effect on any system and play an important part when selecting a suitbale model.

¥³. The General Technical Data

Positioning accuracy

- The maximum stroke is standard length for any given actuator. The maximum error between the actual moving distance and instruction value from the reference position is shown iin absolute value.

Repeatability accuracy

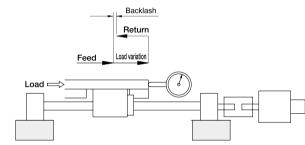
- Halve the value of maximum difference of the measured stopping position by positioning the cariage 7 times from a random point to the same direction along the axis. This maximum value can be shown with j $^\circ$ ~ j $^3\!\!\!/_4$ j \pm sign.

Back-lash measurement method

- Set the dial gauge standard value as $0\pm\pm$ after the table is stopped after positioning movement along the axis
- Under the above condition, turn on the motor. Remove the load after applying it on the table to axial direction not depending on the transport equipment.
- Take measurements by calculating the difference between the standard value and the measurements with remval of load. (see below picture)
- Measure this in the middle of stroke and each end side of stroke. Among this value, consider the maximum value as measurements.

Velocity (mm/s)	Acceleration and reduction time(sec)	Accelertaion(m/s ²)	Acceleration of gravity (G)
	0.10	2.500	0.26
250	0.15	1.667	0.17
	0.2	1.250	0.13
	0.10	5.000	0.51
500	0.15	3.333	0.34
	0.20	2.500	0.34
	0.10	10.000	1.02
1000	0.15	6.667	0.68
	0.20	5.000	0.51

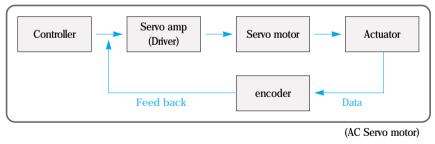
Speed acceleration and deceleration time. acceleration correlation data

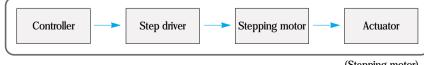

j Ø Acceleration of gravity=acceleration speed / 9.8(m²/s

Speed acceleration and reduction time. acceleration correlation data

- While controlling the linear actuator, it means detecting accuracy how the servo motor could detect the position accurately (Rely on accuracy of encoder and Linear scale)

$$A = \frac{1000 \text{ ; } \mathcal{R}_B}{P_{PG} \text{ ; } \mathcal{R} \text{ ; } \mathcal{K}} (mm/pluse)$$


P_B	Ball Screw Lead (m)	P_{PG}	Pulse per encoder 1 rotation
R	Decelaration rate	K	Feedback pulse



The difference between AC servo motor and stepping motor

Comparision	Servo motor	Stepping motor
Control	closed loop control	open loop control
	(encoder necessary)	(encoder unnecessary)
Basic motion	Smooth toroque&rotation	Active toroque and speed
		0.36°/step
	Resolution per 1 rotation	0.72 °/step
Resolution	= 1/8192~1/131072	1.8°/step
		i ØMicro steeping possible
		(max.1/125000 : 5 standard)
Mr. Court	Max 6000 min ^{- 1}	0.72°/step(5standard)
Max Speed	Max 6000 min	1200~2400min ⁻¹
Out put of power	3W ~ 30KW	~300W
	• High speed	 Limited acceleration speed
	 High rigidity machinery 	 Low rigidity machinery.
Feature	 Multiple control options 	• Easier control options.
	• Higher cost	• Lower price level.

; ØThe structure of AC servo motor and stepping motor.

⁽Stepping motor)

[¥] [']. Linear actuator installing, maintenance and repairing

Working condition

- Working condition of linear actuator is as follow.

Reference	Contents	
Operatinh temperature	0 jC/E- 40 jC/E	
Keeping temperature	- 10 iCÆ 55 iCÆ	
Operating humid	Under 85%(RH)	
Keeping humid	Under 95%(RH)	
Working place	Inside	

Installing surface allowance

- It should be fixed to the smooth assembling surface with less 0.05mm flatness.
- The thickness of bracket should be more than 20mm when fixing the actuator.

Overall length of Base (mm)	Flatness (mm)
Under 700mm	0.05 mm
700 ~ 1300 mm	0.07 mm
Over 1300mm	0.09 mm

i ØBolt (kgf • cm)

TAP Material	M3	M4	M5	M6	M8	M10	M12
Aluminum	10	21	45	70	150	340	600
Castiron	13	28	60	94	205	460	800
Iron	20	42	90	140	310	690	1200

Maintenance and Checking

Checking	Checking period	Contents	
Detailed to the	1/1month	Bolt assembling	
Periodical checking	1/6 months	Ball Screw	
Detailed to the	1/6 months	Belt	
Periodical checking	1/1 year	Linear Rail System	

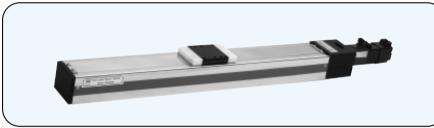
¡ Ø Checking period can be differenct according to wroking conditin.

Part Name	Life time (Hr)
Linear Rail System (LM Guide)	50,000
Belt	40,000
Ball Screw	50,000

Grease feeding	Grease	Period	Feeding method
Ball Screw	CRG - 50 j Ø(1)	1 / 6 months	Applying on Shaft
Linear Rail System	$CRG - 30 \mid \mathcal{D}(1)$	1 / 1 year	Feeding to Nipple

Trouble shooting for unacceptable system performance

	Check point	Possible corrections
	1) Inferior installation surface accuracy	Correction of installation surface accuracy(flatness) by using shim material
	2) Ingress of foreign matter into bearings	clean and re- grease after removing old grease and any foreig matter
	3) Exceeding specified speed limits	Reduce the speed below to the limited speed
	4) Loose connectors or coupling	Tighten any loose bracketor the coupling
Noise by machine	5) Lack of appropriate lubrication	Grease injection after removal of grease or alien substance
	6) Wrong set up of electronic Gain	P,I Gain adjustment
	7) Damaged or worn ball screw	Replace the ball screw
	8) Damaged or wornLinear Rail System	Replace the Linear Rail System
	9) Faulty brake operation	Replace Brake components
	10) 3rd party storke interruption caused by machine	Rplace any parts causing 3rd party interferencet
	1) Running actuators in over speed mode	Reduce the speed below to the limited speed
	2) Inappropriate acceleratiing and decelerating time	Adjust the accelerating and decelerating time to be longer
	3)Rigidity weakness of table	Complement of table rigidity and fixation of basic bolt to surface
Vibration	4)Fastening problem of bolt	Check whether the bolt is completely faxtening
vibrauon	5) Overload	Lower the speed of control the accelerating of decelerating ti
	6) Wrong set up of Gain	Adjustment of P,I Gain
	7) Resonance with other machine	Controllong of accelerationg and decelerating time to be long
	1)Damage of Ball Screw	Replace the Ball Screw
	2) Inferioty of installing surface	Reinstallation after correction of installing surface accuracy by using of thickness tape
	3) Low of Position Gain	Raise the Position Gain
Inferiority of repeatability	4) Inferiority of fastening bolf for actuator	Check whether the bolt is completely fastening. Check whether the length of the bolt is suitable. Fasten the standard torque.
	5) Weakness of table rigidty	Complement of table rigidity
	6) Loosend of coupling	Tightening the coupling again or replace it
	7) Lead error of machine	Contact SBC when the repeatability processing is needed.
Limit Sensor	1) Cable damage	Replace Cable
Problem	2) Sensor damage	Replace Sensor
Tioblem	3) Wrong set up of limit Parameter	Reset of limit Parameter
	1) Cable problem	Replace Cable
Unstable movement of	2) Broken cable wire cause of inappropriate use	Selecting the appropriate cable
Actuator	3) Incomplete connection of Connector	Checking of Connector connecting
When the actuator is not moving	1)Wrong value of Pitch//Rev(Gear Ratio)	Pitch/Rev(Gear Ratio) change
to the instructed position	2) Check the Sensor and Encoder Z	Check the controller


Basic data

Ball- Screw Type MA Series

Belt Type MA Series

Ball- Screw Type MA Series

The MA series is the SBC miniaturised Linear Drive Unit of the same width and height. It is small and compact size package suits many application requirements. The ball screw drive units can utilise varying leads offering stroke speed versatility. The belt drive model, using parabolic RPP- belts, offer high- load, low- noise and precision movement. MA series can be supplied with a drive motor to suit the user is control package

<Mini Linear actuator spec>

Body Type	Body Size	driving force	Lead	Load(kg)	Repeatability(mm)	Max Stroke(mm)
	40	Ground Ball Screw(© ^a 8	5 8) 12	5	i ¾0.02	120
	40	Rolled Ball Screw([©] ^a 8	5 8) 12	5	i ¾0.05	270
		Ground Ball Screw([©] ^a 12	5 8 2) 12	8	i ¾0.02	480
MA	60	Rolled Ball Screw(© ^a 12	5 8 2) 12	8	i ¾0.05	480
		Timming Belt	74.98	8	i ¾0.1	480
	75	Ground Ball Screw(© ª 12	5 10 2) 20	13	i ¾0.02	480
		Rolled Ball Screw(© ª 12		13	i ¾0.05	400

2. MINI Linear Actuator Structure

Linear Guide

High- precision and high- load miniature series is applied. Super accuracy can be achieved by using H or P grade guides(option) Achieves long, maintenance free life by using the ball retainer series of miniature guide Low friction seal provides ultimate protection and is appropriate for low motor power

Sensor(Option)

Application of a photoelectric sensor- high reliability and high durability, not affected by environment. Any sensor type can be fitted

Ball Screw

Various leads available(1mm~30mm)- please inquire before selecting. Preload type are available(optional). C3-C10 rolled and ground ball screw offers versatile lead accuracy. Low- friction and clean room grease can be used

Install Position

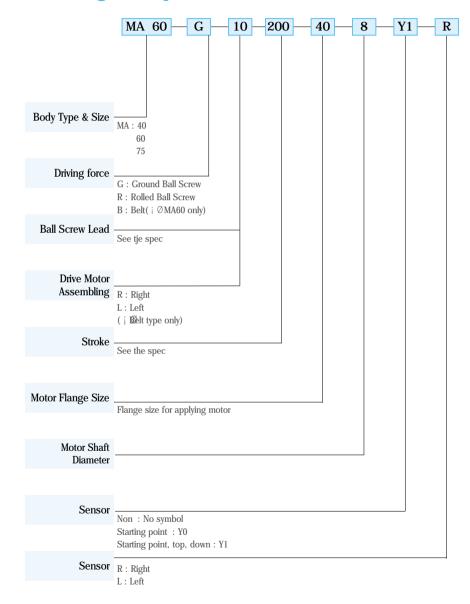
The linear actuator has no positional limitations when working within the specified load and moment load. Vertical mounting positions must consider possible back driving load effect on ball screws and load limits on belts. Brake motors or external locking elements need to be considered in these instances..

Maintenance

Both the ball screw and liner guide should be checked periodically(400 hours operation or 3 months). The stainless steel cover sheet should also be checked at these times for any wear effect.

Dustproof Cover

*Stainless Sheet is used Preventing dust and alien materials from getting inside the linear actuator. Achieving longer life time and longer maintenance intervals *Suction Ports(Option) - Using a suction port, it is more applicable for 10 class clean room

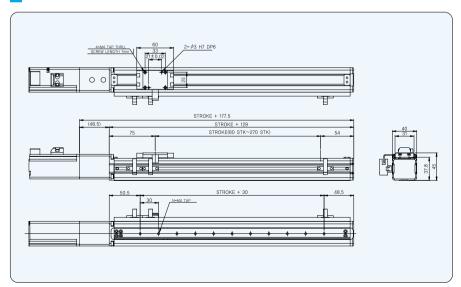

Maximum force & moments

Suyggested max load and moments loads have been selected based on distance from the centre point of the slide table. If there are loads or moments from alternate directions, it is suggested that load and moment de- ratings of up to 60% should be applied against the maximum specifications.

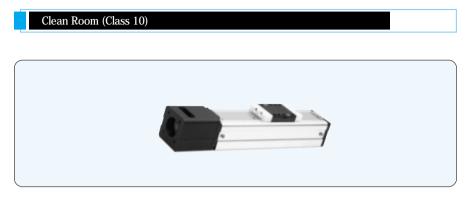
Temperature

MA series Mini linear actuator can be used in temperature ranging from 0~40 C. However it is recommended to operate as close to ambient as possible. Motors can sometimes generate high temperatures and we recommend units to be installed away from external heat sources 100C

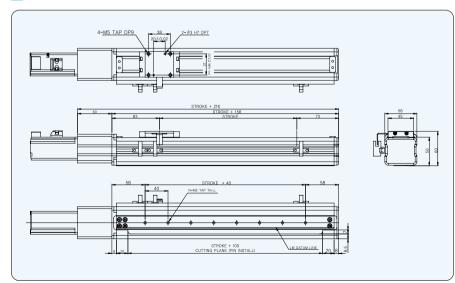
Ordering example of Mini Linear Actuator



MA40- G(R) Series (Ball Screw)


Clean Room (Class 10)

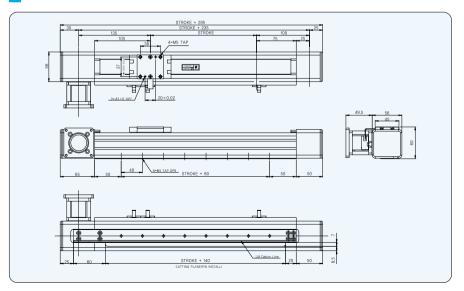
MA40- G	(Grou	nd)						MA40- R	(Rolle	ed)					
SCREW LEAD	5	8	12	LOAD (kg)	9	REPEAT ABILITY	i ¾0.02(mm)	SCREW LEAD	5	8	12	LOAD (kg)	9	REPEAT ABILITY	i ¾0.02(mm)
MAX STROKE (mm)	120	120	120	BALL SCREW	¥ Ö8- C5, Backlash 0.005mm	MAX	100,000	MAX STROKE (mm)	270	270	270	BALL SCREW	¥ Ö8- C5, Backlash 0.005mm	MAX	100.0ID : 340/
MOMENT (Nm)	Ma15.7	Mb16.3	Mc34.8	LINEAR GUIDE	MINIATURE WIDE 9	MOTOR SPEC	100(W), i à40(mm)	MOMENT (Nm)	Ma15.7	Mb16.3	Mc34.8	LINEAR GUIDE	MINIATURE WIDE 9	MOTOR SPEC	100(W), i å40(mm)



MA60-G(R) Series (Ball Screw)

MA40- G	(Grou	nd)						MA40- R	(Rolle	ed)					
SCREW LEAD	5	10	20	LOAD (kg)	9	REPEAT ABILITY	i ¾0.02(mm)	SCREW LEAD	2	5	10	LOAD (kg)	9	REPEAT ABILITY	i ¾0.05(mm)
MAX STROKE (mm)	440	440	480	BALL SCREW	¥ Ö8- C5, Backlash 0.005mm	MAX MOTOR	100(W), i à40(mm)	MAX STROKE (mm)	480	480	480	BALL SCREW	¥ Õ12- C7, Backlash 0.005nm	MAX	100(W), įà40(mm
MOMENT (Nm)	Ma16.4	Mb18.6	Mc47.1	LINEAR GUIDE	MINIATURE WIDE 9		100(W), 240(MM)	MOMENT	Ma16.4	Mb18.6	Mc47.1	LINEAR GUIDE	MINIATURE WIDE 9	SPEC	100(w), a40(mm

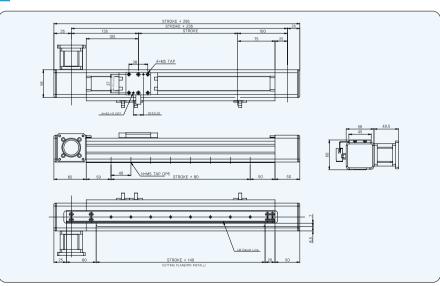
DRAWING & DIMENSION



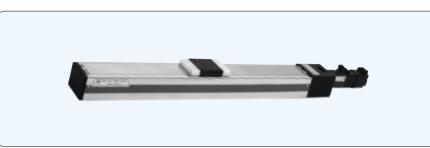
MA60- B- R Series (Belt)

High apply load, Timming Belt for high precision feed line, Clean Room (Class 10)

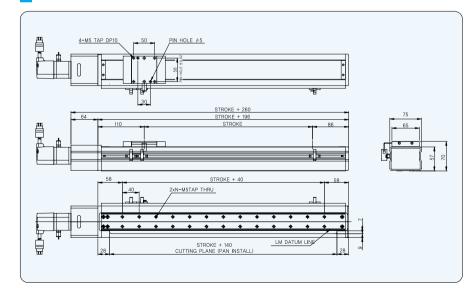
MODEL	BELT LEAD	MAXS TROKE (mm)	LOAD (kg)	BELT	LINEAR GUIDE	мо	MENT(N	√m)	REPEATABILITY	MAX MOTOR SPEC
MA60- B- R	74.98	1000	8	RPP5- 10	MINIATURE WIDE 12	Ma16.4	Mb18.6	Mc47.1	i ¾0.1(mm)	00(W), jà40(mm)


MA60- B- L Series (Belt)

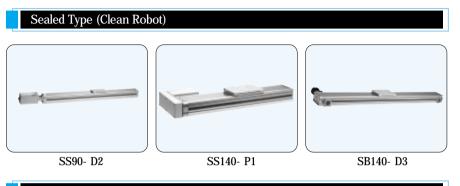
High apply load, Timming Belt for high precision feed line, Clean Room (Class 10)


MODEL	BELT LEAD	MAXS TROKE (mm)	LOAD (kg)	BELT	LINEAR GUIDE	MC	MENT(N	lm)	REPEATABILITY	MAX MOTOR SPEC
MA60- B- L	74.98	120	8	RPP5-10	MINIATURE WIDE 12	Ma16.4	Mb18.6	Mc47.1	; ¾0.1(mm)	100(W), įà40(mm)

DRAWING & DIMENSION



MA75-G(R) Series (Ball Screw)


Compact design, Clean Room(Class 10)

MA75- G	(Grour	nd)						MA75- R(Rolleo	i)					
SCREW LEAD	5	10	20	LOAD (kg)	13	REPEAT ABILITY	i ¾0.02(mm)	SCREW LEAD	2	5	10	LOAD (kg)	9	REPEAT ABILITY	i ¾0.02(mm)
MAX STROKE (mm)	400	400	400	BALL SCREW	¥ Õ12- C5, Backlash 0.005mm	MAX	100/00	MAX STROKE (mm)	400	400	400	BALL SCREW	¥ Õ12- C7, Backlash 0.005mm	MAX	100.01D : à40/
MOMENT (Nm)	35.2	38.2	137	LINEAR GUIDE	MINIATURE WIDE 15	MOTOR SPEC	100(W), i à40(mm)	MOMENT (Nm)	35.2	38.2	137	LINEAR GUIDE	MINIATURE WIDE 15	MOTOR SPEC	100(W), i å40(mm)

¥¶. Sealed Type Linear Actuator

New revolution in linear actuator

• Conventional linear actuators usually have much empty space between the unit base and cover. Therefore they become unsuitable for dusty environments and clean room requirements

• SBC sealed type linear actuators such as SS and SB series have adopted a stainless cover on top of the base cover which has been designed to be stick to the base. The result is that it prevents any dust and dampness from effecting the ball screw, linear rail and bearings. It can therefore be applied in automated feed lines where dust and other contaminants exist in the atmosphere. This design is also very effective when used in the fields of LCD, PDP, semiconductor, medical and food industries where the requirement for clean working environments is paramount. (clean class 10 achieved)

• If the ball screw and linear rail system are raydent- treated, it is even more effective for corrosive free longer life.

Simple design

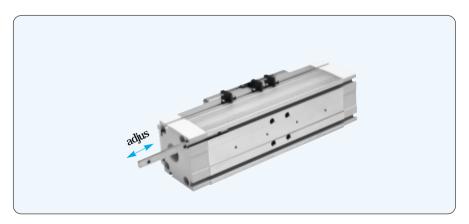
The compact design and rigid design give more stability and suits the cosmetic requirement of many applications.

Resolve the slackness of cover

Unlikely many conventional actuators using aluminum cover, the SBC linear actuators uses an ultra thin SUS stainless cover. Even in long stroke units, no slackness develops in the SUS sealing cover.

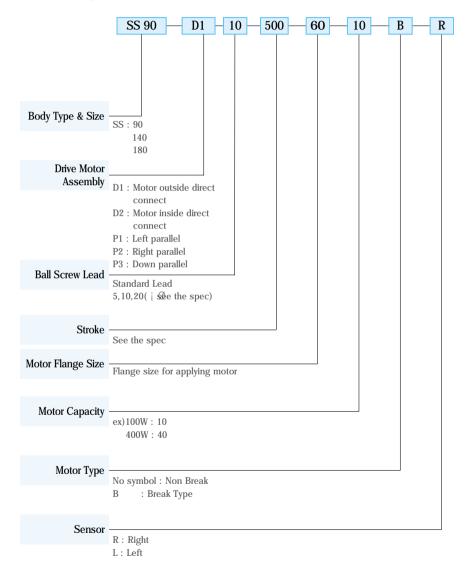

Various driving force

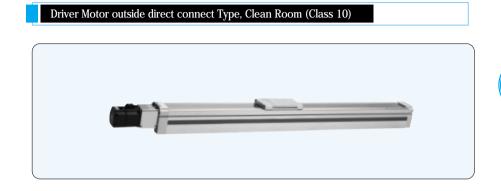
· Ball Screw : SS series


• Belt : SB series

Installation of Sealed Type linear actuator

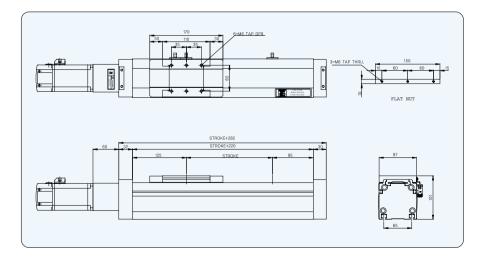
Insertion of FLAT NUT into T grooves in the bottom of linear actuator body provides appropriate mounting points and allow for positional adjustment to suit the length of the actuator


1. Please insert the FLAT NUT to T groove in the bottom of linear actuator as above


2. After insertion of the FLAT NUTS, use appropriately sized(see specifications) cap screws or bolts to fix the linear actuator at positions suitable to the length

For more information, please see the installation, maintenance and repair section

Ordering example of SS type(Ball Screw Type)



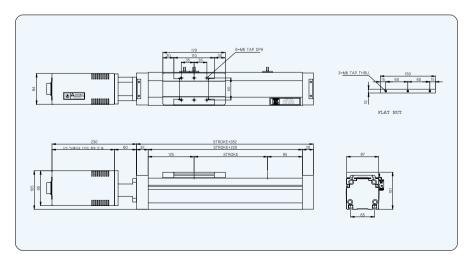
SS90- D1

LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	35	35	25	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	200(W), † à60(mm)
(kg)	vertical	30	20	-	LINEAR GUIDE	NO.15X2BX1R	WEIGHT(kg)	8.3+ (1.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

SS90- D2

Total Linear Motion Solution

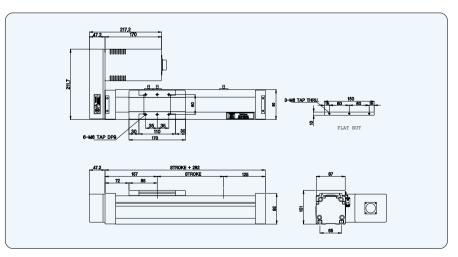

SBC Total

Driver Motor inside direct connect Type, Clean Room (Class 10)

LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	35	35	25	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	200(W), jà60(mm)
(kg)	vertical	30	20	-	LINEAR GUIDE	NO.15X2BX1R	WEIGHT(kg)	8.3+(1.1XSTROKE/100)

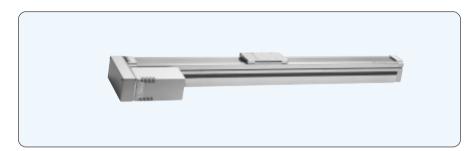
*Max linear motion speed of ball screw verse 3000rpm

DRAWING & DIMENSION


SS90- P1

Driver Motor left parallel Type, Clean Room (Class 10)

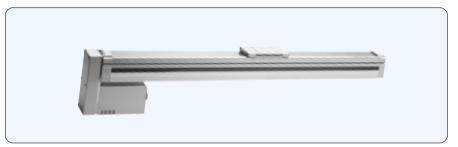
LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	35	35	25	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	200(W), jà60(mm)
(kg)	vertical	30	20	-	LINEAR GUIDE	NO.15X2BX1R	WEIGHT(kg)	9.3+(1.1XSTROKE/100)


*Max linear motion speed of ball screw verse 3000rpm

SS90- P2

SBC Total Linear Motion Solution

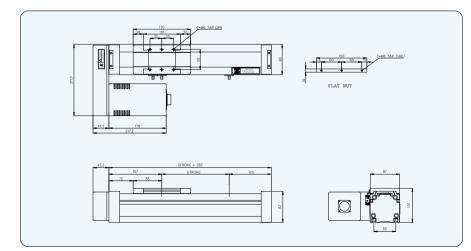
Driver Motor right parallel Type, Clean Room (Class 10)

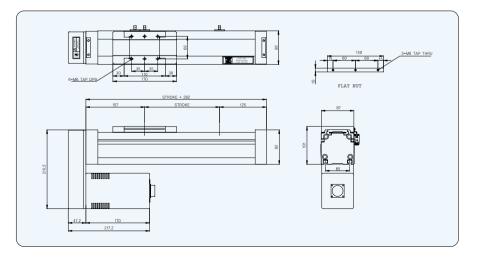


LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	35	35	25	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	200(W), ià60(mm)
(kg)	vertical	30	20	-	LINEAR GUIDE	NO.15X2BX1R	WEIGHT(kg)	9.3+(1.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

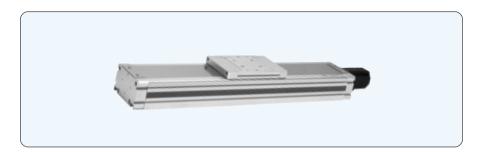
SS90- P3


Driver Motor down parallel Type, Clean Room (Class 10)



LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	35	35	25	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	200(W), † à60(mm)
(kg)	vertical	30	20	-	LINEAR GUIDE	NO.15X2BX1R	WEIGHT(kg)	9.3+ (1.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

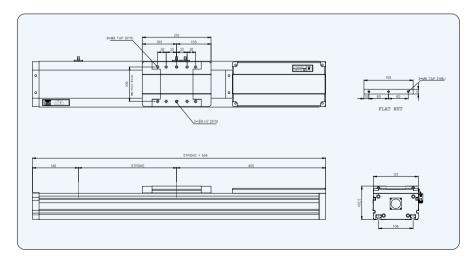

DRAWING & DIMENSION

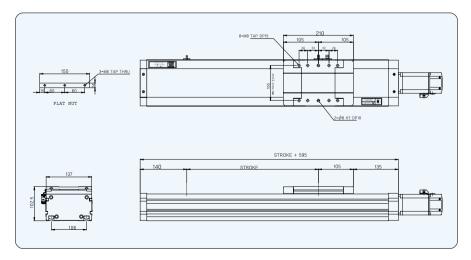
SS140- D1

Driver Motor outside direct connect Type, Clean Room (Class 10)

LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	50	50	40	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	400(W), jà60(mm)
(kg)	vertical	40	30	-	LINEAR GUIDE	NO.15X4BX2R	WEIGHT(kg)	12.5+(1.3XSTROKE/100)

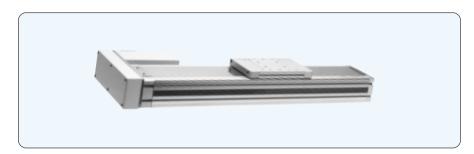
*Max linear motion speed of ball screw verse 3000rpm


Driver Motor inside direct connect Type, Clean Room(Class 10)



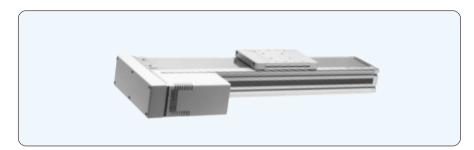
LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	50	50	40	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	400(W), i à60(mm)
(kg)	vertical	40	30	-	LINEAR GUIDE	NO.15X4BX2R	WEIGHT(kg)	12.5+(1.3XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm


DRAWING & DIMENSION

SS140- P1

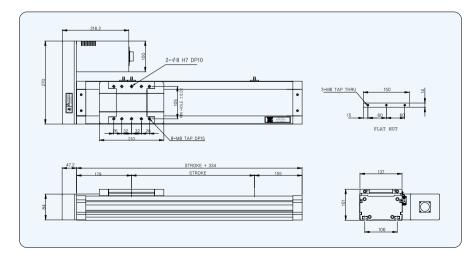
Driver Motor left parallel Type, Clean Room (Class 10)

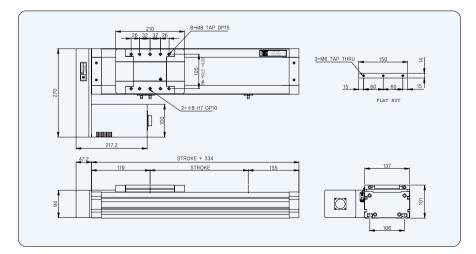


LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	50	50	40	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	400(W), jà60(mm)
(kg)	vertical	40	30	-	LINEAR GUIDE	NO.15X4BX2R	WEIGHT(kg)	13.7+ (1.3XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

SS140- P2


Driver Motor right parallel Type, Clean Room (Class 10)



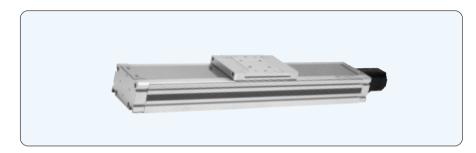
LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	50	50	40	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	400(W), i à60(mm)
(kg)	vertical	40	30	-	LINEAR GUIDE	NO.15X4BX2R	WEIGHT(kg)	13.7+ (1.3XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

DRAWING & DIMENSION

SS140- P3

Driver Motor down parallel Type, Clean Room (Class 10)

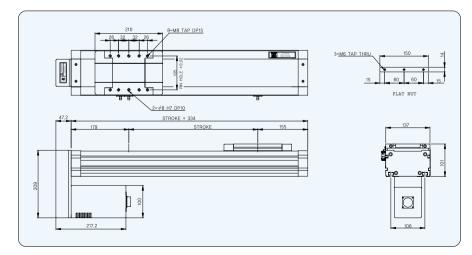


LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	; ¾0.02(mm)
LOAD	horizontal	50	50	40	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	400(W), i à60(mm)
(kg)	vertical	40	30	-	LINEAR GUIDE	NO.15X4BX2R	WEIGHT(kg)	13.7+ (1.3XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

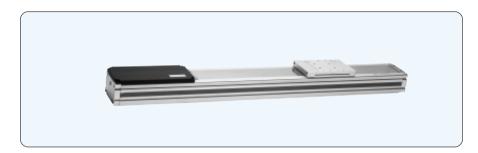
SS180- D1

Driver Motor outside direct connect Type, Clean Room (Class 10)



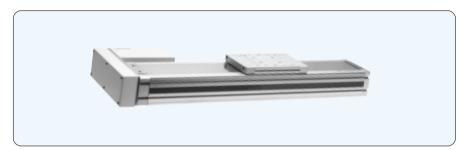
LEAD((SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	90	85	65	BALL SCREW	¥ Õ15- C5	MAX MOTOR SPEC	750(W), i à60(mm)
(kg)	vertical	48	40	-	LINEAR GUIDE	NO.20X4BX2R	WEIGHT(kg)	21.8+ (2.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm



SS180- D2

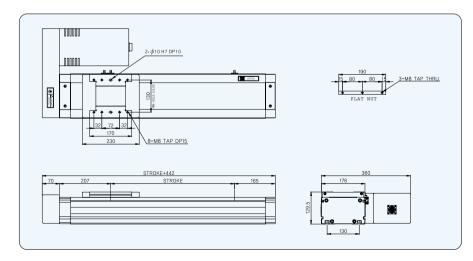
Driver Motor inside direct connect Type, Clean Room (Class 10)

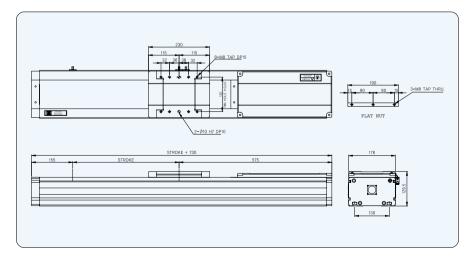


LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	90	85	65	BALL SCREW	¥ Õ20- C5	MAX MOTOR SPEC	750(W), i à60(mm)
(kg)	vertical	48	40	-	LINEAR GUIDE	NO.20X4BX2R	WEIGHT(kg)	21.8+ (2.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

SS180- P1

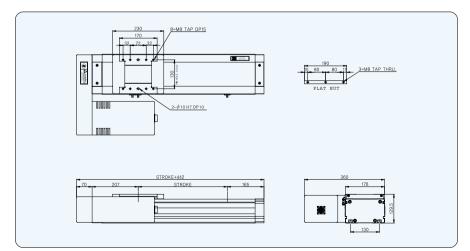

Driver Motor Left Pareller Type,: Clean Room (Class 10)

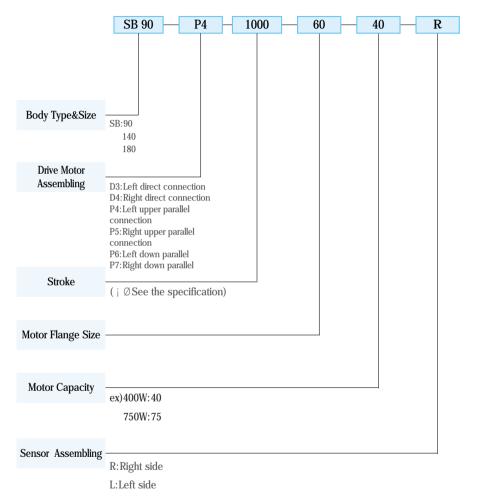


LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	90	85	65	BALL SCREW	¥ Õ20- C5	MAX MOTOR SPEC	750(W), ¡à60(mm)
(kg)	vertical	48	40	-	LINEAR GUIDE	NO.20X4BX2R	WEIGHT(kg)	21.8+ (2.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

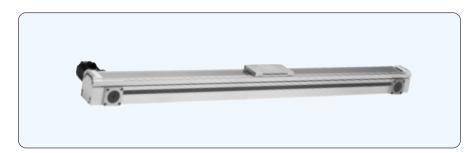
DRAWING & DIMENSION


SS180- P2

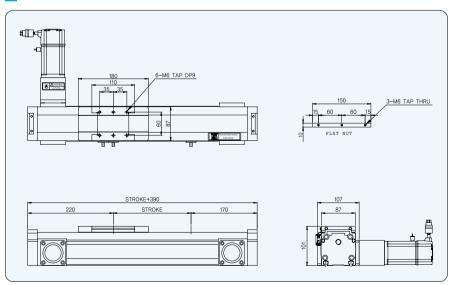

LEAD	(SPEED)*	5(250)	10(500)	20(1000)	MAXS TROKE (mm)	1000	REPEATABILITY	i ¾0.02(mm)
LOAD	horizontal	90	85	65	BALL SCREW	¥ Õ20- C5	MAX MOTOR SPEC	750(W), jà60(mm)
(kg)	vertical	48	40	-	LINEAR GUIDE	NO.20X4BX2R	WEIGHT(kg)	22.8+(2.1XSTROKE/100)

*Max linear motion speed of ball screw verse 3000rpm

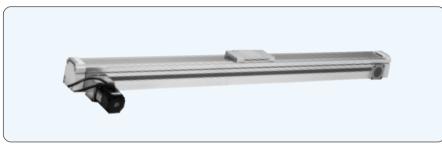
DRAWING & DIMENSION



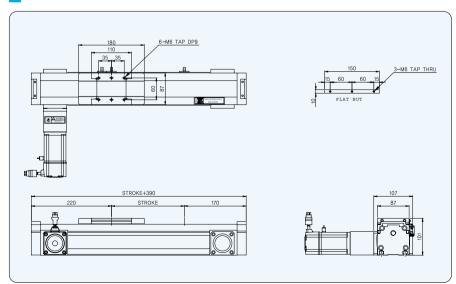
SB Type(Belt Type) Ordering Example


SB90- D3

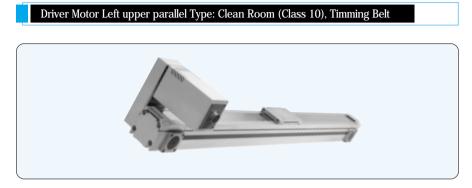
Driver Motor Left direct connection: Clean Room (Class 10), Timming Belt


MODEL	LEAD (SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- D3	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), † à60(mm) 10.34 XS TROKE/100)

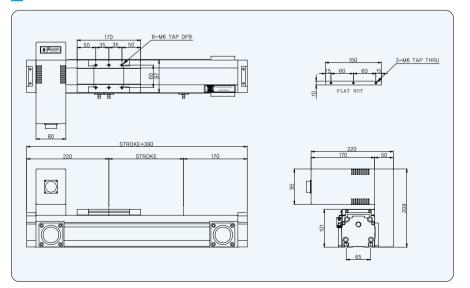
DRAWING & DIMENSION


SB90- D4

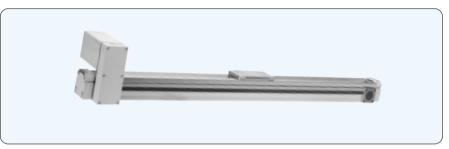
Driver Motor Right direct connection Type : Clean Room(Class 10), Timming Belt


MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- D4	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), † à60(mm) 10.34 XS TROKE/100)

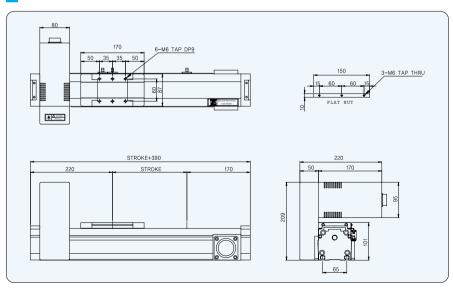
DRAWING & DIMENSION


C- 42

SB90- P4


MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- P4	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), † à60(mm) 10.34 XS TROKE/100)

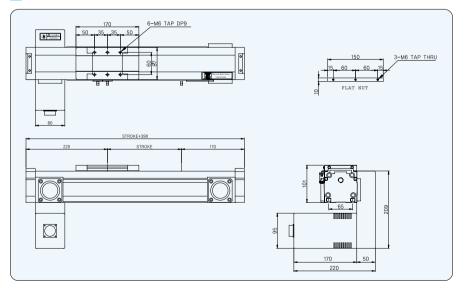
DRAWING & DIMENSION



SB90- P5

Driver Motor Right upper parallel Type: Clean Room (Class 10), Timming Belt

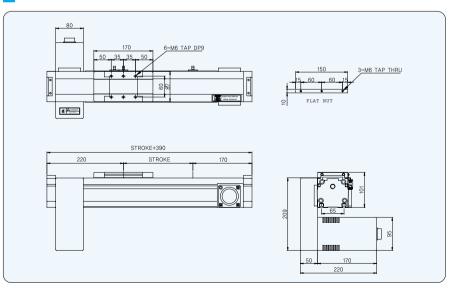
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- P3	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), ¡à60(mm) 10.34 XS TROKE/100)


SB90- P6

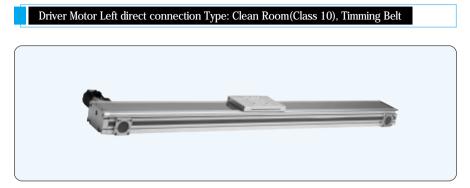
Driver Motor Left down parallel Type: Clean Room (Class 10), Timming Belt

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- P6	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), jà60(mm) 10.3 4%S TROKE/100)

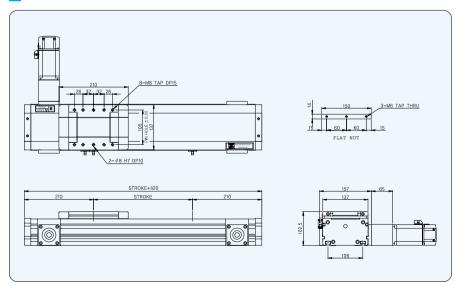
DRAWING & DIMENSION



SB90- P7


Driver Motor Right down parallel Type: Clean Room (Class 10), Timming Belt

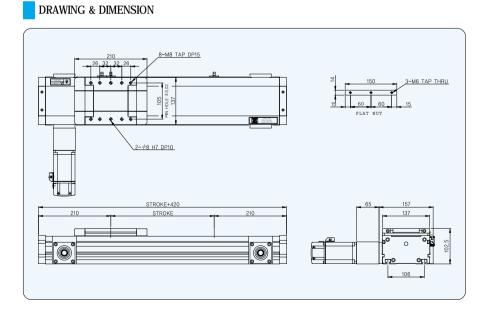
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB90- P7	1500(mm/s)	25	3000	¥ Õ44.56	NO.15X2BX1R	; ¾0.1(mm)	400(W), ¡à60(mm) 10.34 XS TROKE/100)



SB140-D3

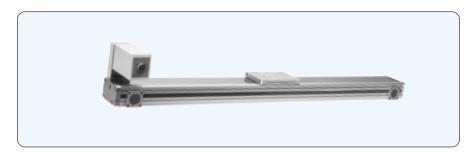

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- D3	2000(mm/s)	25	1000	¥ Õ44.56	NO. 15X4BX2R	; ¾0.1(mm)	400(W), †à60(mm) 12.5 3XS TROKE/100)

DRAWING & DIMENSION

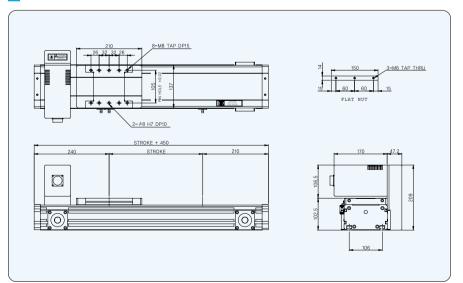


SB140- D4

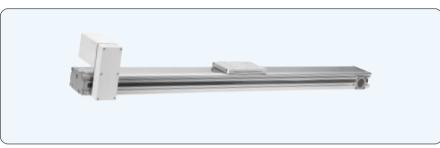
Driver Motor Right direct connection Type: Clean Room(Class 10), Timming Belt



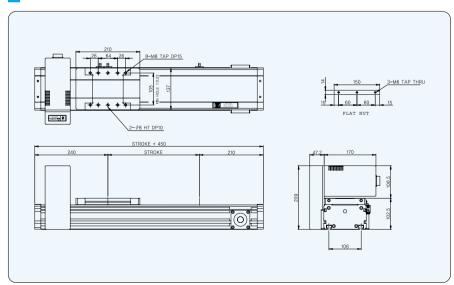
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- D4	2000(mm/s)	25	1000	¥ Õ44.56	NO.15X4BX2R	; ¾0.1(mm)	400(W), † à60(mm) 12.5 3XS TROKE/100)


SB140- P4

Driver Motor Left upper parallel Type: Clean Room (Class 10), Timming Belt


MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- P4	2000(mm/s)	25	1000	¥ Õ44.56	NO. 15X4BX2R	; ¾0.1(mm)	400(W), † à60(mm) 12.5 3XS TROKE/100)

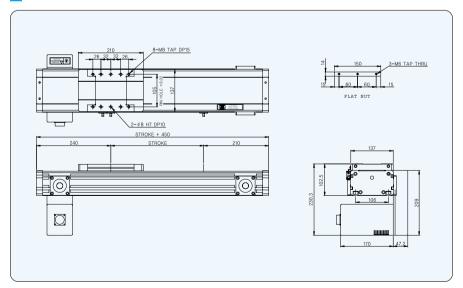
DRAWING & DIMENSION



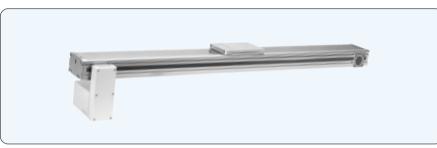
SB140-P5

Driver Motor Right upper parallel Type: Clean Room (Class 10), Timming Belt

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- P5	2000(mm/s)	25	1000	¥ Õ44.56	NO. 15X4BX2R	; ¾0.1(mm)	400(W), † à60(mm) 12.5 3%S TROKE/100)

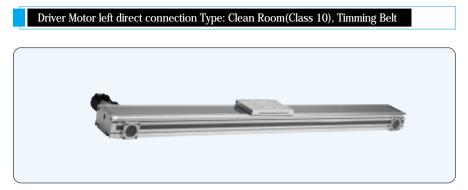

SB140-P6

Driver Motor Left down parallel Type: Clean Room (Class 10), Timming Belt

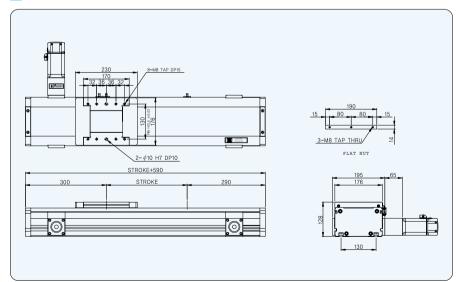

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- P6	2000(mm/s)	25	1000	¥ Õ44.56	NO.15X4BX2R	; ¾0.1(mm)	400(W), †à60(mm) 12.5 3XS TROKE/100)

DRAWING & DIMENSION

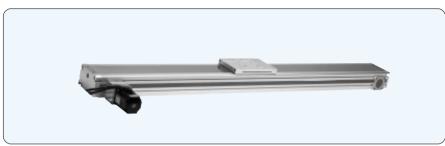
SB140- P7


Driver Motor Right down parallel Type: Clean Room (Class 10), Timming Belt

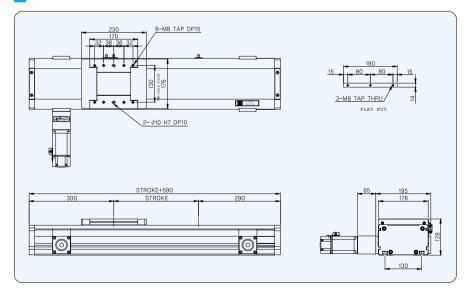
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB140- P7	2000(mm/s)	25	1000	¥ Õ44.56	NO.15X4BX2R	; ¾0.1(mm)	400(W), † à60(mm) 12.5 3XS TROKE/100)



SB180- D3

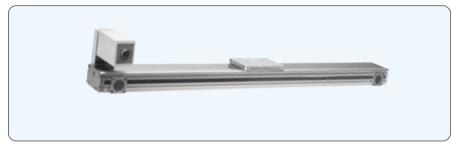

MODEL	LEAD (SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- D3	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), † à80(mm)28.7+(2.17XSTROKE/100)

DRAWING & DIMENSION

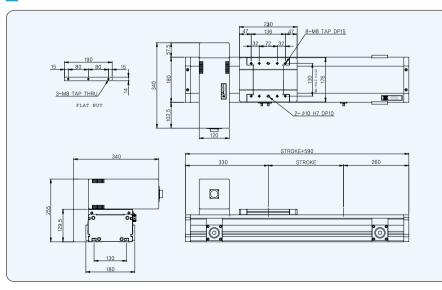


SB180- D4

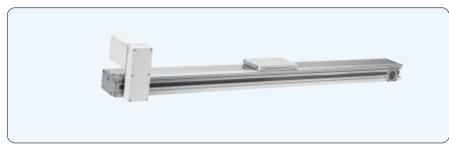
Driver Motor Right direct connection Type, Clean Room (Class 10), Timming Belt



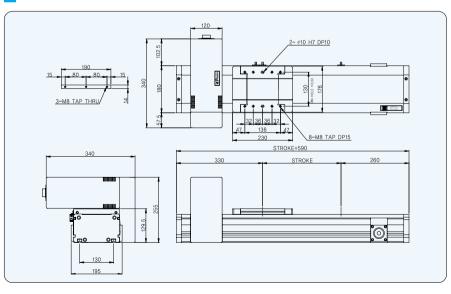
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- D4	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), †à80(mm)28.7+(2.17XSTROKE/100)


SB180- P4

Driver Motor Left upper parallel Type: Clean Room(Class 10), Timming Belt

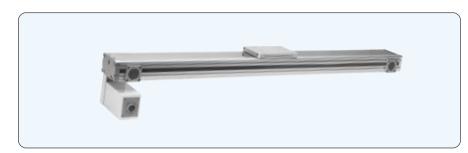

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- P4	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), † à80(mm)28.7+(2.17XSTROKE/100)

DRAWING & DIMENSION

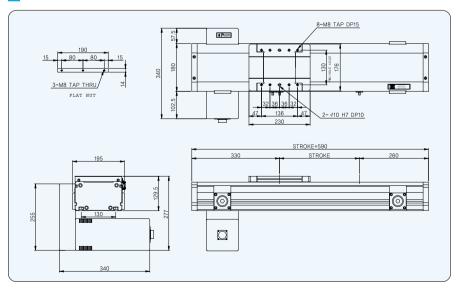


SB180-P5

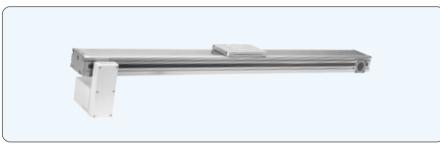
Driver Motor Right upper parallel Type: Clean Room (Class 10), Timming Belt



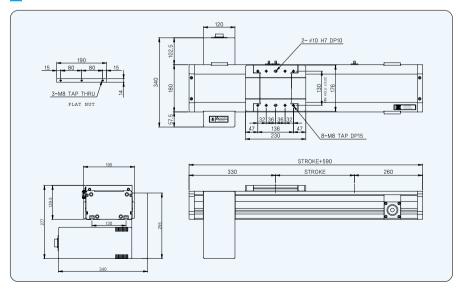
MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- P5	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), † à80(mm)28.7+(2.17XSTROKE/100)


SB180-P6

Driver Motor Left down parallel Type: Clean Room (Class 10), Timming Belt

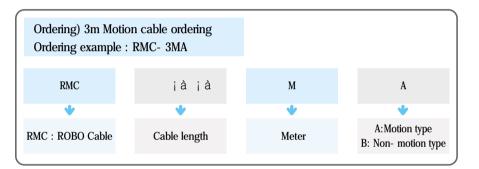

MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- P6	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), jà80(mn)28.7+(2.17XSTROKE/100)

DRAWING & DIMENSION



SB180- P7

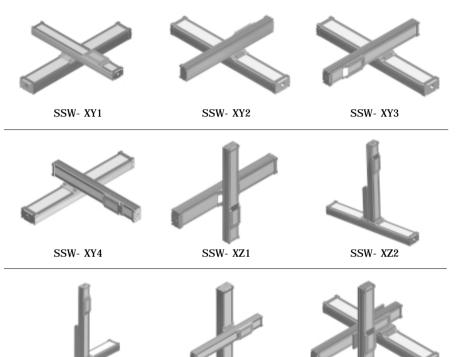
Driver Motor Right down parallel Type: Clean Room(Class 10), Timming Belt


MODEL	LEAD(SPEED)	LOAD(kg)	MAX STROKE (mm)	PULLY DIAMETER	LINEAR GUIDE	REPEATABILITY	MAX MOTOR SPEC	WEIGHT(kg)
SB180- P7	2000(mm/s)	50	3000	¥ Õ44.56	NO.20X4BX2R	; ¾0.1(mm)	750(W), † à80(mm)28.7+(2.17XSTROKE/100)

$\ensuremath{\mathbbmath{\mathbbmath{\mathbb{H}}}}$. Linear Actuator Accessory

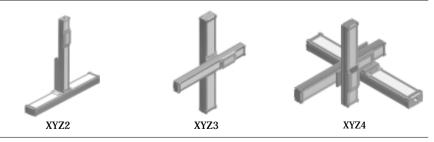
ROBO Cable

- Body connector of SBC Linear Actuator is standard. If necessary, extended cable can be supplied.
- Standard 1m, 3m, 5m, 7m, 19m
- $\ensuremath{\mathsf{j}}$ ØMotion cable In case cable need lots of movement
- i ØNon- motion cable In case cable movement is few or cable isxed,

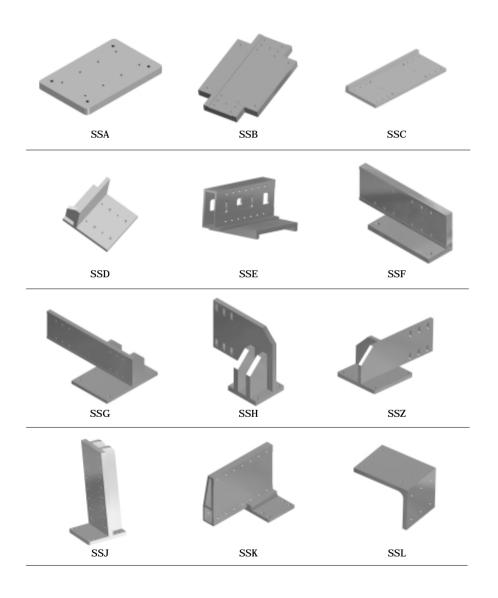


i Ø When you place an order, please order it with motor model.

| Ø Pin Map is supplied according to Motor model or Pin Ma iis dicated on the cable.



\mathbb{Y} ,. Linear Actuator assembling example


SSW- XZ3

SSW- YZ4

^{$\frac{1}{2}$} ¹. Assembling bracket

